[1] 潘一山, 王凯兴, 肖永惠. 基于摆型波理论的防冲支护设计 [J]. 岩石力学与工程学报, 2013, 32(8): 1537–1543. PAN Y S, WANG K X, XIAO Y H. Design of anti-scour support based on theory of pendulum-type wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1537–1543.
[2] 肖永惠, 潘一山, 陈建强, 等. 巷道防冲支架吸能构件屈曲吸能可靠性研究 [J]. 采矿与安全工程学报, 2022, 39(2): 317–327. doi: 10.13545/j.cnki.jmse.2021.0495 XIAO Y H, PAN Y S, CHEN J Q, et al. Buckling energy absorption reliability of energy absorption component of roadway rockburst preventing support [J]. Journal of Mining & Safety Engineering, 2022, 39(2): 317–327. doi: 10.13545/j.cnki.jmse.2021.0495
[3] 王春华, 安达, 韩冲, 等. 冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验 [J]. 振动与冲击, 2019, 38(11): 203–210, 241. doi: 10.13465/j.cnki.jvs.2019.11.030 WANG C H, AN D, HAN C, et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst [J]. Journal of Vibration and Shock, 2019, 38(11): 203–210, 241. doi: 10.13465/j.cnki.jvs.2019.11.030
[4] HA N S, PHAM T M, HAO H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing [J]. International Journal of Mechanical Sciences, 2021, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
[5] ALBAK E İ. Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions [J]. Thin-Walled Structures, 2021, 164: 107886. doi: 10.1016/j.tws.2021.107886
[6] NAGARJUN J, KUMAR A P, REDDY K Y, et al. Dynamic crushing and energy absorption performance of newly designed multitubular structures [J]. Materials Today: Proceedings, 2020, 27: 1928–1933. doi: 10.1016/j.matpr.2020.04.103
[7] ZHANG Y, HE N, HOU Y B. Crashworthiness optimization of a vertex fractal hexagonal structure [J]. International Journal of Computational Methods, 2020, 17(7): 1950031. doi: 10.1142/S0219876219500312
[8] BUYALICH G D, BUYALICH K G, VOYEVODIN V V. Radial deformations of working cylinder of hydraulic legs depending on their extension [J]. IOP Conference Series: Materials Science and Engineering, 2015, 91(1): 012087. doi: 10.1088/1757-899X/91/1/012087
[9] 刘欣科, 赵忠辉, 赵锐. 冲击载荷作用下液压支架立柱动态特性研究 [J]. 煤炭科学技术, 2012, 40(12): 66–70. doi: 10.13199/j.cst.2012.12.72.liuxk.028 LIU X K, ZHAO Z H, ZHAO R. Study on dynamic features of leg applied to hydraulic powered support under bumping load [J]. Coal Science and Technology, 2012, 40(12): 66–70. doi: 10.13199/j.cst.2012.12.72.liuxk.028
[10] 张建卓, 张佳林. 吸能型防冲立柱液体冲击问题研究 [J]. 振动与冲击, 2020, 39(8): 51–57. doi: 10.13465/j.cnki.jvs.2020.08.008 ZHANG J Z, ZHANG J L. A study on liquid shock of energy-absorbing anti-impact hydraulic column [J]. Journal of Vibration and Shock, 2020, 39(8): 51–57. doi: 10.13465/j.cnki.jvs.2020.08.008
[11] 肖晓春, 朱恒, 徐军, 等. 含泡沫铝填充多胞方管吸能立柱防冲特性数值研究 [J]. 煤炭科学技术, 2023, 51(10): 302–311. doi: 10.13199/j.cnki.cst.2022-1608 XIAO X C, ZHU H, XU J, et al. Numerical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam [J]. Coal Science and Technology, 2023, 51(10): 302–311. doi: 10.13199/j.cnki.cst.2022-1608
[12] 田立勇, 周禹鹏, 孙业新, 等. 防冲支架立柱多胞薄壁吸能构件能量吸收性能 [J]. 煤炭学报, 2023, 48(5): 2224–2235. doi: 10.13225/j.cnki.jccs.2022.0903 TIAN L Y, ZHOU Y P, SUN Y X, et al. Energy absorption performance of multicellular thin-walled energy-absorbing components of anti-shock support columns [J]. Journal of China Coal Society, 2023, 48(5): 2224–2235. doi: 10.13225/j.cnki.jccs.2022.0903
[13] 张煜航, 武晓东, 庄大杰, 等. 泡沫铝填充半球壳结构动力学特性研究 [J]. 兵器装备工程学报, 2023, 44(6): 65–73. doi: 10.11809/bqzbgcxb2023.06.009 ZHANG Y H, WU X D, ZHUANG D J, et al. Study on dynamic characteristics of aluminum foam-filled hemisphere shell [J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 65–73. doi: 10.11809/bqzbgcxb2023.06.009
[14] 张佳林. 吸能型防冲液压立柱抗冲击特性研究 [D]. 阜新: 辽宁工程技术大学, 2019. ZHANG J L. Study on impact resistance of energy-absorbing anti-impact hydraulic column [D]. Fuxin: Liaoning Technical University, 2019.
