[1] Zhang Q Z, Zhang Y, Hou Y H, et al. Nanoscale control of one-dimensional confined states in strongly correlated homojunctions[J]. Nano Letters, 2022, 22(3): 1190−1197 doi: 10.1021/acs.nanolett.1c04363
[2] Yang Y C, Gao Q F, Liang W B, et al. Enhanced stretchable 2D metal‐graphene membranes with superior mechanical properties for sieving lithium from brine (Small 15/2025)[J]. Small, 2025, 21(15): 2570118 doi: 10.1002/smll.202570118
[3] 李全锋. 扫描隧道显微镜[D]. 合肥: 中国科学技术大学, 2012 (in Chinese) Li Q F. Scanning tunneling microscope[D]. Hefei: University of Science and Technology of China, 2012
[4] Qiu X H, Bai C L. Scanning tunnelling microscopic investigation of organic molecular assembling systems[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2003, 20(1): 107−111
[5] Ren Y N, Ren H Y, Watanabe K, et al. Realizing one-dimensional moiré chains with strong electron localization in two-dimensional twisted bilayer WSe2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(45): e2405582121
[6] Wang D F, Bao D L, Zheng Q, et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states[J]. Nature Communications, 2023, 14(1): 1018 doi: 10.1038/s41467-023-36613-x
[7] 王金刚, 汤儆, 陈招斌, 等. STM针尖诱导构筑-置换两步法制备Pt表面纳米结构[J]. 电化学, 2006, 12(4): 357−362 (in Chinese) doi: 10.3969/j.issn.1006-3471.2006.04.001 Wang J G, Tang J, Chen Z B, et al. STM tip-induced nanostructuring-replacement method to construct Pt surface nanostructures[J]. Journal of Electrochemistry, 2006, 12(4): 357−362 doi: 10.3969/j.issn.1006-3471.2006.04.001
[8] 施宏, 刘慧慧, 李喆, 等. 乙炔分子在TiO2(110)表面吸附的低温STM研究[J]. 中国化学会, 2021 (in Chinese) Shi H, Liu H H, Li Z, et al. Low-temperature STM study on the adsorption of acetylene molecules on the TiO2(110) Surface[J]. Chinese Chemical Society, 2021
[9] 江月山, 王晓光, 杨乃恒, 等. 压电陶瓷对STM图像的影响及计算机校正[J]. 真空科学与技术学报, 1997, 17(4): 264−268 (in Chinese) Jiang Y S, Wang X G, Yang N H, et al. Computer correction for distorted STM images caused by piezoceramics[J]. Vacuum Science and Technology, 1997, 17(4): 264−268
[10] 高论. 提高SPM检测表面形貌精度的研究[D]. 长春: 吉林大学, 2004 (in Chinese) Gao L. Research on improving precision of surface topography by SPM[D]. Changchun: Jilin University, 2004
[11] 宋永, 杨阔. STM探针形貌与图像质量的关系研究[J]. 湖北成人教育学院学报, 2013, 19(2): 82−83,79 (in Chinese) doi: 10.3969/j.issn.1673-3878.2013.02.028 Song Y, Yang K. Research on the relationship between STM probe morphology and image quality[J]. Journal of Hubei Adult Education Institute, 2013, 19(2): 82−83,79 doi: 10.3969/j.issn.1673-3878.2013.02.028
[12] 张颜萍. 怎样获得一幅效果良好的STM图像[J]. 甘肃高师学报, 2006, 11(5): 14−15 (in Chinese) doi: 10.3969/j.issn.1008-9020.2006.05.006 Zhang Y P. How to obtain a better STM picture[J]. Journal of Gansu Normal Colleges, 2006, 11(5): 14−15 doi: 10.3969/j.issn.1008-9020.2006.05.006
[13] 朱秀昌, 唐贵进. 现代数字图像处理[M]. 北京: 人民邮电出版社, 2020: 473 (in Chinese) Zhu X C, Tang G J. Advanced digital image processing[M]. Beijing: Posts & Telecom Press, 2020: 473
[14] Fan D, Yue T, Zhao X, et al. LIR: A Lightweight Baseline for Image Restoration[J]. arXiv preprint arXiv:2402.01368, 2024
[15] Toker A, Eisenberger M, Cremers D, et al. SatSynth: Augmenting image-mask pairs through diffusion models for aerial semantic segmentation[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2024: 27685−27695
[16] Xu X G, Kong S, Hu T, et al. Boosting image restoration via priors from pre-trained models[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2024: 2900−2909
