[1] |
National Institute of Standards and Technology (NIST). About cryogenics[EB/OL]. [2025-04-09]. https://trc.nist.gov/cryogenics/aboutCryogenics.html
|
[2] |
International Institute of Refrigeration (IIR). International dictionary of refrigeration[EB/OL]. [2025-04-09]. http://dictionary.iifiir.org/search.php
|
[3] |
Kumar S, Kwon H T, Choi K H, et al. LNG: an eco-friendly cryogenic fuel for sustainable development[J]. Applied Energy, 2011, 88(12): 4264−4273 doi: 10.1016/j.apenergy.2011.06.035
|
[4] |
Ratnakar R R, Sun Z, Balakotaiah V. Effective thermal conductivity of insulation materials for cryogenic LH2 storage tanks: a review[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7770−7793 doi: 10.1016/j.ijhydene.2022.11.130
|
[5] |
Brown D C. The application of cryogenic fluids to the freezing of foods[M]//Timmerhaus K D. Advances in cryogenic engineering. Boston: Springer, 1967: 11−22
|
[6] |
Xu Z B, Li Y Q, Liu Z Q, et al. Current knowledge on cryogenic microorganisms and food safety in refrigerators[J]. Trends in Food Science & Technology, 2024, 146: 104382
|
[7] |
Utturkar Y, Wu J Y, Wang G Y, et al. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion[J]. Progress in Aerospace Sciences, 2005, 41(7): 558−608 doi: 10.1016/j.paerosci.2005.10.002
|
[8] |
Palerm S, Bonhomme C, Guelou Y, et al. The future of cryogenic propulsion[J]. Acta Astronautica, 2015, 112: 166−173 doi: 10.1016/j.actaastro.2015.02.015
|
[9] |
Zhai Y J, Wu S G, Ma D, et al. Development of a cryogen-free dilution refrigerator for superconducting quantum computing[J]. IEEE Transactions on Applied Superconductivity, 2024, 34(3): 1700105
|
[10] |
Han Y N, Zhang A K. Cryogenic technology for infrared detection in space[J]. Scientific Reports, 2022, 12(1): 2349 doi: 10.1038/s41598-022-06216-5
|
[11] |
Wang Y Y, Li J D, Li X, et al. State-of-the-art development about cryogenic technologies to support space-based infrared detection[J]. Chinese Journal of Aeronautics, 2023, 36(12): 32−52 doi: 10.1016/j.cja.2023.08.008
|
[12] |
Freiman A, Bouganim N. History of cryotherapy[J]. Dermatology Online Journal, 2005, 11(2): 9
|
[13] |
Smith E C. Some pioneers of refrigeration[J]. Transactions of the Newcomen Society, 1942, 23(1): 99−107 doi: 10.1179/tns.1942.009
|
[14] |
Faraday M. Liquefaction of gases: papers[M]. Chicago: University of Chicago Press, 1906
|
[15] |
Andrews T. XVIII. The Bakerian lecture. —On the continuity of the gaseous and liquid states of matter[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 575−590 doi: 10.1098/rstl.1869.0021
|
[16] |
Perry R H, Green D W. Perry’s chemical engineers’ handbook(4th edition)[M]. New York: McGraw-Hill, 1984
|
[17] |
Radebaugh R. Historical Summary of Cryogenic Activity Prior to 1950 [M]// Timmerhaus K D, Reed R P. Cryogenic Engineering: Fifty Years of Progress. New York, NY: Springer, 2007: 9.
|
[18] |
Dewar J. Collected papers of sir James Dewar[M]. Cambridge: Cambridge University Press, 1927: 678
|
[19] |
Nobel Media AB. Nobel prize in physics 1913: Heike Kamerlingh Onnes[EB/OL]. [2025-04-09]. https://www.nobelprize.org/prizes/physics/1913/summary/
|
[20] |
Matthiessen A, von Bose M. I. On the influence of temperature on the electric conducting power of metals[J]. Philosophical Transactions of the Royal Society of London, 1862, 152: 1−27 doi: 10.1098/rstl.1862.0001
|
[21] |
Debye P. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur[J]. Annalen der Physik, 1926, 386(25): 1154−1160 doi: 10.1002/andp.19263862517
|
[22] |
Giauque W F. A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1° absolute[J]. Journal of the American Chemical Society, 1927, 49(8): 1864−1870 doi: 10.1021/ja01407a003
|
[23] |
Kapitza P. Viscosity of liquid helium below the λ-point[J]. Nature, 1938, 141(3558): 74 doi: 10.1038/141074a0
|
[24] |
Allen J F, Misener A D. Flow of liquid helium II[J]. Nature, 1938, 141(3558): 75
|
[25] |
Allen J F, Jones H. New phenomena connected with heat flow in helium II[J]. Nature, 1938, 141(3562): 243−244 doi: 10.1038/141243a0
|
[26] |
Keesom W H, Keesom A P. New measurements on the specific heat of liquid helium[J]. Physica, 1935, 2(1-12): 557−572 doi: 10.1016/S0031-8914(35)90128-8
|
[27] |
Das P, de Ouboter R B, Taconis K W. A realization of a London-Clarke-Mendoza type refrigerator[C]//Proceedings of the IXth International Conference on Low Temperature Physics Columbus, Ohio: Springer, 1964: 1253-1255
|
[28] |
McMahon H O, Gifford W E. Closed-cycle helium refrigeration[J]. Solid-State Electronics, 1960, 1(4): 273−278 doi: 10.1016/0038-1101(60)90069-1
|
[29] |
Gifford W E, Longsworth R C. Pulse-tube refrigeration[J]. Journal of Engineering for Industry, 1964, 86(3): 264-268.
