| [1] | Simmons M Y, Schofield S R, O’Brien J L, et al. Towards the atomic-scale fabrication of a silicon-based solid state quantum computer[J]. Surface Science, 2003, 532-535: 1209−1218 |
| [2] | Scappucci G, Capellini G, Lee W C T, et al. Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy[J]. Nanotechnology, 2009, 20(49): 495302 doi: 10.1088/0957-4484/20/49/495302 |
| [3] | Scappucci G, Capellini G, Lee W C T, et al. Ultradense phosphorus in germanium delta-doped layers[J]. Applied Physics Letters, 2009, 94(16): 162106 doi: 10.1063/1.3123391 |
| [4] | Li Q L, Li X X, Miao B F, et al. Kondo-free mirages in elliptical quantum corrals[J]. Nature Communications, 2020, 11(1): 1400 doi: 10.1038/s41467-020-15137-8 |
| [5] | Gomes K K, Mar W, Ko W, et al. Designer Dirac fermions and topological phases in molecular graphene[J]. Nature, 2012, 483(7389): 306−310 doi: 10.1038/nature10941 |
| [6] | Slot M R, Gardenier T S, Jacobse P H, et al. Experimental realization and characterization of an electronic Lieb lattice[J]. Nature Physics, 2017, 13(7): 672−676 doi: 10.1038/nphys4105 |
| [7] | Kempkes S N, Slot M R, van Den Broeke J J, et al. Robust zero-energy modes in an electronic higher-order topological insulator[J]. Nature Materials, 2019, 18(12): 1292−1297 doi: 10.1038/s41563-019-0483-4 |
| [8] | Freeney S E, Van den Broeke J J, Harsveld Van Der Veen A J J, et al. Edge-dependent topology in Kekulé lattices[J]. Physical Review Letters, 2020, 124(23): 236404 doi: 10.1103/PhysRevLett.124.236404 |
| [9] | Kempkes S N, Slot M R, Freeney S E, et al. Design and characterization of electrons in a fractal geometry[J]. Nature Physics, 2019, 15(2): 127−131 doi: 10.1038/s41567-018-0328-0 |
| [10] | Zhu S Y, Shao Y, Wang E, et al. Evidence of topological edge states in buckled antimonene monolayers[J]. Nano Letters, 2019, 19(9): 6323−6329 doi: 10.1021/acs.nanolett.9b02444 |
| [11] | Feng M, Guo X F, Lin X, et al. Stable, reproducible nanorecording on rotaxane thin films[J]. Journal of the American Chemical Society, 2005, 127(44): 15338−15339 doi: 10.1021/ja054836j |
| [12] | Kalff F E, Rebergen M P, Fahrenfort E, et al. A kilobyte rewritable atomic memory[J]. Nature Nanotechnology, 2016, 11(11): 926−929 doi: 10.1038/nnano.2016.131 |
| [13] | Moon C R, Mattos L S, Foster B K, et al. Quantum holographic encoding in a two-dimensional electron gas[J]. Nature Nanotechnology, 2009, 4(3): 167−172 doi: 10.1038/nnano.2008.415 |
| [14] | Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 1990, 344(6266): 524−526 doi: 10.1038/344524a0 |
| [15] | Eigler D M, Lutz C P, Rudge W E. An atomic switch realized with the scanning tunnelling microscope[J]. Nature, 1991, 352(6336): 600−603 doi: 10.1038/352600a0 |
| [16] | Stroscio J A, Eigler D M. Atomic and molecular manipulation with the scanning tunneling microscope[J]. Science, 1991, 254(5036): 1319−1326 doi: 10.1126/science.254.5036.1319 |
| [17] | Ternes M, Lutz C P, Hirjibehedin C F, et al. The force needed to move an atom on a surface[J]. Science, 2008, 319(5866): 1066−1069 doi: 10.1126/science.1150288 |
| [18] | 李宇昂, 吴迪, 王栋立, 等. 基于原子操纵技术的人工量子结构研究[J]. 物理学报, 2021, 70(2): 020701 (in Chinese) doi: 10.7498/aps.70.20201501 Li Y A, Wu D, Wang D L, et al. Investigation of artificial quantum structures constructed by atom manipulation[J]. Acta Physica Sinica, 2021, 70(2): 020701 doi: 10.7498/aps.70.20201501 |
| [19] | Kim H, Palacio-Morales A, Posske T, et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors[J]. Science Advances, 2018, 4(5): eaar5251 doi: 10.1126/sciadv.aar5251 |
| [20] | Van der Lit J, Jacobse P H, Vanmaekelbergh D, et al. Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation[J]. New Journal of Physics, 2015, 17(5): 053013 doi: 10.1088/1367-2630/17/5/053013 |
| [21] | Liebhaber E, Rütten L M, Reecht G, et al. Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor[J]. Nature Communications, 2022, 13(1): 2160 doi: 10.1038/s41467-022-29879-0 |
| [22] | González-Herrero H, Gómez-Rodríguez J M, Mallet P, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms[J]. Science, 2016, 352(6284): 437−441 doi: 10.1126/science.aad8038 |
| [23] | Wyrick J, Natterer F D, Zhao Y, et al. Tomography of a probe potential using atomic sensors on graphene[J]. ACS Nano, 2016, 10(12): 10698−10705 doi: 10.1021/acsnano.6b05823 |
| [24] | Cortés-del Río E, Mallet P, González-Herrero H, et al. Quantum confinement of Dirac quasiparticles in graphene patterned with sub-nanometer precision[J]. Advanced Materials, 2020, 32(30): 2001119 doi: 10.1002/adma.202001119 |
