| [1] | Jiang H, Zhang X K, Chen K L, et al. Two-dimensional Czochralski growth of single-crystal MoS2[J]. Nature Materials, 2025, 24(2): 188−196 doi: 10.1038/s41563-024-02069-7 |
| [2] | Gao L, Chen Z Y, Chen C, et al. Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits[J]. Nano Research, 2023, 16(11): 12471−12490 doi: 10.1007/s12274-023-6167-z |
| [3] | Liu A H, Zhang X W, Liu Z Y, et al. The roadmap of 2D materials and devices toward chips[J]. Nano-Micro Letters, 2024, 16(1): 119 doi: 10.1007/s40820-023-01273-5 |
| [4] | Wang S Y, Liu X X, Xu M S, et al. Two-dimensional devices and integration towards the silicon lines[J]. Nature Materials, 2022, 21(11): 1225−1239 doi: 10.1038/s41563-022-01383-2 |
| [5] | Liu Y H, Jiang H, Gao L, et al. Low carbon residue growth of wafer-scale MoS2[J]. Small, 2025, 21(19): 2500980 doi: 10.1002/smll.202500980 |
| [6] | Yu L X, Mi M J, Wang S L, et al. High carrier mobility in organic cations intercalated multilayer MoS2[J]. Applied Physics Letters, 2024, 124(12): 122108 doi: 10.1063/5.0197944 |
| [7] | Li R S, Hong M Y, Shangguan W, et al. Controlled lattice deformation for high-mobility two-dimensional MoTe2 growth[J]. Journal of Materiomics, 2025, 11(2): 100868 doi: 10.1016/j.jmat.2024.03.013 |
| [8] | Zhang X K, Zhao H, Wei X F, et al. Two-dimensional transition metal dichalcogenides for post-silicon electronics[J]. National Science Open, 2023, 2(4): 20230015 |
| [9] | Ji Q Q, Kan M, Zhang Y, et al. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire[J]. Nano Letters, 2015, 15(1): 198−205 doi: 10.1021/nl503373x |
| [10] | Jin N, Yang Y Q, Luo X, et al. Development of CVD Ti-containing films[J]. Progress in Materials Science, 2013, 58(8): 1490−1533 doi: 10.1016/j.pmatsci.2013.07.001 |
| [11] | Jung C, Kim S M, Moon H, et al. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector[J]. Scientific Reports, 2015, 5: 15313 doi: 10.1038/srep15313 |
| [12] | Li L, Wang Q Q, Wu F F, et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control[J]. Nature Communications, 2024, 15(1): 1825 doi: 10.1038/s41467-024-46170-6 |
| [13] | Pondick J V, Woods J M, Xing J, et al. Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition[J]. ACS Applied Nano Materials, 2018, 1(10): 5655−5661 doi: 10.1021/acsanm.8b01266 |
| [14] | Španková M, Sojková M, Dobročka E, et al. Influence of precursor thin-film quality on the structural properties of large-area MoS2 films grown by sulfurization of MoO3 on c-sapphire[J]. Applied Surface Science, 2021, 540: 148240 doi: 10.1016/j.apsusc.2020.148240 |
| [15] | Yang P F, Zhang Z P, Sun M X, et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics[J]. ACS Nano, 2019, 13(3): 3649−3658 doi: 10.1021/acsnano.9b00277 |
| [16] | Shrestha S, Sarkar C K, Chakraborty A. Low-field electrical and thermal transport in lattice-mismatched n-GaN grown on sapphire: two-layer model calculations[J]. Journal of Applied Physics, 2006, 100(1): 013705 doi: 10.1063/1.2207568 |
| [17] | Cuccureddu F, Murphy S, Shvets I V, et al. Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal[J]. Surface Science, 2010, 604(15-16): 1294−1299 doi: 10.1016/j.susc.2010.04.017 |
| [18] | Xia Y, Chen X Y, Wei J C, et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture[J]. Nature Materials, 2023, 22(11): 1324−1331 doi: 10.1038/s41563-023-01671-5 |