[1] 马洪江, 蔡震. 等离子刻蚀多晶硅问题解析[J]. 微处理机, 2013, 34(01): 16−17 (in Chinese) doi: 10.3969/j.issn.1002-2279.2013.01.006 Man H J, Cai Z. Analysis of plasma etching of polycrystalline silicon[J]. Microprocessors, 2013, 34(01): 16−17 doi: 10.3969/j.issn.1002-2279.2013.01.006
[2] Oehrlein G S. Reactive-Ion etching[J]. Physics Today, 1986, 39(10): 26−33 doi: 10.1063/1.881066
[3] Layadi N, Colonell J I, Lee J T, et al. An introduction to plasma etching for VLSI circuit technology[J]. Bell Labs Technical Journal, 1999, 4(3): 155−171
[4] Moore G. Cramming more components onto integrated circuits[J]. Electronics, 1965, 38(8): 114−117
[5] Donnelly V M, Kornblit A. Plasma etching: yesterday, today, and tomorrow[J]. Journal of Vacuum Science & Technology A, 2013, 31(5): 050825
[6] Nojiri K. Dry etching technology for semiconductors[M]. Berlin: Springer International Publishing, 2015: 33−35
[7] Radamson H H, Zhang Y, He X, et al. The challenges of advanced CMOS process from 2D to 3D[J]. Applied Sciences, 2017, 7(10): 1047 doi: 10.3390/app7101047
[8] Ishikawa K, Karahashi K, Ichiki T, et al. Progress and prospects in nanoscale dry processes: how can we control atomic layer reactions[J]. Japanese Journal of Applied Physics, 2017, 56(6S2): 06HA02 doi: 10.7567/JJAP.56.06HA02
[9] Mukesh S, Zhang J. A review of the gate-all-around nanosheet FET process opportunities[J]. Electronics, 2022, 11(21): 3589 doi: 10.3390/electronics11213589
[10] Oehrlein G S, Rembetski J F. Plasma-based dry etching techniques in the silicon integrated circuit technology[J]. IBM Journal of Research and Development, 1992, 36(2): 140−157 doi: 10.1147/rd.362.0140
[11] Oehrlein G S. Dry etching damage of silicon: a review[J]. Materials Science and Engineering: B, 1989, 4(1-4): 441−450 doi: 10.1016/0921-5107(89)90284-5
[12] Matsui M, Tatsumi T, Sekine M, et al. Observation of surface reaction layers formed in highly selective SiO2 etching[J]. Journal of Vacuum Science & Technology A, 2001, 19(4): 1282−1288
[13] Eriguchi K. Modeling of defect generation during plasma etching and its impact on electronic device performance—plasma-induced damage[J]. Journal of Physics D: Applied Physics, 2017, 50(33): 333001 doi: 10.1088/1361-6463/aa7523
[14] Ortona A, Lagos M A, Scocchi G, et al. Spark plasma sintering of ZrB2-SiC composites with in-situ reaction bonded silicon carbide[J]. Ceramics International, 2014, 40(1): 821−826 doi: 10.1016/j.ceramint.2013.06.074
[15] Yoo S J, Kang J E, Ji Y J, et al. Highly selective etching of SiNx over SiO2 using ClF3/Cl2 remote plasma[J]. Nanotechnology, 2023, 34(46): 465302 doi: 10.1088/1361-6528/acec7a
[16] Liu E X, Yang C R, Li J J, et al. Study of selective dry etching Si0.7Ge0.3 with different plasma source in process of gate-all-around FET[J]. Society of Photo-Optical Instrumentation Engineers, 2024, 12958(129580F)
[17] 邸志刚, 王娜, 韩玉洁, 等. 激光诱导荧光光谱技术及其应用进展[J]. 激光杂志, 2024, 45(11): 1−6 (in Chinese) Di Z G, Wang N, Han Y J, et al. Laser induced fluorescence spectroscopy technology and its application progress[J]. Laser Journal, 2024, 45(11): 1−6
[18] Yang X, Chang X, Tei R, et al. Oxygen atomic density measured with a self-absorption calibrated vacuum ultraviolet absorption spectroscopy and its effect on spore etching in N2/O2 surface-wave plasma[J]. Japanese journal of applied physics, 2015, 54(7): 70308.1−70308.1
[19] 杨伟宏. 内标法快速测定氟离子[J]. 中国水泥, 2024, (S2): 102−105 (in Chinese) Yang W H. Fast determination of fluoride ions by internal standard method[J]. China Cement, 2024, (S2): 102−105
[20] Coburn J W, Chen M. Optical emission spectroscopy of reactive plasmas: a method for correlating emission intensities to reactive particle density[J]. Journal of Applied Physics, 1980, 51(6): 3134−3136 doi: 10.1063/1.328060
[21] Kawata H, Takao Y, Murata K, et al. Optical emission spectroscopy of CF4+O2 plasmas using a new technique[J]. Plasma Chemistry and Plasma Processing, 1988, 8: 189−206 doi: 10.1007/BF01016157
[22] Lang T, Stiegler J, Von Kaenel Y, et al. Optical emission diagnostics and film growth during microwave-plasma-assisted diamond CVD[J]. Diamond and Related Materials, 1996, 5(10): 1171−1184 doi: 10.1016/0925-9635(96)00537-7
[23] Geng Z C, Xu Y, Yang X F, et al. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry[J]. Plasma Sources Science & Technology, 2005, 14(1): 76−82