| [25] | Fölsch S, Yang J S, Nacci C, et al. Atom-by-atom quantum state control in adatom chains on a semiconductor[J]. Physical Review Letters, 2009, 103(9): 096104 doi: 10.1103/PhysRevLett.103.096104 |
| [26] | Schofield S R, Studer P, Hirjibehedin C F, et al. Quantum engineering at the silicon surface using dangling bonds[J]. Nature Communications, 2013, 4: 1649 doi: 10.1038/ncomms2679 |
| [27] | Loeptien P, Zhou L, Wiebe J, et al. Screening and atomic-scale engineering of the potential at a topological insulator surface[J]. Physical Review B, 2014, 89(8): 085401. doi: 10.1103/PhysRevB.89.085401 |
| [28] | Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851): 766−770 doi: 10.1126/science.1148047 |
| [29] | Ye L D, Kang M G, Liu J W, et al. Massive Dirac fermions in a ferromagnetic Kagome metal[J]. Nature, 2018, 555(7698): 638−642 doi: 10.1038/nature25987 |
| [30] | Hu Y, Wu X X, Ortiz B R, et al. Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5[J]. Nature Communications, 2022, 13(1): 2220 doi: 10.1038/s41467-022-29828-x |
| [31] | Hu Y, Teicher S M L, Ortiz B R, et al. Topological surface states and flat bands in the kagome superconductor CsV3Sb5[J]. Science Bulletin, 2022, 67(5): 495−500 |
| [32] | Cépas O, Fong C M, Leung P W, et al. Quantum phase transition induced by Dzyaloshinskii-Moriya interactions in the kagome antiferromagnet[J]. Physical Review B, 2008, 78(14): 140405 doi: 10.1103/PhysRevB.78.140405 |
| [33] | Ortiz B R, Teicher S M L, Hu Y, et al. CsV3Sb5: a Z2 topological Kagome metal with a superconducting ground state[J]. Physical Review Letters, 2020, 125(24): 247002 doi: 10.1103/PhysRevLett.125.247002 |
| [34] | Zhao J Z, Wu W K, Wang Y L, et al. Electronic correlations in the normal state of the Kagome superconductor KV3Sb5[J]. Physical Review B, 2021, 103(24): L241117 doi: 10.1103/PhysRevB.103.L241117 |
| [35] | Sun Z Y, Zhou H, Wang C X, et al. Observation of topological flat bands in the Kagome semiconductor Nb3Cl8[J]. Nano Letters, 2022, 22(11): 4596−4602 doi: 10.1021/acs.nanolett.2c00778 |
| [36] | Yu S L, Li J X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the Kagome lattice[J]. Physical Review B, 2012, 85(14): 144402 doi: 10.1103/PhysRevB.85.144402 |
| [37] | Mazzola F, Enzner S, Eck P, et al. Observation of termination-dependent topological connectivity in a magnetic Weyl Kagome lattice[J]. Nano Letters, 2023, 23(17): 8035−8042 doi: 10.1021/acs.nanolett.3c02022 |
| [38] | Xu G, Lian B, Zhang S C. Intrinsic quantum anomalous Hall effect in the Kagome lattice Cs2LiMn3F12[J]. Physical Review Letters, 2015, 115(18): 186802 doi: 10.1103/PhysRevLett.115.186802 |
| [39] | Ghimire N J, Mazin I I. Topology and correlations on the Kagome lattice[J]. Nature Materials, 2020, 19(2): 137−138 doi: 10.1038/s41563-019-0589-8 |
| [40] | Jiang K, Wu T, Yin J X, et al. Kagome superconductors AV3Sb5 (A=K, Rb, Cs)[J]. National Science Review, 2023, 10(2): nwac199 doi: 10.1093/nsr/nwac199 |
| [41] | Neupert T, Denner M M, Yin J X, et al. Charge order and superconductivity in Kagome materials[J]. Nature Physics, 2022, 18(2): 137−143 doi: 10.1038/s41567-021-01404-y |
| [42] | Jiang Z C, Ma H Y, Xia W, et al. Observation of electronic nematicity driven by the three-dimensional charge density wave in Kagome lattice KV3Sb5[J]. Nano Letters, 2023, 23(12): 5625−5633 doi: 10.1021/acs.nanolett.3c01151 |
| [43] | Zhang Q Z, Zhang Y, Wang T T, et al. Temperature-driven rotation symmetry-breaking states in an atomic Kagome metal KV3Sb5[J]. Nano Letters, 2024, 24(22): 6560−6567 doi: 10.1021/acs.nanolett.4c01050 |
| [44] | Zhao H, Li H, Ortiz B R, et al. Cascade of correlated electron states in the Kagome superconductor CsV3Sb5[J]. Nature, 2021, 599(7884): 216−221 doi: 10.1038/s41586-021-03946-w |
| [45] | Huang Z H, Han X H, Zhao Z, et al. Formation and manipulation of diatomic rotors at the symmetry-breaking surfaces of a Kagome superconductor[J]. Nano Letters, 2024, 24(20): 6023−6030 doi: 10.1021/acs.nanolett.4c00762 |
| [46] | Morgenstern K, Lorente N, Rieder K H. Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope[J]. Physica Status Solidi (b), 2013, 250(9): 1671−1751 doi: 10.1002/pssb.201248392 |
| [47] | Bartels L, Meyer G, Rieder K H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip[J]. Physical Review Letters, 1997, 79(4): 697−700 doi: 10.1103/PhysRevLett.79.697 |
| [48] | Lorente N, Rurali R, Tang H. Single-molecule manipulation and chemistry with the STM[J]. Journal of Physics: Condensed Matter, 2005, 17(13): S1049−S1074 doi: 10.1088/0953-8984/17/13/003 |