[1] GLEASON A E, BOLME C A, LEE H J, et al. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation [J]. Nature Communications, 2017, 8(1): 1481. doi: 10.1038/s41467-017-01791-y
[2] MILLOT M, HAMEL S, RYGG J R, et al. Experimental evidence for superionic water ice using shock compression [J]. Nature Physics, 2018, 14(3): 297–302. doi: 10.1038/s41567-017-0017-4
[3] FRATANDUONO D E, MILLOT M, BRAUN D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression [J]. Science, 2021, 372(6546): 1063–1068. doi: 10.1126/science.abh0364
[4] 单连强, 高宇林, 辛建婷, 等. 激光驱动气库靶对铝的准等熵压缩实验研究 [J]. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204 SHAN L Q, GAO Y L, XIN J T, et al. Laser-driven reservoir target for quasi-isentropic compression in aluminum [J]. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
[5] 刘海庆, 段卓平, 蔡进涛, 等. 准等熵加载下PBXC03炸药起爆响应特性实验研究 [J]. 北京理工大学学报, 2018, 38(8): 792–796. doi: 10.15918/j.tbit1001-0645.2018.08.004 LIU H Q, DUAN Z P, CAI J T, et al. Experimental research of characteristics of initiation response of PBXC03 under quasi-isentropic loading [J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 792–796. doi: 10.15918/j.tbit1001-0645.2018.08.004
[6] NGUYEN J H, ORLIKOWSKI D, STREITZ F H, et al. Specifically prescribed dynamic thermodynamic paths and resolidification experiments [J]. AIP Conference Proceedings, 2004, 706(1): 1225–1230. doi: 10.1063/1.1780459
[7] JARMAKANI H, MCNANEY J M, KAD B, et al. Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading [J]. Materials Science and Engineering: A, 2007, 463(1/2): 249–262. doi: 10.1016/j.msea.2006.09.118
[8] DARGAUD M, FORQUIN P. A shockless plate-impact spalling technique, based on wavy-machined flyer-plates, to evaluate the strain-rate sensitivity of ceramic tensile strength [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 73–88. doi: 10.1007/s40870-021-00317-4
[9] 贺芝宇, 周华珍, 黄秀光, 等. 激光加载下铝材料的冲击温度测量 [J]. 强激光与粒子束, 2016, 28(4): 042002. doi: 10.11884/HPLPB201628.122002 HE Z Y, ZHOU H Z, HUANG X G, et al. Measurements of aluminum’s shock temperature on SG-Ⅱ high-power laser facility [J]. High Power Laser and Particle Beams, 2016, 28(4): 042002. doi: 10.11884/HPLPB201628.122002
[10] DUAN X X, ZHANG C, GUAN Z Y, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading [J]. Journal of Applied Physics, 2020, 128(1): 015902. doi: 10.1063/5.0003869
[11] 薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159 XUE Q X, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
[12] HALL C A, ASAY J R, KNUDSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178
[13] KNUDSON M D, HANSON D L, BAILEY J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques [J]. Physical Review B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
[14] AO T, ASAY J R, CHANTRENNE S, et al. A compact strip-line pulsed power generator for isentropic compression experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013903. doi: 10.1063/1.2827509
[15] BROWN N P, SPECHT P E, BROWN J L. Quasi-isentropic compression of an additively manufactured aluminum alloy to 14.8 GPa [J]. Journal of Applied Physics, 2022, 132(22): 225106. doi: 10.1063/5.0127989
[16] REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
[17] ZHONG T, LIU X, ZHANG Y Y, et al. Penetration dynamics of a carbonate sand: a synchrotron phase contrast imaging study [J]. International Journal of Impact Engineering, 2021, 152: 103839. doi: 10.1016/j.ijimpeng.2021.103839
[18] YE S J, XU Y F, ZHOU Y, et al. Penetration dynamics of steel spheres into a ballistic gelatin: experiments, nondimensional analysis, and finite element modeling [J]. International Journal of Impact Engineering, 2022, 162: 104144. doi: 10.1016/j.ijimpeng.2021.104144
[19] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. doi: 10.7498/aps.52.1663 SHEN Q, ZHANG L M, WANG C B, et al. Design and optimization of wave impedance distribution for flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. doi: 10.7498/aps.52.1663
[20] 窦金锋. W-Mo-Ti体系波阻抗梯度飞片的设计及相关物性研究 [D]. 武汉: 武汉理工大学, 2002. DOU J F. Design of W-Mo-Ti flier-plate with graded wave impedanceand study on its relative physical properties [D]. Wuhan: Wuhan University of Technology, 2002.
