| [1] |
Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics[J]. Reviews of Modern Physics, 2018, 90(1): 015005 doi: 10.1103/RevModPhys.90.015005
|
| [2] |
Jungwirth T, Marti X, Wadley P, et al. Antiferromagnetic spintronics[J]. Nature Nanotechnology, 2016, 11(3): 231−241 doi: 10.1038/nnano.2016.18
|
| [3] |
Olejník K, Seifert T, Kašpar Z, et al. Terahertz electrical writing speed in an antiferromagnetic memory[J]. Science Advances, 2018, 4(3): eaar3566 doi: 10.1126/sciadv.aar3566
|
| [4] |
Xiong D R, Jiang Y H, Shi K W, et al. Antiferromagnetic spintronics: An overview and outlook[J]. Fundamental Research, 2022, 2(4): 522−534 doi: 10.1016/j.fmre.2022.03.016
|
| [5] |
Lin P H, Yang B Y, Tsai M H, et al. Manipulating exchange bias by spin–orbit torque[J]. Nature Materials, 2019, 18(4): 335−341 doi: 10.1038/s41563-019-0289-4
|
| [6] |
Peng S Z, Zhu D Q, Li W X, et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque[J]. Nature Electronics, 2020, 3(12): 757−764 doi: 10.1038/s41928-020-00504-6
|
| [7] |
Qi J, Zhao Y C, Zhang Y, et al. Full electrical manipulation of perpendicular exchange bias in ultrathin antiferromagnetic film with epitaxial strain[J]. Nature Communications, 2024, 15(1): 4734 doi: 10.1038/s41467-024-49214-z
|
| [8] |
Zhu D Q, Guo Z X, Du A, et al. First demonstration of three terminal MRAM devices with immunity to magnetic fields and 10 ns field free switching by electrical manipulation of exchange bias[C]//2021 IEEE International Electron Devices Meeting (IEDM), San Francisco: IEEE, 2021: 17.5. 1−17.5. 4
|
| [9] |
Nozières J P, Jaren S, Zhang Y B, et al. Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets[J]. Journal of Applied Physics, 2000, 87(8): 3920−3925 doi: 10.1063/1.372435
|
| [10] |
Fernandez-Outon L E, O'Grady K, Oh S, et al. Large exchange bias IrMn/CoFe for magnetic tunnel junctions[J]. IEEE Transactions on Magnetics, 2008, 44(11): 2824−2827 doi: 10.1109/TMAG.2008.2001495
|
| [11] |
Gokcen N A. The Mn-N (Manganese-Nitrogen) system[J]. Bulletin of Alloy Phase Diagrams, 1990, 11(1): 33−42 doi: 10.1007/BF02841582
|
| [12] |
Yu R, Chong X Y, Jiang Y H, et al. The stability, electronic structure, elastic and metallic properties of manganese nitrides[J]. RSC Advances, 2015, 5(2): 1620−1627 doi: 10.1039/C4RA10914G
|
| [13] |
Yang H Q, Al-Brithen H, Trifan E, et al. Crystalline phase and orientation control of manganese nitride grown on MgO(001) by molecular beam epitaxy[J]. Journal of Applied Physics, 2002, 91(3): 1053−1059 doi: 10.1063/1.1425435
|
| [14] |
Suzuki K, Kaneko T, Yoshida H, et al. Crystal structure and magnetic properties of the compound MnN[J]. Journal of Alloys and Compounds, 2000, 306(1-2): 66−71 doi: 10.1016/S0925-8388(00)00794-5
|
| [15] |
Leineweber A, Niewa R, Jacobs H, et al. The manganese nitrides η-Mn3N2 and θ-Mn6N5+x: Nuclear and magnetic structures[J]. Journal of Materials Chemistry, 2000, 10(12): 2827−2834 doi: 10.1039/b006969h
|
| [16] |
Suzuki K, Yamaguchi Y, Kaneko T, et al. Neutron diffraction studies of the compounds MnN and FeN[J]. Journal of the Physical Society of Japan, 2001, 70(4): 1084−1089 doi: 10.1143/JPSJ.70.1084
|
| [17] |
Tabuchi M, Takahashi M, Kanamaru F. Relation between the magnetic transition temperature and magnetic moment for manganese nitrides MnNγ (0 < γ < 1)[J]. Journal of Alloys and Compounds, 1994, 210(1-2): 143−148 doi: 10.1016/0925-8388(94)90129-5