[15] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. doi: 10.1016/S0263-8231(01)00006-4
[16] 田立勇, 于晓涵, 周禹鹏, 等. 液压支架立柱防冲吸能构件优化仿真及压溃实验研究 [J]. 煤炭学报, 2024, 49(6): 2924–2936. doi: 10.13225/j.cnki.jccs.2023.0676 TIAN L Y, YU X H, ZHOU Y P, et al. Optimization simulation and crushing experiment of anti-impact energy absorption component of hydraulic support column [J]. Journal of China Coal Society, 2024, 49(6): 2924–2936. doi: 10.13225/j.cnki.jccs.2023.0676
[17] 潘一山, 肖永惠, 李国臻. 巷道防冲液压支架研究及应用 [J]. 煤炭学报, 2020, 45(1): 90–99. doi: 10.13225/j.cnki.jccs.YG19.1762 PAN Y S, XIAO Y H, LI G Z. Roadway hydraulic support for rockburst prevention in coal mine and its application [J]. Journal of China Coal Society, 2020, 45(1): 90–99. doi: 10.13225/j.cnki.jccs.YG19.1762
[18] 吴明泽, 张晓伟, 张庆明. 材料和内边界约束对薄壁圆管轴向压缩吸能特性的影响研究 [J]. 应用力学学报, 2020, 37(4): 1415–1421. doi: 10.11776/cjam.37.04.D037 WU M Z, ZHANG X W, ZHANG Q M. Effects of material properties and inner-constraints on the energy absorption of thin-walled circular tube under axial compression [J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1415–1421. doi: 10.11776/cjam.37.04.D037
[19] 杜常赞. 闭孔泡沫铝压缩性能实验与仿真研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021. DU C Z. Experimental and simulation study on compression performance of closed cell aluminum foam [D]. Harbin: Harbin Institute of Technology, 2021.
[20] 曹梦真, 邱田伟, 安钰坤. 泡沫铝有限元仿真模型研究现状 [J]. 中国材料进展, 2024, 43(4): 323–330. doi: 10.7502/j.issn.1674-3962.202210016 CAO M Z, QIU T W, AN Y K. Research status of finite element simulation model of aluminum foams [J]. Materials China, 2024, 43(4): 323–330. doi: 10.7502/j.issn.1674-3962.202210016
[21] LI W W, LUO Y H, LI M, et al. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber [J]. International Journal of Mechanical Sciences, 2018, 140: 241–249. doi: 10.1016/j.ijmecsci.2018.03.006
[22] MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens [J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186–1202. doi: 10.1590/1679-78252446
[23] 周颖, 潘一山, 张建卓, 等. 高压大流量安全阀卸荷过程模型构建及仿真分析 [J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(1): 136–140. doi: 10.11956/j.issn.1008-0562.2018.01.024 ZHOU Y, PAN Y S, ZHANG J Z, et al. Model building for unloading process of high pressure large flow relief valve and its simulation analysis [J]. Journal of Liaoning Technical University (Natural Science), 2018, 37(1): 136–140. doi: 10.11956/j.issn.1008-0562.2018.01.024
[24] 赵怀志, 王晓东. 液压支架大流量安全阀冲击特性影响因素仿真分析 [J]. 液压与气动, 2022, 46(2): 131–137. doi: 10.11832/j.issn.1000-4858.2022.02.017 ZHAO H Z, WANG X D. Simulation analysis of influencing factors on impact characteristics of large flow safety valve for hydraulic support [J]. Chinese Hydraulics & Pneumatics, 2022, 46(2): 131–137. doi: 10.11832/j.issn.1000-4858.2022.02.017