[1] BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures [J]. Composites Part B: Engineering, 2018, 142: 221–240. doi: 10.1016/j.compositesb.2018.01.027
[2] GARGANO A, DAS R, MOURITZ A P. Comparative experimental study into the explosive blast response of sandwich structures used in naval ships [J]. Composites Communications, 2022, 30: 101072. doi: 10.1016/j.coco.2022.101072
[3] LU W K, ZHANG J Y. Mechanical response of aluminum foam sandwich structure under impact load [J]. Materials Research Express, 2022, 9(1): 016515. doi: 10.1088/2053-1591/ac493e
[4] SONG J F, XU S C, XU L H, et al. Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading [J]. Thin-Walled Structures, 2020, 155: 106937. doi: 10.1016/j.tws.2020.106937
[5] NIKNEJAD A, OROJLOO P H. A novel nested system of tubes with special cross-section as the energy absorber [J]. Thin-Walled Structures, 2016, 100: 113–123. doi: 10.1016/j.tws.2015.12.009
[6] XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. doi: 10.1016/j.ijimpeng.2003.08.007
[7] SEITZBERGER M, RAMMERSTORFER F G, GRADINGER R, et al. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam [J]. International Journal of Solids and Structures, 2000, 37(30): 4125–4147. doi: 10.1016/S0020-7683(99)00136-5
[8] HALL I W, GUDEN M, CLAAR T D. Transverse and longitudinal crushing of aluminum-foam filled tubes [J]. Scripta Materialia, 2002, 46(7): 513–518. doi: 10.1016/S1359-6462(02)00024-6
[9] FAN Z H, SHEN J H, LU G X. Investigation of lateral crushing of sandwich tubes [J]. Procedia Engineering, 2011, 14: 442–449. doi: 10.1016/j.proeng.2011.07.055
[10] SHEN J H, LU G X, ZHAO L M, et al. Short sandwich tubes subjected to internal explosive loading [J]. Engineering Structures, 2013, 55: 56–65. doi: 10.1016/j.engstruct.2011.12.005
[11] JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading: numerical simulations [J]. Composite Structures, 2013, 99: 213–223. doi: 10.1016/j.compstruct.2012.12.013
[12] JING L, WANG Z H, SHIM V P W, et al. An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 71: 60–72. doi: 10.1016/j.ijimpeng.2014.03.009
[13] LIU Z F, ZHANG T H, LI S Q, et al. Experiment and numerical simulation on the dynamic response of foam-filled tubes under lateral blast loading [J]. Acta Mechanica Solida Sinica, 2021, 34(6): 937–953. doi: 10.1007/s10338-021-00285-1
[14] NIKNEJAD A, ELAHI S A, LIAGHAT G H. Experimental investigation on the lateral compression in the foam-filled circular tubes [J]. Materials & Design (1980–2015), 2012, 36: 24–34. doi: 10.1016/j.matdes.2011.10.047
[15] ZHANG B Y, WANG L, ZHANG J, et al. Deformation and energy absorption properties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression [J]. International Journal of Mechanical Sciences, 2021, 192: 106126. doi: 10.1016/j.ijmecsci.2020.106126
[16] FAN Z H, SHEN J H, LU G X, et al. Dynamic lateral crushing of empty and sandwich tubes [J]. International Journal of Impact Engineering, 2013, 53: 3–16. doi: 10.1016/j.ijimpeng.2012.09.006
[17] BAROUTAJI A, GILCHRIST M D, SMYTH D, et al. Analysis and optimization of sandwich tubes energy absorbers under lateral loading [J]. International Journal of Impact Engineering, 2015, 82: 74–88. doi: 10.1016/j.ijimpeng.2015.01.005
[18] 鲁文科. 泡沫铝夹芯结构动态力学响应的数值模拟研究[D]. 湘潭: 湘潭大学, 2022. LU W K. Numerical simulation of dynamic mechanical response of aluminum foam sandwich structures [D]. Xiangtan: Xiangtan University, 2022.
[19] YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structures, 2013, 4(3): 209–230. doi: 10.1260/2041-4196.4.3.209
[20] WIERZBICKI T, FATT M S H. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. doi: 10.1016/0734-743X(93)90094-N
[21] 刘志芳, 王军, 秦庆华. 横向冲击载荷下泡沫铝夹芯双圆管的吸能研究 [J]. 兵工学报, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024 LIU Z F, WANG J, QIN Q H. Research on energy absorption of aluminum foam-filled double circular tubes under lateral impact loadings [J]. Acta Armamentarii, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024
[22] LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. doi: 10.1016/j.tws.2016.12.016
[23] 于学会, 李婷, 王安帅, 等. 极坐标下连续密度梯度多孔金属材料设计及其夹芯管的抗爆性能研究 [J]. 固体力学学报, 2024, 45(6): 831–845. doi: 10.19636/j.cnki.cjsm42-1250/o3.2024.035 YU X H, LI T, WANG A S, et al. Design of continuous-density-graded porous metal materials in polar coordinates and study on the blast resistance of sandwich tubes [J]. Chinese Journal of Solid Mechanics, 2024, 45(6): 831–845. doi: 10.19636/j.cnki.cjsm42-1250/o3.2024.035
[24] WANG A S, YU X H, WANG H, et al. Dynamic response of sandwich tubes with continuously density-graded aluminum foam cores under internal explosion load [J]. Materials, 2022, 15(19): 6966. doi: 10.3390/ma15196966
[25] 李世强. 分层梯度多孔金属夹芯结构的冲击力学行为[D]. 太原: 太原理工大学, 2015. LI S Q. The dynamic behavior of sandwich structure with layered graded porous metallic cores [D]. Taiyuan: Taiyuan University of Technology, 2015.
[26] LI Z H, ZHANG T H, TANG B, et al. Blast response and optimization of cylindrical sandwich shells with toroidal tubular cores [J]. International Journal of Impact Engineering, 2025, 196: 105157. doi: 10.1016/J.IJIMPENG.2024.105157
[27] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979.
[28] GOEL M D, MATSAGAR V A, GUPTA A K, et al. An abridged review of blast wave parameters [J]. Defence Science Journal, 2012, 62(5): 300–306. doi: 10.14429/dsj.62.1149