|
[30] |
陈光明, 陈国邦. 制冷与低温原理(第二版)[M]. 北京: 机械工业出版社, 2010 (in Chinese)
Chen G M, Chen G B. Principles of refrigeration and cryogenics (2nd edition)[M]. Beijing: China Machine Press, 2010
|
[31] |
Geng H, Cui X Y, Weng J H, et al. Review of experimental research on Joule–Thomson cryogenic refrigeration system[J]. Applied Thermal Engineering, 2019, 157: 113640 doi: 10.1016/j.applthermaleng.2019.04.050
|
[32] |
Zubair S M. Thermodynamics of a vapor-compression refrigeration cycle with mechanical subcooling[J]. Energy, 1994, 19(6): 707−715 doi: 10.1016/0360-5442(94)90009-4
|
[33] |
陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010 (in Chinese)
Chen G B, Tang K. Principles of small cryocoolers[M]. Beijing: Science Press, 2010
|
[34] |
Barron R F. Cryogenic systems (2nd edition)[M]. New York: Oxford University Press, 1985: 271
|
[35] |
Wheatley J C, Vilches O E, Abel W R. Principles and methods of dilution refrigeration[J]. Physics Physique Fizika, 1968, 4(1): 1−64 doi: 10.1103/PhysicsPhysiqueFizika.4.1
|
[36] |
Cousins D J, Fisher S N, Guénault A M, et al. An advanced dilution refrigerator designed for the new Lancaster microkelvin facility[J]. Journal of Low Temperature Physics, 1999, 114(5-6): 547−570 doi: 10.1023/A:1021862406629
|
[37] |
Coops G M, de Waele A T A M, Gijsman H M. The multiple mixing chambers[J]. Cryogenics, 1979, 19(11): 659−665 doi: 10.1016/0011-2275(79)90068-7
|
[38] |
Coops G M. Dilution refrigeration with multiple mixing chambers [D]. Eindhoven: Technische Hogeschool Eindhoven, 1981.
|
[39] |
Leiden cryogenics[EB/OL]. [2025-04-09]. https://www.leidencryogenics.nl/
|
[40] |
Pezzetti M. Control of large helium cryogenic systems: a case study on CERN LHC[J]. EPJ Techniques and Instrumentation, 2021, 8(1): 6 doi: 10.1140/epjti/s40485-021-00063-w
|
[41] |
Fauve E, Bonneton M, Chalifour M, et al. ITER LHe plants parallel operation[J]. Physics Procedia, 2015, 67: 42−47 doi: 10.1016/j.phpro.2015.06.008
|
[42] |
National Astronomical Observatory of Japan (NAOJ). KAGRA project[EB/OL]. [2025-04-09]. https://gwpo.nao.ac.jp/en/research/kagra.html
|
[43] |
Park J, Kim B, Jeong S. A review on a 4 K cryogenic refrigeration system for quantum computing[J]. Progress in Superconductivity and Cryogenics, 2022, 24(2): 1−6
|
[44] |
IBM. IBM scientists cool down the world’s largest quantum-ready cryogenic concept system[EB/OL]. [2025-07-16]. https://www.ibm.com/quantum/blog/goldeneye-cryogenic-concept-system?mhsrc=ibmsearch_a&mhq=Goldeneye
|
[45] |
Hollister M I, Dhuley R C, Tatkowski G L. A large millikelvin platform at Fermilab for quantum computing applications[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022, 1241(1): 012045.
|
[46] |
Hollister M I, Dhuley R C, James C, et al. An update on the Colossus mK platform at Fermilab[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2024, 1302(1): 012030.