[17] Bonnet N, Dongmo S, Vautrot P, et al. A mathematical morphology approach to image formation and image restoration in scanning tunnelling and atomic force microscopies[J]. Microscopy Microanalysis Microstructures, 1994, 5(4-6): 477−487 doi: 10.1051/mmm:0199400504-6047700
[18] Villarrubia J S. Morphological estimation of tip geometry for scanned probe microscopy[J]. Surface Science, 1994, 321(3): 287−300 doi: 10.1016/0039-6028(94)90194-5
[19] Williams P M, Shakesheff K M, Davies M C, et al. Blind reconstruction of scanning probe image data[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996, 14(2): 1557−1562
[20] 李亮. 基于偏微分方程的图像修复算法研究[D]. 长春: 吉林大学, 2012 (in Chinese) Li L. Image inpainting algorithms based on partial differential equation[D]. Changchun: Jilin University, 2012
[21] 张燕. 数字图像修复技术研究[D]. 成都: 成都理工大学, 2008 (in Chinese) Zhang Y. Research of digital image inpainting technique[D]. Chengdu: Chengdu University of Technology, 2008
[22] Joucken F, Davenport J L, Ge Z H, et al. Denoising scanning tunneling microscopy images of graphene with supervised machine learning[J]. Physical Review Materials, 2022, 6(12): 123802 doi: 10.1103/PhysRevMaterials.6.123802
[23] Xie J, Ko W, Zhang R X, et al. Physics-augmented deep learning with adversarial domain adaptation: Applications to STM image denoising[J]. arXiv preprint arXiv:2409.05118, 2024
[24] Oliveira J P, Bragança A, Bioucas-Dias J, et al. Restoring STM images via Sparse Coding: noise and artifact removal[J]. arXiv preprint arXiv:1610.03437, 2016
[25] Hofer W A, Foster A S, Shluger A L. Theories of scanning probe microscopes at the atomic scale[J]. Reviews of Modern Physics, 2003, 75(4): 1287−1331 doi: 10.1103/RevModPhys.75.1287
[26] Rerkkumsup P, Aketagawa M, Takada K, et al. Highly stable atom-tracking scanning tunneling microscopy[J]. Review of Scientific Instruments, 2004, 75(4): 1061−1067 doi: 10.1063/1.1651637
[27] Kumar B K S. Image denoising based on Gaussian/bilateral filter and its method noise thresholding[J]. Signal, Image and Video Processing, 2013, 7(6): 1159−1172 doi: 10.1007/s11760-012-0372-7
[28] Wang Z, Tao J. A fast implementation of adaptive histogram equalization[C]//2006 8th international Conference on Signal Processing. IEEE, 2006, 2
[29] You N, Han L B, Zhu D M, et al. Research on image denoising in edge detection based on wavelet transform[J]. Applied Sciences, 2023, 13(3): 1837 doi: 10.3390/app13031837
[30] 于春伟. 电气设备噪声主动控制的研究及输出电路的设计[D]. 哈尔滨: 哈尔滨理工大学, 2008 (in Chinese) Yu C W. The study on active control of electrical equipment noice and design of output circuit[D]. Harbin: Harbin University of Science and Technology, 2008
[31] 陈华. 半导体纳米器件的噪声模型及其应用研究[D]. 西安: 西安电子科技大学, 2010 (in Chinese) Chen H. Research on noise models and their applications in Nano-scale semiconductor devices[D]. Xi’an: Xidian University, 2010
[32] 孙立书. 改进算法在混合噪声STM图像滤波中的应用[J]. 沈阳理工大学学报, 2011, 30(6): 86−91 (in Chinese) doi: 10.3969/j.issn.1003-1251.2011.06.020 Sun L S. Application of improved algorithm in filtering of STM images with mixed noise[J]. Journal of Shenyang Ligong University, 2011, 30(6): 86−91 doi: 10.3969/j.issn.1003-1251.2011.06.020
[33] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324 doi: 10.1109/5.726791
[34] Xie J X, Stavrakis S, Yao B. Automated identification of atrial fibrillation from single-lead ECGs using multi-branching ResNet[J]. Frontiers in Physiology, 2024, 15: 1362185 doi: 10.3389/fphys.2024.1362185
