| [1] |
Imec. Smaller, better, faster: imec presents chip scaling roadmap[EB/OL]. https://www.imec-int.com/en/articles/smaller-better-faster-imec-presents-chip-scaling-roadmap 2023
|
| [2] |
Yang D K, Wang D, Huang Q S, et al. The development of laser-produced plasma EUV light source[J]. Chip, 2022, 1(3): 100019 doi: 10.1016/j.chip.2022.100019
|
| [3] |
Van Schoot J, van Setten E, Troost K, et al. High-NA EUV lithography exposure tool: program progress[C]//Proceedings of Extreme Ultraviolet (EUV) Lithography XI, San Jose: SPIE, 2020: 1132307
|
| [4] |
Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 1990, 344(6266): 524−526 doi: 10.1038/344524a0
|
| [5] |
Dagata J A, Schneir J, Harary H H, et al. Pattern generation on semiconductor surfaces by a scanning tunneling microscope operating in air[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 1384−1388
|
| [6] |
Becker R S, Higashi G S, Chabal Y J, et al. Atomic-scale conversion of clean Si(111): H-1×1 to Si(111)-2×1 by electron-stimulated desorption[J]. Physical Review Letters, 1990, 65(15): 1917−1920 doi: 10.1103/PhysRevLett.65.1917
|
| [7] |
Boland J J, Parsons G N. Bond selectivity in silicon film growth[J]. Science, 1992, 256(5061): 1304−1306 doi: 10.1126/science.256.5061.1304
|
| [8] |
Shen T C, Wang C, Abeln G C, et al. Atomic-scale desorption through electronic and vibrational excitation mechanisms[J]. Science, 1995, 268(5217): 1590−1592 doi: 10.1126/science.268.5217.1590
|
| [9] |
Lyding J W, Shen T C, Abeln G C, et al. Nanoscale patterning and selective chemistry of silicon surfaces by ultrahigh-vacuum scanning tunneling microscopy[J]. Nanotechnology, 1996, 7(2): 128−133 doi: 10.1088/0957-4484/7/2/006
|
| [10] |
Chen S, Xu H, Goh K E J, et al. Patterning of sub-1 nm dangling-bond lines with atomic precision alignment on H: Si(100) surface at room temperature[J]. Nanotechnology, 2012, 23(27): 275301 doi: 10.1088/0957-4484/23/27/275301
|
| [11] |
Tucker J R, Shen T C. Prospects for atomically ordered device structures based on STM lithography[J]. Solid-State Electronics, 1998, 42(7-8): 1061−1067 doi: 10.1016/S0038-1101(97)00302-X
|
| [12] |
Watson T F, Weber B, Hsueh Y L, et al. Atomically engineered electron spin lifetimes of 30 s in silicon[J]. Science Advances, 2017, 3(3): e1602811 doi: 10.1126/sciadv.1602811
|
| [13] |
Schofield S R, Curson N J, Simmons M Y, et al. Atomically precise placement of single dopants in Si[J]. Physical Review Letters, 2003, 91(13): 136104 doi: 10.1103/PhysRevLett.91.136104
|
| [14] |
Ruess F J, Oberbeck L, Simmons M Y, et al. Toward atomic-scale device fabrication in silicon using scanning probe microscopy[J]. Nano Letters, 2004, 4(10): 1969−1973 doi: 10.1021/nl048808v
|
| [15] |
Oberbeck L, Curson N J, Hallam T, et al. Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy[J]. Applied Physics Letters, 2004, 85(8): 1359−1361 doi: 10.1063/1.1784881
|
| [16] |
Wilson H F, Warschkow O, Marks N A, et al. Phosphine dissociation on the Si(001) surface[J]. Physical Review Letters, 2004, 93(22): 226102 doi: 10.1103/PhysRevLett.93.226102
|
| [17] |
Rueß F J, Oberbeck L, Goh K E J, et al. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures[J]. Nanotechnology, 2005, 16(10): 2446−2449 doi: 10.1088/0957-4484/16/10/076
|
| [18] |
Wilson H F, Warschkow O, Marks N A, et al. Thermal dissociation and desorption of PH3 on Si(001): a reinterpretation of spectroscopic data[J]. Physical Review B, 2006, 74(19): 195310 doi: 10.1103/PhysRevB.74.195310
|
| [19] |
Rueß F J, Pok W, Reusch T C G, et al. Realization of atomically controlled dopant devices in silicon[J]. Small, 2007, 3(4): 563−567 doi: 10.1002/smll.200600680
|
| [20] |
Fuechsle M, Rueß F J, Reusch T C G, et al. Surface gate and contact alignment for buried, atomically precise scanning tunneling microscopy–patterned devices[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007, 25(6): 2562−2567
|
| [21] |
Weber B, Mahapatra S, Ryu H, et al. Ohm’s law survives to the atomic scale[J]. Science, 2012, 335(6064): 64−67 doi: 10.1126/science.1214319
|
| [22] |
Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor[J]. Nature Nanotechnology, 2012, 7(4): 242−246 doi: 10.1038/nnano.2012.21
|
| [23] |
Warschkow O, Curson N J, Schofield S R, et al. Reaction paths of phosphine dissociation on silicon (001)[J]. The Journal of Chemical Physics, 2016, 144(1): 014705 doi: 10.1063/1.4939124
|
| [24] |
Broome M A, Watson T F, Keith D, et al. High-fidelity single-shot singlet-triplet readout of precision-placed donors in silicon[J]. Physical Review Letters, 2017, 119(4): 046802 doi: 10.1103/PhysRevLett.119.046802
|
| [25] |
Koch M, Keizer J G, Pakkiam P, et al. Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor[J]. Nature Nanotechnology, 2019, 14(2): 137−140 doi: 10.1038/s41565-018-0338-1
|
| [26] |
He Y, Gorman S K, Keith D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371−375 doi: 10.1038/s41586-019-1381-2
