[1] |
Reinosuke K, Yukihiro K. Hybrid plasmas for materials processing[J]. Materials, 2023, 16(11): 4013 doi: 10.3390/ma16114013
|
[2] |
Reinosuke K, Yukihiro K. Applications of plasma technologies in recycling processes[J]. Materials, 2024, 17(7): 1687 doi: 10.3390/ma17071687
|
[3] |
Sohail M, Rizwan K, Juie N R, et al. Review on the biomedical and environmental applications of nonthermal plasma[J]. Catalysts, 2023, 13(4): 685 doi: 10.3390/catal13040685
|
[4] |
Sergey V B, Matthias M. Scalable production and supply chain of diamond wafers using microwave plasma: a mini-review[J]. IEEE Transactions on Plasma Science, 2024, 52: 1082−1103 doi: 10.1109/TPS.2023.3339338
|
[5] |
朱良明. 用于雷达舱隐身的等离子体诊断及磁增强微波等离子体发生器设计研究[D]. 西安: 西北工业大学, 2007 (in Chinese)
Zhu L M. Research on plasma diagnosis for radar compartment stealth and design of magnetically enhanced microwave plasma generator[D]. Xi'an: Northwestern Polytechnical University, 2007
|
[6] |
Thierry D. From basics to frontiers: a comprehensive review of plasma-modified and plasma-synthesized polymer films[J]. Polymers, 2023, 15(17): 3607 doi: 10.3390/polym15173607
|
[7] |
张宝芳. 微波等离子体的静电探针测试系统的研究设计[D]. 成都: 电子科技大学, 2008 (in Chinese)
Zhang B F. Research and design of an electrostatic probe measurement system for microwave plasmas[D]. Chengdu: University of Electronic Science and Technology of China, 2008
|
[8] |
Conrads H, Schmidt M. Plasma generation and plasma sources[J]. Plasma Sources Science & Technology, 2000, 9(4): 441−445
|
[9] |
Zamri A A, Ong M Y, Nomanbhay S, et al. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review[J]. Environmental Research, 2021, 197: 111204 doi: 10.1016/j.envres.2021.111204
|
[10] |
卫博, 郭海霞, 丁叁叁, 等. 微波等离子体反应器的设计与仿真[J]. 安全与电磁兼容, 2020, 41(4): 87−92 (in Chinese) doi: 10.3969/j.issn.1005-9776.2020.04.017
Wei B, Guo H X, Ding S S, et al. Design and simulation of microwave plasma reactor[J]. Safety & EMC, 2020, 41(4): 87−92 doi: 10.3969/j.issn.1005-9776.2020.04.017
|
[11] |
徐茂春. 双气流稳定的大气压微波等离子体炬及其应用研究[D]. 大连理工大学, 2012 (in Chinese)
Xu M C. Characteristic study on the microwave plasma torch stabilized by two gas flows at atmosphere pressure and its preliminary applications[D]. Dalian University of Technology, 2012
|
[12] |
马宁. 小功率平面微带螺旋电感耦合微波微等离子体的特性研究[D]. 上海: 华东师范大学, 2014 (in Chinese)
Ma N. Study on the characteristics of low-power planar micro-strip spiral inductively-coupled microwave micro-plasma[D]. Shanghai: East China Normal University, 2014
|
[13] |
Raoux S, Tanaka T, Bhan M, et al. Remote microwave plasma source for cleaning chemical vapor deposition chambers: Technology for reducing global warming gas emissions[J]. Journal of Vacuum Science & Technology B, 1998, 17(2): 477−484
|
[14] |
Kastenmeier B E E, Oehrlein G S, John G L, et al. Gas utilization in remote plasma cleaning and stripping applications[J]. Journal of Vacuum Science & Technology A, 1999, 18(5): 2102−2107
|
[15] |
王琛, 陈杰瑢. 远程等离子体处理对聚四氟乙烯表面的功能化改性[J]. 化工进展, 2010, 29(1): 112−118 (in Chinese)
Wang C, Chen J R. Surface modification of poly tetrafluoroethylene) films with remote plasma[J]. Chemical Industry And Engineering Progress, 2010, 29(1): 112−118
|
[16] |
常爱玲. 远程等离子体辅助原子层沉积技术制备HfS2及MoS2薄膜及其表征[D]. 厦门大学, 2020 (in Chinese)
Chang A L. Synthesis and characterization of HfS2 and MoS2 thin films by remote plasma atomic layer deposition[D]. Xiamen University, 2020
|
[17] |
Wang Y, Liu W, Zhang Y, et al. Fluid simulation of inductively coupled Ar/O2 plasmas: Comparisons with experiment[J]. Chinese Physics B, 2015, 24((9): ): 095203 doi: 10.1088/1674-1056/24/9/095203
|
[18] |
赵明亮, 邢思雨, 唐雯, 等. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究[J]. 物理学报, 2024, 73(21): 136−145(in Chinese)
Zhao M L, Xing S Y, Tang W, et al. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes[J]. Acta Physica Sinica, 2024, 73(21): 136−145
|
[19] |
Liu J, Zhang Y, Zhao K, et al. Simulations of standing wave effect, stop band effect, and skin effect in large-area very high frequency symmetric capacitive discharges[J]. Plasma Science and Technology, 2021, 23: 035401 doi: 10.1088/2058-6272/abe18f
|
[20] |
范勇. 微波等离子体灯介质谐振腔优化设计[D]. 成都: 电子科技大学, 2014 (in Chinese)
Fan Y. The dielectric resonator of LEP optimization design[D]. Chengdu: University of Electronic Science and Technology of China, 2014
|
[21] |
杨智. 大气压微波等离子体装置的研制[D]. 哈尔滨工业大学, 2016 (in Chinese)
Yang Z. Development of atmospheric pressure microwave plasma device[D]. Harbin Institute of Technology, 2016
|
[22] |
吕博. 微波等离子体炬的瞬态放电特性与流场仿真研究[D]. 西安理工大学, 2023 (in Chinese)
Lv B. Simulation study of transient discharge characteristics and flow field of microwave plasma torch[D]. Xi’an University of Technology, 2023
|
[23] |
Alireza N, Reza A, Hossein S. Design of a high-efficiency dual-helical antenna for microwave plasma sources[J]. IEEE Transactions on Plasma Science, 2022, 50(2): 203−209 doi: 10.1109/TPS.2022.3144201
|
[24] |
张文瑾. 低气压微波线形等离子体源的数值模拟与实验研究[D]. 合肥: 中国科学技术大学, 2023 (in Chinese)
Zhang W J. investigation of low-pressure microwave linear plasma by simulation and experiments[D]. Hefei: University of Science and Technology of China, 2023
|
[25] |
Pauly S, Andreas S, Matthias W, et al. Modelling and study of a microwave plasma source for high-rate etching [C]. 17th International Conference on Microwave and High Frequency Heating: AMPERE, 2019
|