|
| [18] |
Vallejo-Fernandez G, Meinert M. Recent developments on MnN for spintronic applications[J]. Magnetochemistry, 2021, 7(8): 116 doi: 10.3390/magnetochemistry7080116
|
| [19] |
Meinert M, Büker B, Graulich D, et al. Large exchange bias in polycrystalline MnN/CoFe bilayers at room temperature[J]. Physical Review B, 2015, 92(14): 144408 doi: 10.1103/PhysRevB.92.144408
|
| [20] |
Zilske P, Graulich D, Dunz M, et al. Giant perpendicular exchange bias with antiferromagnetic MnN[J]. Applied Physics Letters, 2017, 110(19): 192402 doi: 10.1063/1.4983089
|
| [21] |
Chang H W, Chien Y H, Yuan F T, et al. Correlation between phase composition and exchange bias in CoFe/MnN and MnN/CoFe polycrystalline films[J]. AIP Advances, 2020, 10(2): 025035 doi: 10.1063/1.5129820
|
| [22] |
Quarterman P, Hallsteinsen I, Dunz M, et al. Effects of field annealing on MnN/CoFeB exchange bias systems[J]. Physical Review Materials, 2019, 3(6): 064413 doi: 10.1103/PhysRevMaterials.3.064413
|
| [23] |
Dunz M, Schmalhorst J, Meinert M. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing[J]. AIP Advances, 2018, 8(5): 056304 doi: 10.1063/1.5006551
|
| [24] |
Dunz M, Büker B, Meinert M. Improved thermal stability in doped MnN/CoFe exchange bias systems[J]. Journal of Applied Physics, 2018, 124(20): 203902 doi: 10.1063/1.5051584
|
| [25] |
Dunz M, Meinert M. Role of the Ta buffer layer in Ta/MnN/CoFeB stacks for maximizing exchange bias[J]. Journal of Applied Physics, 2020, 128(15): 153902 doi: 10.1063/5.0021226
|
| [26] |
Sinclair J, Hirohata A, Vallejo-Fernandez G, et al. Thermal stability of exchange bias systems based on MnN[J]. Journal of Magnetism and Magnetic Materials, 2019, 476: 278−283 doi: 10.1016/j.jmmm.2018.12.018
|
| [27] |
Rai A, Dunz M, Sapkota A, et al. Unidirectional and uniaxial anisotropies in the MnN/CoFeB exchange bias system[J]. Journal of Magnetism and Magnetic Materials, 2019, 485: 374−380 doi: 10.1016/j.jmmm.2019.04.043
|
| [28] |
Dunz M, Matalla-Wagner T, Meinert M. Spin-orbit torque induced electrical switching of antiferromagnetic MnN[J]. Physical Review Research, 2020, 2(1): 013347 doi: 10.1103/PhysRevResearch.2.013347
|
| [29] |
Miao M S, Lambrecht W R L. Structure and magnetic properties of MnN, CrN, and VN under volume expansion[J]. Physical Review B, 2005, 71(21): 214405 doi: 10.1103/PhysRevB.71.214405
|
| [30] |
Miao M S, Lambrecht W R L. Effects of vacancies and impurities on the relative stability of rocksalt and zincblende structures for MnN[J]. Physical Review B, 2007, 76(19): 195209 doi: 10.1103/PhysRevB.76.195209
|
| [31] |
Kalescky R, Kraka E, Cremer D. Identification of the strongest bonds in chemistry[J]. The Journal of Physical Chemistry A, 2013, 117(36): 8981−8995 doi: 10.1021/jp406200w
|
| [32] |
Savant C P, Verma A, Nguyen T S, et al. Self-activated epitaxial growth of ScN films from molecular nitrogen at low temperatures[J]. APL Materials, 2024, 12(11): 111108 doi: 10.1063/5.0222995
|
| [33] |
Ferrante Y, Jeong J, Saha R, et al. Tetragonal Mn3Sn heusler films with large perpendicular magnetic anisotropy deposited on metallic MnN underlayers using amorphous substrates[J]. APL Materials, 2019, 7(3): 031103 doi: 10.1063/1.5066594
|
| [34] |
Kum H S, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes[J]. Nature, 2020, 578(7793): 75−81 doi: 10.1038/s41586-020-1939-z