[21] HAYASHI T, UGO R, MORIMOTO Y. Experimental observation of stress waves propagating in laminated composites [J]. Experimental Mechanics, 1986, 26(2): 169–174. doi: 10.1007/BF02320011
[22] ANDERSON M U, CHHABILDAS L C, REINHART W D. Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors [J]. AIP Conference Proceedings, 1998, 429(1): 841–844. doi: 10.1063/1.55681
[23] CHHABILDAS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1): 183–194. doi: 10.1016/0734-743X(95)99845-I
[24] SUN L, SNELLER A, KWON P. Fabrication of alumina/zirconia functionally gradedmaterial: from optimization of processing parameters to phenomenological constitutive models [J]. Materials Science and Engineering: A, 2008, 488(1/2): 31–38. doi: 10.1016/j.msea.2007.10.044
[25] MARTIN L P, PATTERSON J R, ORLIKOWSKI D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments [J]. Journal of Applied Physics, 2007, 102(2): 023507. doi: 10.1063/1.2756058
[26] SUN W, LI X J, HOKAMOTO K. Fabrication of graded density impactor via underwater shock wave and quasi-isentropic compression testing at two-stage gas gun facility [J]. Applied Physics A, 2014, 117(4): 1941–1946. doi: 10.1007/s00339-014-8663-1
[27] ZHANG L M, ZHOU X Z, LUO G Q, et al. Microstructure and properties of aluminum-copper composites prepared by hot-pressure sintering [J]. Key Engineering Materials, 2014, 616: 212–216. doi: 10.4028/www.scientific.net/KEM.616.212
[28] YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. Review of Scientific Instruments, 2013, 84(10): 103909. doi: 10.1063/1.4826565
[29] KELLY J P, NGUYEN J H, LIND J, et al. Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments [J]. Journal of Applied Physics, 2019, 125(14): 145902. doi: 10.1063/1.5055398
[30] BROWN J L, ADAMS D P, ALEXANDER C S, et al. Estimates of Ta strength at ultrahigh pressures and strain rates using thin-film graded-density impactors [J]. Physical Review B, 2019, 99(21): 214105. doi: 10.1103/PhysRevB.99.214105
[31] GAO W L, ZHANG R Z, WANG J, et al. Enhancing laser-driven flyer velocity by optimizing of modulation period of Al/Ti reactive multilayer films [J]. Journal of Vacuum Science & Technology A, 2023, 41(6): 063414. doi: 10.1116/6.0003066
[32] 江宇达, 张睿智, 吴楯, 等. Ti-Pt周期调制梯度材料的制备及准等熵加载特性 [J]. 高压物理学报, 2024, 38(6): 064205. doi: 10.11858/gywlxb.20240816 JIANG Y D, ZHANG R Z, WU D, et al. Preparation and quasi-isentropic loading characteristics of Ti-Pt periodically modulated gradient material [J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064205. doi: 10.11858/gywlxb.20240816
[33] KE B Y, ZHANG C C, CHENG S L, et al. Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries [J]. Interdisciplinary Materials, 2024, 3(4): 621–631. doi: 10.1002/idm2.12174
[34] 李代颖, 刘济宽, 陈学通. 超细球形铜粉研究进展 [J]. 船电技术, 2013, 33(3): 42–44. doi: 10.3969/j.issn.1003-4862.2013.03.014 LI D Y, LI J K, CHEN X T. Progress in preparation of ultrafine spherical copper powder [J]. Marine Electric & Electronic Technology, 2013, 33(3): 42–44. doi: 10.3969/j.issn.1003-4862.2013.03.014
[35] SHANG Q S, WANG Z J, LI J, et al. Gel-tape-casting of aluminum nitride ceramics [J]. Journal of Advanced Ceramics, 2017, 6(1): 67–72. doi: 10.1007/s40145-016-0211-3
[36] LUO G Q, LI P B, HU J N, et al. Synergistic effect of Ag and C addition into Al-Cu matrix composites [J]. Journal of Materials Science, 2022, 57(24): 11013–11025. doi: 10.1007/s10853-022-07189-6
[37] HU J N, TAN Y, LI X M, et al. Structure characterization and impact effect of Al-Cu graded materials prepared by tape casting [J]. Materials, 2022, 15(14): 4834. doi: 10.3390/ma15144834
[38] GU J F, FU S, PING H, et al. Idea of macro-scale and micro-scale prestressed ceramics [J]. Interdisciplinary Materials, 2024, 3(6): 897–906. doi: 10.1002/idm2.12224
[39] 郭浩天. Cu/Mo叠层复合材料热响应行为数值模拟研究 [D]. 西安: 长安大学, 2018. GUO H T. Numerical simulation of thermal response behaviorof Cu/Mo laminated composite materials [D]. Xi’an: Chang’an University, 2018.
[40] HUANG J, ZHANG J, ZHU K, et al. Using graded density impactor to achieve quasi-isentropic loading with stress and strain-rate controlled [J]. Journal of Applied Physics, 2024, 135(8): 085901. doi: 10.1063/5.0189243