[1] Buck D A, Shoulders K R. An approach to microminiature printed systems[C]//AIEE-ACM-IRE'58 (Eastern): Papers and Discussions Presented at the December 3-5, 1958, Eastern Joint Computer Conference: Modern Computers: Objectives, Designs, Applications, Philadelphia: Association for Computing Machinery, 1958: 55−59
[2] American Physical Society. Feynman's Classic Caltech Lecture: This Month in Physics History[Z]. 1959
[3] Mazenq L, Laborde A, Calmon P F. Lithography processes. Master. Lithography processes[R]. France, (hal-05146882), 2025
[4] Yang Y, Jeon Y, Dong Z G, et al. Nanofabrication for nanophotonics[J]. ACS Nano, 2025, 19(13): 12491−12605 doi: 10.1021/acsnano.4c10964
[5] Kazanowska B A, Dangerfield A M, Wang H, et al. Rapid prototyping of etch test structures for hard mask development using electron beam lithography[J]. Journal of Vacuum Science & Technology B, 2024, 42(1): 012601
[6] Singh M P, Dalal R, Singh A, et al. Enhancement of Raman and photoluminescence intensity of monolayer MoS2 using engineered substrates via grayscale electron-beam lithography[J]. ACS Applied Nano Materials, 2025, 8(5): 2171−2178 doi: 10.1021/acsanm.4c05513
[7] Edelmann K, Fasold S, Greul M, et al. Optimal shape approximation and writing strategy for integrated photonic waveguides fabricated with variable-shaped electron-beam lithography[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2025, 24(1): 013202
[8] Rebello A. Advanced Lithography Methods for Creating Josephson Junctions and Superconducting Circuits at Nano and Micro Scale[D]. Brazilian Center of Physics Research, 2024
[9] Troy A. Alexander D D S, Wickenden A E. Electron-beam-lithography (EBL)-engineered nanostructures for biosensing[C]//Proceedings Volume 5588, Smart Medical and Biomedical Sensor Technology II, Philadelphia: SPIE, 2004: 78−86
[10] Young T W, Kappler M P, Call E D, et al. Integrated in-plane nanofluidic devices for resistive-pulse sensing[J]. Annual Review of Analytical Chemistry, 2024, 17(1): 221−242 doi: 10.1146/annurev-anchem-061622-030223
[11] Cui Z. Electron beam lithography[M]//Nanofabrication: Principles, capabilities and limits. 3rd ed. Cham: Springer, 2024: 83−139
[12] Rius G. Electron beam lithography for nanofabrication[D]. Barcelona: Universitat Autònoma de Barcelona, 2008
[13] Möllenstedt G, Speidel R. Elektronenoptischer Mikroschreiber unter elektronenmikroskopischer Arbeitskontrolle: (Informations-Speicherung auf kleinstem Raum)[J]. Physikalische Blä tter, 1960, 16(4): 192−198
[14] Broers A N. Combined electron and ion beam processes for microelectronics[J]. Microelectronics Reliability, 1965, 4(1): 103−104 doi: 10.1016/0026-2714(65)90267-2
[15] Chang T H P, Nixon W C. Electron beam formation of 800 Å wide aluminium lines[J]. Journal of Scientific Instruments, 1967, 44(3): 231−234 doi: 10.1088/0950-7671/44/3/420
[16] Ting C H, Patlach A M, Kraft A J, et al. Mask fabrication with vector scan electron beam system[C]//Proceedings Volume 0174, Developments in Semiconductor Microlithography IV, San Jose: SPIE, 1979: 90−97
[17] Weber E V. Electron beam systems at IBM status report[C]//Proceedings Volume 0393, Electron-Beam, X-Ray and Ion-Beam Techniques for Submicron Lithographies II, Santa Clara: SPIE, 1983: 50−55
[18] Tomandl M, Spengler C, Hudek P, et al. Multi-beam mask writing opens up new fields of application, including curvilinear mask pattern for high numerical aperture extreme ultraviolet lithography[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2024, 23(1): 011205
[19] Kuhn S, Klein C, Loeschner H, et al. MBMW-301: Multi-beam mask writer technology is entering the angstrom era[C]//Proceedings Volume PC12956, Novel Patterning Technologies 2024, San Jose: SPIE, 2024: PC1295606
[20] I. NuFlare Technology, BEAM Series: Electron Beam Mask Writers | Products[Z]. 2025
[21] Matsui H, Kamikubo T, Nakahashi S, et al. Electron beam mask writer EBM-9500 for logic 7nm node generation[C]//Proceedings Volume 9985, Photomask Technology 2016, San Jose: SPIE, 2016: 20−29
[22] Matsumoto H, Inoue H, Yamashita H, et al. Multi-beam mask writer MBM-1000 and its application field[C]//Photomask Japan 2016: XXIII Symposium on Photomask and Next-Generation Lithography Mask Technology, Yokohama: SPIE, 2016: 26−31
[23] Manfrinato V R, Zhang L H, Su D, et al. Resolution limits of electron-beam lithography toward the atomic scale[J]. Nano Letters, 2013, 13(4): 1555−1558 doi: 10.1021/nl304715p