|
| [35] |
Lu D, Baek D J, Hong S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers[J]. Nature Materials, 2016, 15(12): 1255−1260 doi: 10.1038/nmat4749
|
| [36] |
Ji Z R, Hu M K, Xin H L. Mnedgenet for accurate decomposition of mixed oxidation states for Mn XAS and EELS L2, 3 edges without reference and calibration[J]. Scientific Reports, 2023, 13(1): 14132 doi: 10.1038/s41598-023-40616-5
|
| [37] |
Loomer D B, Al T A, Weaver L, et al. Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS[J]. American Mineralogist, 2007, 92(1): 72−79 doi: 10.2138/am.2007.2252
|
| [38] |
Tan H Y, Verbeeck J, Abakumov A, et al. Oxidation state and chemical shift investigation in transition metal oxides by EELS[J]. Ultramicroscopy, 2012, 116: 24−33 doi: 10.1016/j.ultramic.2012.03.002
|
| [39] |
Wang Z L, Yin J S, Jiang Y D. EELS analysis of cation valence states and oxygen vacancies in magnetic oxides[J]. Micron, 2000, 31(5): 571−580 doi: 10.1016/S0968-4328(99)00139-0
|
| [40] |
Sahu B R, Kleinman L. Theoretical study of electronic and magnetic properties of MnN[J]. Physical Review B, 2003, 68(11): 113101 doi: 10.1103/PhysRevB.68.113101
|
| [41] |
Lefakis H, Huang T C, Alexopoulos P. Surface-oxidation-induced phase separation in FeMn thin films[J]. Journal of Applied Physics, 1988, 64(10): 5667−5669 doi: 10.1063/1.342268
|
| [42] |
Frost W, Alsaud F, Lawrence R A, et al. Towards MnN as a replacement for IrMn[J]. Scientific Reports, 2024, 14(1): 21944 doi: 10.1038/s41598-024-72886-y
|
| [43] |
Vaz F, Rebouta L, Andritschky M, et al. Oxidation resistance of (Ti, Al, Si)N coatings in air[J]. Surface and Coatings Technology, 1998, 98(1-3): 912−917 doi: 10.1016/S0257-8972(97)00127-8
|
| [44] |
Banakh O, Schmid P E, Sanjinés R, et al. High-temperature oxidation resistance of Cr1−xAlxN thin films deposited by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2003, 163-164: 57−61
|
| [45] |
Chen H Y, Lu F H. Oxidation behavior of titanium nitride films[J]. Journal of Vacuum Science & Technology A, 2005, 23(4): 1006−1009
|
| [46] |
Vallejo K D, Cresswell Z, Messecar A S, et al. Synthesis and physical properties of manganese chromium nitride thin films grown via molecular beam epitaxy[J]. The Journal of Physical Chemistry C, 2025, 129(10): 5237−5244 doi: 10.1021/acs.jpcc.4c08738
|
| [47] |
Yang F, Wang Z Z, Liu Y H, et al. Engineered kondo screening and nonzero berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures[J]. Physical Review B, 2022, 106(16): 165421 doi: 10.1103/PhysRevB.106.165421
|
| [48] |
Radu F, Zabel H. Exchange bias effect of ferro-/antiferromagnetic heterostructures[M]//Zabel H, Bader S D. Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. Berlin: Springer, 2008: 97−184
|
| [49] |
Nogués J, Schuller I K. Exchange bias[J]. Journal of Magnetism and Magnetic Materials, 1999, 192(2): 203−232 doi: 10.1016/S0304-8853(98)00266-2
|
| [50] |
Singh H, Gupta M, Prakash H, et al. Role of spin-glass-like interfaces in exchange-biased MnN/Fe thin films grown on W buffer layers[J]. Applied Physics Letters, 2024, 125(9): 092404 doi: 10.1063/5.0220165
|
| [51] |
Sheng P, Zhao Z Y, Benally O J, et al. Thermal contribution in the electrical switching experiments with heavy metal/antiferromagnet structures[J]. Journal of Applied Physics, 2022, 132(7): 073902 doi: 10.1063/5.0098631
|