|
| [27] |
Reiner J, Chung Y, Misha S H, et al. High-fidelity initialization and control of electron and nuclear spins in a four-qubit register[J]. Nature Nanotechnology, 2024, 19(5): 605−611 doi: 10.1038/s41565-023-01596-9
|
| [28] |
Randall J N, Lyding J W, Schmucker S, et al. Atomic precision lithography on Si[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2009, 27(6): 2764-2768
|
| [29] |
Randall J N, Ballard J B, Lyding J W, et al. Atomic precision patterning on Si: an opportunity for a digitized process[J]. Microelectronic Engineering, 2010, 87(5-8): 955−958 doi: 10.1016/j.mee.2009.11.143
|
| [30] |
Goh K E J, Chen S, Xu H, et al. Using patterned H-resist for controlled three-dimensional growth of nanostructures[J]. Applied Physics Letters, 2011, 98(16): 163102 doi: 10.1063/1.3582241
|
| [31] |
Randall J N, Von Her J R, Ballard J, et al. Atomically precise manufacturing: the opportunity, challenges, and impact, atomic scale interconnection machines[M]//Joachim C. Atomic scale interconnection machines. Berlin, Heidelberg: Springer, 2012: 89−106
|
| [32] |
Schmucker S W, Kumar N, Abelson J R, et al. Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography[J]. Nature Communications, 2012, 3(1): 935 doi: 10.1038/ncomms1907
|
| [33] |
Ballard J B, Sisson T W, Owen J H G, et al. Multimode hydrogen depassivation lithography: a method for optimizing atomically precise write times[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2013, 31(6): 06FC01
|
| [34] |
Ballard J B, Owen J H G, Owen W, et al. Pattern transfer of hydrogen depassivation lithography patterns into silicon with atomically traceable placement and size control[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2014, 32(4): 041804
|
| [35] |
Randall J N, Owen J H G, Lake J, et al. Highly parallel scanning tunneling microscope based hydrogen depassivation lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2018, 36(6): 06JL05
|
| [36] |
Randall J N, Owen J H G, Fuchs E, et al. Digital atomic scale fabrication an inverse Moore's Law – a path to atomically precise manufacturing[J]. Micro and Nano Engineering, 2018, 1: 1−14 doi: 10.1016/j.mne.2018.11.001
|
| [37] |
Alipour A, Fowler E L, Moheimani S O R, et al. Atom-resolved imaging with a silicon tip integrated into an on-chip scanning tunneling microscope[J]. Review of Scientific Instruments, 2024, 95(3): 033703 doi: 10.1063/5.0180777
|
| [38] |
Oberbeck L, Curson N J, Simmons M Y, et al. Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer[J]. Applied Physics Letters, 2002, 81(17): 3197−3199 doi: 10.1063/1.1516859
|
| [39] |
Goh K E J, Oberbeck L, Simmons M Y, et al. Effect of encapsulation temperature on Si: P δ-doped layers[J]. Applied Physics Letters, 2004, 85(21): 4953−4955 doi: 10.1063/1.1827940
|
| [40] |
Stock T J Z, Warschkow O, Constantinou P C, et al. Atomic-scale patterning of arsenic in silicon by scanning tunneling microscopy[J]. ACS Nano, 2020, 14(3): 3316−3327 doi: 10.1021/acsnano.9b08943
|
| [41] |
Shen T C, Kline J S, Schenkel T, et al. Nanoscale electronics based on two-dimensional dopant patterns in silicon[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(6): 3182−3185.
|
| [42] |
Miwa J A, Simmons M Y. Atomic-scale devices in silicon by scanning tunneling microscopy[M]//Joachim C. Atomic scale interconnection machines. Berlin, Heidelberg: Springer, 2012: 181−196
|
| [43] |
Constantinou P, Stock T J Z, Tseng L T, et al. EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning[J]. Nature Communications, 2024, 15(1): 694 doi: 10.1038/s41467-024-44790-6
|
| [44] |
Krull A, Hirsch P, Rother C, et al. Artificial-intelligence-driven scanning probe microscopy[J]. Communications Physics, 2020, 3(1): 54 doi: 10.1038/s42005-020-0317-3
|
| [45] |
Chen I J, Aapro M, Kipnis A, et al. Precise atom manipulation through deep reinforcement learning[J]. Nature Communications, 2022, 13(1): 7499 doi: 10.1038/s41467-022-35149-w
|
| [46] |
Møller M, Jarvis S P, Guérinet L, et al. Automated extraction of single H atoms with STM: tip state dependency[J]. Nanotechnology, 2017, 28(7): 075302 doi: 10.1088/1361-6528/28/7/075302
|
| [47] |
Achal R, Rashidi M, Croshaw J, et al. Lithography for robust and editable atomic-scale silicon devices and memories[J]. Nature Communications, 2018, 9(1): 2778 doi: 10.1038/s41467-018-05171-y
|
| [48] |
Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133−137 doi: 10.1038/30156
|
| [49] |
O’Brien J L, Schofield S R, Simmons M Y, et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer[J]. Physical Review B, 2001, 64(16): 161401 doi: 10.1103/PhysRevB.64.161401
|
| [50] |
Wang X Q, Khatami E, Fei F, et al. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots[J]. Nature Communications, 2022, 13(1): 6824 doi: 10.1038/s41467-022-34220-w
|
| [51] |
Feynman R P. There’s plenty of room at the bottom[J]. Resonance, 2011, 16(9): 890−905 doi: 10.1007/s12045-011-0109-x
|