[1] |
中华人民共和国住房和城乡建设部. 火力发电厂与变电站设计防火标准:GB 50229—2019 [S]. 北京: 中国计划出版社, 2019.
Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for design of fire protection for fossil fuel power plants and substations: GB 50229—2019 [S]. Beijing: China Planning Press, 2019.
|
[2] |
黄荣健, 房涛, 张兴卫. 考虑基础-结构动力相互作用的500 kV变电站地震预警系统的设计与应用研究 [J]. 中国战略新兴产业, 2024(9): 166–168. doi: 10.12230/j.issn.2095-6657.2024.09.051
HUANG R J, FANG T, ZHANG X W. Design and application study of seismic early warning system for 500 kV substation considering foundation-structure dynamic interaction [J]. China Strategic Emerging Industry, 2024(9): 166–168. doi: 10.12230/j.issn.2095-6657.2024.09.051
|
[3] |
刘慕娴, 陆力瑜, 莫蓓蓓, 等. 智能变电站安全运维策略研究 [J]. 新型工业化, 2021, 11(10): 88–90. doi: 10.19335/j.cnki.2095-6649.2021.10.018
LIU M X, LU L Y, MO B B, et al. Research on security operation and maintenance strategy of smart substation [J]. The Journal of New Industrialization, 2021, 11(10): 88–90. doi: 10.19335/j.cnki.2095-6649.2021.10.018
|
[4] |
JU W H. Study on fire risk and disaster reducing factors of cotton logistics warehouse based on event and fault tree analysis [J]. Procedia Engineering, 2016, 135: 418–426. doi: 10.1016/j.proeng.2016.01.150
|
[5] |
国网基建部. 变电站模块化建设2.0版技术导则 [R]. 2021.
|
[6] |
ZHU F, WANG Z H, LU G X, et al. The impulsive response of aluminium foam core sandwich structures [J]. International Journal of Materials Engineering Innovation, 2009, 1(2): 133–153. doi: 10.1504/IJMATEI.2009.029361
|
[7] |
崔天宁, 秦庆华. 轻质多孔夹芯结构的弹道侵彻行为研究进展 [J]. 力学进展, 2023, 53(2): 395–432. doi: 10.6052/1000-0992-23-002
CUI T N, QIN Q H. Ballistic performance of lightweight cellular sandwich structures: a review [J]. Advances in Mechanics, 2023, 53(2): 395–432. doi: 10.6052/1000-0992-23-002
|
[8] |
吴志恩. 波音787的复合材料构件生产 [J]. 航空制造技术, 2008(15): 92–94. doi: 10.3969/j.issn.1671-833X.2008.15.021
WU Z E. Production for composite component of Boeing 787 [J]. Aerospace Manufacturing Technology, 2008(15): 92–94. doi: 10.3969/j.issn.1671-833X.2008.15.021
|
[9] |
杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. doi: 10.11883/1001-1455(2015)02-0243-06
YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. doi: 10.11883/1001-1455(2015)02-0243-06
|
[10] |
胡宗波, 魏敬徽. 爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析 [J]. 钢结构(中英文), 2023, 38(5): 33–42. doi: 10.13206/j.gjgS22102401
HU Z B, WEI J H. Analysis on protective performance of explosion-proof wall with masonry sandwich steel plate under blast load [J]. Steel Construction (Chinese & English), 2023, 38(5): 33–42. doi: 10.13206/j.gjgS22102401
|
[11] |
CAO K L, FU Q F, MA W C, et al. Study on the underwater anti-explosion mechanism and damage grade prediction of wall panels reinforced by corrugated steel-concrete slab composite structures with different wave heights [J]. Structures, 2024, 60: 105922. doi: 10.1016/j.istruc.2024.105922
|
[12] |
WANG H R, QIU A, LONG S C, et al. Effect of fluid-structure interaction on the underwater blast response and failure of composite panels [J]. Thin-Walled Structures, 2023, 191: 111065. doi: 10.1016/j.tws.2023.111065
|
[13] |
LANGDON G S, KARAGIOZOVA D, THEOBALD M D, et al. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading [J]. International Journal of Impact Engineering, 2010, 37(6): 638–651. doi: 10.1016/j.ijimpeng.2009.07.006
|
[14] |
LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
|
[15] |
WADLEY H N G, BØRVIK T, OLOVSSON L, et al. Deformation and fracture of impulsively loaded sandwich panels [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 674–699. doi: 10.1016/j.jmps.2012.07.007
|
[16] |
NI C Y, JIN F, LU T J. Penetration of sandwich plates with hybrid-cores under oblique ballistic impact [J]. Theoretical and Applied Mechanics Letters, 2014, 4(2): 021001. doi: 10.1063/2.1402101
|
[17] |
李林, 刘勇, 魏珍中, 等. 爆炸作用下全户内变电站装配式墙板的动力响应实验研究 [J]. 高压物理学报, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
LI L, LIU Y, WEI Z Z, et al. Dynamic response experiment of prefabricated wall panels for a whole-indoor substation under blast loading [J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044101. doi: 10.11858/gywlxb.20240873
|
[18] |
王嵩, 刘润清, 赵硕, 等. 玄武岩纤维混凝土动态力学性能及数值模拟 [J]. 混凝土与水泥制品, 2022(7): 64–68. doi: 10.19761/j.1000-4637.2022.07.064.05
WANG S, LIU R Q, ZHAO S, et al. Dynamic mechanical properties and numerical simulation of basalt fiber reinforced concrete [J]. China Concrete and Cement Products, 2022(7): 64–68. doi: 10.19761/j.1000-4637.2022.07.064.05
|
[19] |
杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. doi: 10.3969/j.issn.1671-1815.2011.15.005
YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. doi: 10.3969/j.issn.1671-1815.2011.15.005
|
[20] |
HALLQUIST J O. LS-DYNA keyword user’s manual version 971 [R]. Livermore: Livermore Software Technology Corporation, 2007.
|
[21] |
SUN G Y, ZHANG J T, LI S Q, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading [J]. Thin-Walled Structures, 2019, 142: 499–515. doi: 10.1016/j.tws.2019.04.029
|
[22] |
WU G, WANG X, WANG Y T, et al. Blast response of bioinspired nacre-like staggered composite plates combined with steel and polyurea [J]. International Journal of Impact Engineering, 2023, 180: 104719. doi: 10.1016/j.ijimpeng.2023.104719
|