|
[47] |
Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology, 2001, 70(2): 115−134 doi: 10.1016/S0378-3820(01)00131-X
|
[48] |
Ecoinvent Association. Ecoinvent dataset documentation[EB/OL]. [2025-04-09]. https://ecoinvent.org/database/
|
[49] |
Collart E, Longley A, Gordon D, et al. Predictive maintenance practices for cryogenic pumps in semiconductor manufacturing[C]//2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs: IEEE, 2022: 1−6
|
[50] |
Rajashekara K, Akin B. A review of cryogenic power electronics-status and applications[C]//2013 International Electric Machines & Drives Conference, Chicago: IEEE, 2013: 899−904
|
[51] |
Baracu A M, Dirdal C A, Avram A M, et al. Metasurface fabrication by cryogenic and Bosch deep reactive ion etching[J]. Micromachines, 2021, 12(5): 501 doi: 10.3390/mi12050501
|
[52] |
Nguyen T K, Phan H P, Dinh T, et al. Highly sensitive 4H-SiC pressure sensor at cryogenic and elevated temperatures[J]. Materials & Design, 2018, 156: 441−445
|
[53] |
Chato D J. The role of flight experiments in the development of cryogenic fluid management technologies[J]. Cryogenics, 2006, 46(2-3): 82−88 doi: 10.1016/j.cryogenics.2005.11.010
|
[54] |
Brown T M, Fazah M, Allison M, et al. NASA Marshall Space Flight Center In-Space Cryogenic Propulsion Capabilities and Applications to Human Exploration[C]//71st JANNAF Conference Proceedings. Joint Army-Navy-NASA-Air Force (JANNAF), 2024.
|
[55] |
Penanen K, Banks K, Breda D, et al. Mid-Infrared Instrument Cryocooler on James Webb Space Telescope: Cooldown, Commissioning, and Initial Performance[J]. Cryocoolers, 2022, 22: 21−33
|
[56] |
Morgante G, Pearson D, Melot F, et al. Cryogenic characterization of the Planck sorption cooler system flight model[J]. Journal of Instrumentation, 2009, 4(12): T12016 doi: 10.1088/1748-0221/4/12/T12016
|
[57] |
Shell Global. What is LNG?[EB/OL]. [2025-04-15]. https://catalysts.shell.com/en/glossary/liquefied-natural-gas
|
[58] |
Reddit. Mercedes-Benz Actros truck using SLH2[EB/OL]. [2025-04-15]. https://www.reddit.com/r/energy/comments/1aldv50/mercedesbenz_actros_truck_slh2_liquid_hydrogen/
|
[59] |
Glenn M, Kim H, Coleman B, et al. Mobile hydrogen liq-uefaction and storage system[C]//IOP Conference Series:Materials Science and Engineering, Honolulu: IOP Pub-lishing, 2024: 012061
|
[60] |
Cao H S, ter Brake H J M. Progress in and outlook for cryogenic microcooling[J]. Physical Review Applied, 2020, 14(4): 044044 doi: 10.1103/PhysRevApplied.14.044044
|
[61] |
Yang Z X, Wu C T, Zhu H F, et al. Experimental study on the operating characteristics of a miniature pulse tube cryocooler less than 1 kg[J]. Applied Thermal Engineering, 2025, 274: 126832 doi: 10.1016/j.applthermaleng.2025.126832
|
[62] |
Bégot S, Getie M, Lanzetta F, et al. A novel model and design of a MEMS Stirling cooler for local refrigeration[C]//E3S Web of Conferences. EDP Sciences, 2021, 313: 10001.
|
[63] |
Lerou P P P M, Venhorst G C F, Berends C F, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology[J]. Journal of Micromechanics and Microengineering, 2006, 16(10): 1919−1925 doi: 10.1088/0960-1317/16/10/002
|
[64] |
Kalabukhov A, de Hoon E J, Kuit K, et al. Operation of a high-TC SQUID gradiometer with a two-stage MEMS-based Joule–Thomson micro-cooler[J]. Superconductor Science and Technology, 2016, 29(9): 095014 doi: 10.1088/0953-2048/29/9/095014
|
[65] |
Semedo A, Garcia J, Brito M. Cryogenics in renewable energy storage: a review of technologies[J]. Energies, 2025, 18(6): 1543 doi: 10.3390/en18061543
|
[66] |
Sciacovelli A, Vecchi A, Ding Y. Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84−98 doi: 10.1016/j.apenergy.2016.12.118
|
[67] |
Cabras A, Ortu P, Pisanu T, et al. Incremental clustering for predictive maintenance in cryogenics for radio astronomy[J]. Sensors, 2024, 24(7): 2278 doi: 10.3390/s24072278
|