[1] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路: 历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183−1199 (in Chinese) doi: 10.3969/j.issn.1000-985X.2021.07.002 Gao F B, Ren M X, Zheng D H, et al. Long-lived lithium niobate: history and progress[J]. Jouranl of Synthetic Crystals, 2021, 50(7): 1183−1199 doi: 10.3969/j.issn.1000-985X.2021.07.002
[2] Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494−2507 doi: 10.1039/c0cs00184h
[3] Qu L, Wu W, Cai W, et al. Second harmonic generation in lithium niobate on insulator[J]. Laser & Photonics Reviews, 2025, 19(11): 2401928
[4] 田晓慧, 尚鸣昊, 祝世宁, 等. 铌酸锂基光量子器件与集成技术: 机遇与挑战[J]. 物理, 2023, 52(8): 534−541 (in Chinese) doi: 10.7693/wl20230802 Tian X H, Shang M H, Zhu S N, et al. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. Physics, 2023, 52(8): 534−541 doi: 10.7693/wl20230802
[5] Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242−352 doi: 10.1364/AOP.411024
[6] Fedotova A, Younesi M, Sautter J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 2020, 20(12): 8608−8614 doi: 10.1021/acs.nanolett.0c03290
[7] Zhang X T, He L Y, Gan X, et al. Quasi‐bound states in the continuum enhanced second‐harmonic generation in thin‐film lithium niobate[J]. Laser & Photonics Reviews, 2022, 16(9): 2200031
[8] Hill S J. Inductively coupled plasma spectrometry and its applications (2nd edition)[M]. Oxford: John Wiley & Sons, 2006: 61−79
[9] Guarino A, Poberaj G, Rezzonico D, et al. Electro–optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1(7): 407−410 doi: 10.1038/nphoton.2007.93
[10] Lin J, Leven A, Weimann N G, et al. Smooth and vertical-sidewall InP etching using Cl2/N2 inductively coupled plasma[J]. Journal of Vacuum Science & Technology B, 2004, 22(2): 510−512
[11] Guilet S, Bouchoule S, Jany C, et al. Optimization of a Cl2–H2 inductively coupled plasma etching process adapted to nonthermalized InP wafers for the realization of deep ridge heterostructures[J]. Journal of Vacuum Science & Technology B, 2006, 24(5): 2381−2387
[12] Wieczorek A, Djara V, Peters F H, et al. Inductively coupled plasma deep etching of InP/InGaAsP in Cl2/CH4/H2 based chemistries with the electrode at 20°C[J]. Journal of Vacuum Science & Technology B, 2012, 30(5): 051208