[1] |
廖斌斌, 周建武, 林渊, 等. CFRP层合板低速冲击响应及损伤特性研究 [J]. 高压物理学报, 2019, 33(4): 044202.
LIAO B B, ZHOU J W, LIN Y, et al. Low-velocity impact behavior and damage characteristics of CFRP laminates [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202.
|
[2] |
JIN L, ZHANG B L, CHEN F J, et al. Dynamic contribution of CFRP strips to CFRP-strengthened RC shear walls [J]. International Journal of Mechanical Sciences, 2023, 255: 108479. doi: 10.1016/j.ijmecsci.2023.108479
|
[3] |
XIANG X M, XIAO C K, LU G X, et al. Novel interaction effects enhance specific energy absorption in foam-filled CFRP tapered tubes [J]. Composite Structures, 2024, 343: 118288. doi: 10.1016/j.compstruct.2024.118288
|
[4] |
GUO H L, LIAO H H, SU M, et al. Shear strengthening of RC beams with prestressed NSM CFRP: influencing factors and analytical model [J]. Composite Structures, 2024, 342: 118262. doi: 10.1016/j.compstruct.2024.118262
|
[5] |
SERGI C, IERARDO N, SARASINI F, et al. Assessment of ply thickness and aluminum foils interleaving on the impact response of CFRP composites designed for cryogenic pressure vessels [J]. Composite Structures, 2025, 351: 118563. doi: 10.1016/j.compstruct.2024.118563
|
[6] |
ZHANG J Y, XIE J, ZHAO X Z, et al. Influence of void defects on impact properties of CFRP laminates based on multi-scale simulation method [J]. International Journal of Impact Engineering, 2023, 180: 104706. doi: 10.1016/j.ijimpeng.2023.104706
|
[7] |
袁浩天, 刘钊, 孙文豪, 等. 聚能侵彻体作用下钢-CFRP层合板的防护性能 [J]. 高压物理学报, 2023, 37(2): 024202.
YUAN H T, LIU Z, SUN W H, et al. Protective performance of steel-CFRP laminates under sharped charge projectile [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202.
|
[8] |
BOCCARDI S, MEOLA C, CARLOMAGNO G M, et al. Effects of interface strength gradation on impact damage mechanisms in polypropylene/woven glass fabric composites [J]. Composites Part B: Engineering, 2016, 90: 179–187. doi: 10.1016/j.compositesb.2015.12.004
|
[9] |
ZHOU J W, LIAO B B, SHI Y Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates [J]. Composites Part B: Engineering, 2019, 161: 300–313. doi: 10.1016/j.compositesb.2018.10.090
|
[10] |
彭捷, 张伟岐, 田锐, 等. 碳纤维层合板抗球形弹冲击动态响应特性试验研究 [J]. 复合材料科学与工程, 2020(6): 18–24,56.
PENG J, ZHANG W Q, TIAN R, et al. Experimental study on the dynamic response of carbon fiber laminates impacted by spherical projectile [J]. Composites Science and Engineering, 2020(6): 18–24,56.
|
[11] |
LIU J L, SINGH A K, LEE H P, et al. The response of bio-inspired helicoidal laminates to small projectile impact [J]. International Journal of Impact Engineering, 2020, 142: 103608. doi: 10.1016/j.ijimpeng.2020.103608
|
[12] |
朱浩, 郭章新, 宋鲁彬, 等. 拉伸载荷下含孔复合材料层合板的力学性能及失效机理 [J]. 高压物理学报, 2017, 31(4): 373–381.
ZHU H, GUO Z X, SONG L B, et al. Mechanical property and failure mechanism of composite laminates containing a circular hole under tension [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 373–381.
|
[13] |
WANG J R, XIE W H, YI F J, et al. Numerical simulation on fracture mechanisms of CFRP with barely visible impact damage by hail impact [J]. Composite Structures, 2023, 305: 116499. doi: 10.1016/j.compstruct.2022.116499
|
[14] |
XING J, DU C L, HE X, et al. Finite element study on the impact resistance of laminated and textile composites [J]. Polymers, 2019, 11(11): 1798. doi: 10.3390/polym11111798
|
[15] |
XU Z, YANG F, GUAN Z W, et al. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates [J]. Composite Structures, 2016, 154: 69–78. doi: 10.1016/j.compstruct.2016.07.029
|
[16] |
PANKOW M, WAAS A M, YEN C F, et al. Modeling the response, strength and degradation of 3D woven composites subjected to high rate loading [J]. Composite Structures, 2012, 94(5): 1590–1604. doi: 10.1016/j.compstruct.2011.12.010
|
[17] |
DU C L, WANG H F, ZHAO Z Q, et al. A comparison study on the impact failure behavior of laminate and woven composites with consideration of strain rate effect and impact attitude [J]. Thin-Walled Structures, 2021, 164: 107843. doi: 10.1016/j.tws.2021.107843
|
[18] |
JIANG H Y, REN Y R, LIU Z H, et al. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups [J]. Composite Structures, 2019, 214: 463–475. doi: 10.1016/j.compstruct.2019.02.034
|
[19] |
LI K M, NI X P, WU Q Q, et al. Carbon-based fibers: fabrication, characterization and application [J]. Advanced Fiber Materials, 2022, 4(4): 631–682. doi: 10.1007/s42765-022-00134-x
|
[20] |
邱晓清, 唐柏鉴, 任鹏, 等. 冲击波和破片对超高分子量聚乙烯板联合作用的仿真模拟 [J]. 江苏科技大学学报(自然科学版), 2020, 34(3): 6–13.
QIU X Q, TANG B J, REN P, et al. Simulation of the damage of UHMWPE plate by the combined action of shock waves and fragments [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(3): 6–13.
|
[21] |
ZHOU Z P, SUN W F, ZHENG N, et al. Experimental and numerical investigation of the energy absorption characteristics of carbon-basalt hybrid fiber reinforced polymer composites under ballistic impact [J]. Composite Structures, 2024, 335: 118000. doi: 10.1016/j.compstruct.2024.118000
|
[22] |
LIU Q, GUO B Q, CHEN P W, et al. Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact [J]. Thin-Walled Structures, 2021, 166: 108111. doi: 10.1016/j.tws.2021.108111
|
[23] |
SHISHEVAN F A, AKBULUT H. Low-velocity impact behavior of carbon/basalt fiber-reinforced intra-ply hybrid composites [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(1): 225–234. doi: 10.1007/s40995-017-0400-0
|
[24] |
CHEN D D, LUO Q T, MENG M Z, et al. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres [J]. Composites Part B: Engineering, 2019, 176: 107191. doi: 10.1016/j.compositesb.2019.107191
|
[25] |
ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE) [J]. Composite Structures, 2015, 133: 191–201. doi: 10.1016/j.compstruct.2015.06.081
|