[35] Wang Z K, Stavrakis S, Yao B. Hierarchical deep learning with generative adversarial network for automatic cardiac diagnosis from ECG signals[J]. Computers in Biology and Medicine, 2023, 155: 106641 doi: 10.1016/j.compbiomed.2023.106641
[36] Zhang K H, Ren W Q, Luo W H, et al. Deep image deblurring: A survey[J]. International Journal of Computer Vision, 2022, 130(9): 2103−2130 doi: 10.1007/s11263-022-01633-5
[37] Min C, Wen G Q, Li B R, et al. Blind deblurring via a novel recursive deep CNN improved by wavelet transform[J]. IEEE Access, 2018, 6: 69242−69252 doi: 10.1109/ACCESS.2018.2880279
[38] Huang L Q, Xia Y S. Joint blur kernel estimation and CNN for blind image restoration[J]. Neurocomputing, 2020, 396: 324−345 doi: 10.1016/j.neucom.2018.12.083
[39] Shen Z Y, Lai W S, Xu T F, et al. Deep semantic face deblurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 8260−8269
[40] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//14th European Conference on Computer Vision, Amsterdam: Springer, 2016: 694−711
[41] Lu B Y, Chen J C, Chellappa R. UID-GAN: unsupervised image deblurring via disentangled representations[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(1): 26−39 doi: 10.1109/TBIOM.2019.2959133
[42] Zhang K H, Luo W H, Zhong Y R, et al. Deblurring by realistic blurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle: IEEE, 2020: 2734−2743
[43] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach: ACM, 2017: 6000−6010
[44] Zhang D Y, Liang Z W, Shao J. Joint image deblurring and super-resolution with attention dual supervised network[J]. Neurocomputing, 2020, 412: 187−196 doi: 10.1016/j.neucom.2020.05.069
[45] Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu: IEEE, 2017: 257−265
[46] Kim K, Lee S, Cho S. MSSNet: multi-scale-stage network for single image deblurring[C]//European Conference on Computer Vision, Tel Aviv: Springer, 2023: 524−539
[47] Dong J X, Pan J S, Yang Z B, et al. Multi-scale residual low-pass filter network for image deblurring[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris: IEEE, 2023: 12311−12320
[48] Lu L P, Xiong Q, Xu B, et al. Mixdehazenet: Mix structure block for image dehazing network[C]//2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024: 1−10
[49] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011−2023 doi: 10.1109/TPAMI.2019.2913372
[50] Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach: ICML, 2019: 6105−6114
[51] Hu G X, Li J, Jing G Q, et al. Rail flaw B-scan image analysis using a hierarchical classification model[J]. International Journal of Steel Structures, 2025, 25(2): 389−401 doi: 10.1007/s13296-024-00927-3
[52] Sandler M, Howard A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 4510−4520
[53] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich: Springer, 2015: 234−241
[54] Hu S, Gao F, Zhou X W, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5504005
[55] Guo J, Yan Z F, Zhang K, et al. Toward convolutional blind denoising of real photographs[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019: 1712−1722
[56] Zhang K, Zuo W M, Chen Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142−3155 doi: 10.1109/TIP.2017.2662206
[57] Wang Y Z, Huang H B, Xu Q, et al. Practical deep raw image denoising on mobile devices[C]//16th European Conference on Computer Vision, Glasgow: Springer, 2020: 1−16
[58] Zhuo S K, Jin Z, Zou W B, et al. RIDNet: recursive information distillation network for color image denoising[C]//IEEE/CVF International Conference on Computer Vision Workshop, Seoul: IEEE, 2019: 3896−3903