[24] University of Southampton to Receive the First JBX-8100FS G3[Z]. University of Southampton
[25] Global lnfo Research. 2025年全球市场电子束光刻机总体规模、主要厂商及IPO上市调研报告[R]. 2025
[26] Klein C, Platzgummer E. MBMW-101: World's 1st high-throughput multi-beam mask writer[C]//Proceedings Volume 9985, Photomask Technology 2016, San Jose: SPIE, 2016: 998505
[27] Yao G J, Hong H, Zhou X, et al. Stable ultrafast graphene hot-electron source on optical fiber[J]. Nature Communications, 2025, 16(1): 5726 doi: 10.1038/s41467-025-60915-x
[28] Hoshinouchi S, Iwami T, Sakamoto M, et al. Electron beam lithography for large area patterning 1: Development of large field deflection E-beam lithography system[J]. Scanning Microscopy, 1990, 4(3): 5
[29] 康念坎. DJ-2型可变矩形电子束曝光机电子光学设计[J]. 电子科学学刊, 1992, 14(2): 176−183 (in Chinese) Kang N K. Electron optical column for variable rectangular-shaped beam lithography system DJ-2[J]. Journal of Electronics, 1992, 14(2): 176−183
[30] 刘珠明. 纳米级电子束曝光机聚焦偏转系统的研究[D]. 北京: 中国科学院电工研究所, 2005 Liu Z M. Research on focusing-deflection system for nanometer-scale electron beam lithography machine[D]. Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences, 2005
[31] 刘珠明, 顾文琪. 电子束曝光机的偏转系统[J]. 光电工程, 2004, 31(12): 12−16 (in Chinese) doi: 10.3969/j.issn.1003-501X.2004.12.004 Liu Z M, Gu W Q. Deflection system for electron beam lithography[J]. Opto-Electronic Engineering, 2004, 31(12): 12−16 doi: 10.3969/j.issn.1003-501X.2004.12.004
[32] 刘俊标, 方光荣, 靳鹏云, 等. 基于SEM纳米级电子束曝光机的快速束闸设计[J]. 电子工业专用设备, 2008, 37(10): 10−13 (in Chinese) doi: 10.3969/j.issn.1004-4507.2008.10.002 Liu J B, Fang G R, Jin P Y, et al. The design of fast beam blanker for Nano E-beam lithography based on SEM[J]. Equipment for Electronic Products Manufacturing, 2008, 37(10): 10−13 doi: 10.3969/j.issn.1004-4507.2008.10.002
[33] Yang P H, Alamo B, Andeen G B. Control design for a 6 DOF e-beam lithography stage[C]//Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), Arlington: IEEE, 2001: 2255−2260
[34] Li Z J, Yin B H, Sun B T, et al. Real-time generation of circular patterns in electron beam lithography[J]. Nanotechnology and Precision Engineering, 2024, 7(3): 033009 doi: 10.1063/10.0025757
[35] 姚文泽. 电子束光刻次生效应校正算法研究与EDA软件开发[D]. 长沙: 湖南大学, 2023 (in Chinese) Yao W Z. Research on secondary effect correction algorithm of electron beam lithography and development of EDA software[D]. Changsha: Hunan University, 2023
[36] 李艺杰, 肖君, 陈宜方, 等. 电子束直写大深宽比Si3N4薄膜支撑的光栅X射线准直器[J]. 光学精密工程, 2022, 30(10): 1181−1188 (in Chinese) doi: 10.37188/OPE.20223010.1181 Li Y J, Xiao J, Chen Y F, et al. Grating X-ray collimator supported by Si3N4 membrane with large aspect ratio written directly by electron beam[J]. Optics and Precision Engineering, 2022, 30(10): 1181−1188 doi: 10.37188/OPE.20223010.1181
[37] Freed R, Gubiotti T, Sun J, et al. Reflective electron-beam lithography performance for the 10 nm logic node[C]//Proceedings Volume 8522, Photomask Technology 2012, Monterey: SPIE, 2012: 444−452
[38] Qin N, Qian Z G, Zhou C Z, et al. 3D Electron-beam writing at sub-15 nm resolution using spider silk as a resist[J]. Nature Communications, 2021, 12(1): 5133 doi: 10.1038/s41467-021-25470-1
[39] Liu Q, Chen Y Q, Feng Z Y, et al. Resist nanokirigami for multipurpose patterning[J]. National Science Review, 2022, 9(11): nwab231 doi: 10.1093/nsr/nwab231
[40] Atomically Precise Manufacturing Research[Z]. Zyvexlabs
[41] 关于征集首台(套)重大技术装备产品的通知[Z]. 北京市发展和改革委员会, 2025
[42] Vincenti L, Pellegrino P, Cascione M, et al. Crafting at the nanoscale: A comprehensive review of mechanical atomic force microscopy-based lithography methods and their evolution[J]. Materials & Design, 2024, 243: 113036
[43] Donges J, Schlischka M, Shih C W, et al. Machine learning enhanced in situ electron beam lithography of photonic nanostructures[J]. Nanoscale, 2022, 14(39): 14529−14536 doi: 10.1039/D2NR03696G
[44] Zhao R B, Wang X L, Xu H, et al. Machine learning in electron beam lithography to boost photoresist formulation design for high-resolution patterning[J]. Nanoscale, 2024, 16(8): 4212−4218 doi: 10.1039/D3NR04819E
[45] Liu T, Tong X J, Tian S Q, et al. Theoretical modeling of ice lithography on amorphous solid water[J]. Nanoscale, 2022, 14(25): 9045−9052 doi: 10.1039/D2NR00594H
[46] Wang W H, Zhang Z S, Song X F, et al. Development-free grayscale electron beam lithography on poly (methyl methacrylate)[J]. Nanotechnology, 2025, 36(29): 295301 doi: 10.1088/1361-6528/aded94