[24] Thomaz J C, Amorim J, Souza C F. Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges[J]. Journal of Physics D: Applied Physics, 1999, 32(24): 3208 doi: 10.1088/0022-3727/32/24/317
[25] Malyshev M V, Donnelly V M. Diagnostics of inductively coupled chlorine plasmas: measurement of Cl2 and Cl number densities[J]. Journal of Applied Physics, 2000, 88(11): 6207−6215 doi: 10.1063/1.1321777
[26] Shinagawa K, Yamamoto J, Ohgawara S, et al. Effects of nitrogen addition to microwave oxygen plasma in surface wave with disk-plate window and photoresist ashing[J]. Japanese Journal of Applied Physics, 2004, 43(10R): 6858−6858
[27] Fuller N C M, Malyshev M V, Donnelly V M, et al. Characterization of transformer coupled oxygen plasmas by trace rare gases-optical emission spectroscopy and Langmuir probe analysis[J]. Plasma Sources Science & Technology, 2000, 9(2): 116−127
[28] Jenq J-S, Ding J, Taylor J W, et al. Absolute fluorine atom concentrations in RIE and ECR CF4 plasmas measured by actinometry[J]. Plasma Sources Science and Technology, 1994, 3(2): 154 doi: 10.1088/0963-0252/3/2/005
[29] Yozo K Y K, Koichi S K S, Kiyoshi K K K. Comparison of the fluorine atom density measured by actinometry and vacuum ultraviolet absorption spectroscopy[J]. Japanese Journal of Applied Physics, 1997, 36(9A): L1261−L1261 doi: 10.1143/JJAP.36.L1261
[30] Schabel M J, Donnelly V M, Kornblit A, et al. Determination of electron temperature, atomic fluorine concentration, and gas temperature in inductively coupled fluorocarbon/rare gas plasmas using optical emission spectroscopy[J]. Journal of Vacuum Science & Technology A, 2002, 20(2): 555−563
[31] Liu E X, Li J J, Zhou N, et al. Study of selective dry etching effects of 15-Cycle Si0.7Ge0.3/Si multilayer structure in Gate-All-Around transistor process[J]. Nanomaterials, 2023, 13(14): 2127 doi: 10.3390/nano13142127
[32] Tarnovsky V, Kurunczi P, Rogozhnikov D, et al. Absolute cross sections for the dissociative electron impact ionization of the CFx(x=1−3) free radicals[J]. International Journal of Mass Spectrometry and Ion Processes, 1993, 128(3): 181−194 doi: 10.1016/0168-1176(93)87067-3
[33] Hollenstein C, Schwarzenbach W, Howling A A, et al. Anionic clusters in dusty hydrocarbon and silane plasmas[J]. Journal of Vacuum Science & Technology A, 1998, 14(2): 535
[34] Schwarzenbach W, Cunge G, Booth J P. High mass positive ions and molecules in capacitively-coupled radio-frequency CF4 plasmas[J]. Journal of Applied Physics, 1999, 85(11): 7562−7568 doi: 10.1063/1.370555
[35] Buchmann L M, Heinrich F, Hoffmann P, et al. Analysis of a CF4/O2 plasma using emission, laser-induced fluorescence, mass, and Langmuir spectroscopy[J]. Journal of Applied Physics, 1990, 67(8): 3635−3640 doi: 10.1063/1.345317
[36] Li C, Hofmann T, Edinger K, et al. Etching of Si3N4 induced by electron beam plasma from hollow cathode plasma in a downstream reactive environment[J]. Journal of Vacuum Science & Technology B, 2020, 38(3): 032208
[37] Beulens J J, Kastenmeier B E E, Matsuo P J, et al. Chemical downstream etching of silicon–nitride and polycrystalline silicon using CF4/O2/N2: Surface chemical effects of O2 and N2 additives[J]. Applied Physics Letters, 1995, 66(20): 2634−2636 doi: 10.1063/1.113108
[38] Oehrlein G S, Matsuo P J, Doemling M F, et al. Study of plasma-surface interactions: chemical dry etching and high-density plasma etching[J]. Plasma Sources Science and Technology, 1996, 5(2): 193 doi: 10.1088/0963-0252/5/2/012
[39] Matsuo P J, Kastenmeier B E E, Beulens J J, et al. Role of N2 addition on CF4/O2 remote plasma chemical dry etching of polycrystalline silicon[J]. Journal of Vacuum Science & Technology A, 1997, 15(4): 1801−1813
[40] Lin K Y, Preischl C, Hermanns C F, et al. Electron beam-induced etching of SiO2, Si3N4, and poly-Si assisted by CF4/O2 remote plasma[J]. Journal of Vacuum Science & Technology A, 2023, 41(1): 013004
[41] 王中平, 张增明, 仓桥光纪, 等. 硅表面直接生长十八烷基硅烷小分子自组装单层抗蚀剂的亚稳态氦原子光刻技术[J]. 电子显微学报, 2010, 29(2): 123−128 (in Chinese) doi: 10.3969/j.issn.1000-6281.2010.02.004 Wang Z P, Zhang Z M, Kurahashi M, et al. Metastable helium atom beam lithography with octadecyltrichlorosilane self-assembled monolayer resister grown directly on silicon surface[J]. Journal of Chinese Electron Microscopy Society, 2010, 29(2): 123−128 doi: 10.3969/j.issn.1000-6281.2010.02.004