[1] Huff M. Review—Important considerations regarding device parameter process variations in semiconductor-based manufacturing[J]. ECS Journal of Solid State Science and Technology, 2021, 10(6): 064002 doi: 10.1149/2162-8777/ac02a4
[2] Zhao C S, Zhang J T, Zhang J H, et al. Development and application prospects of piezoelectric precision driving technology[J]. Frontiers of Mechanical Engineering in China, 2008, 3(2): 119−132 doi: 10.1007/s11465-008-0034-1
[3] 张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学 精密工程, 1998, 6(5): 26−32 (in Chinese) Zhang T, Sun L N, Cai H G. Study on the fundamental characteristics of piezoelectric element[J]. Optics and Precision Engineering, 1998, 6(5): 26−32
[4] Nunn W, Truttmann T K, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors[J]. Journal of Materials Research, 2021, 36(23): 4846−4864 doi: 10.1557/s43578-021-00377-1
[5] Deng L S, Ling M X. Design and integrated stroke sensing of a high-response piezoelectric direct-drive valve enhanced by push-pull compliant mechanisms[J]. Review of Scientific Instruments, 2022, 93(3): 035008 doi: 10.1063/5.0067483
[6] Griener M, Schmitz O, Bald K, et al. Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes[J]. Review of Scientific Instruments, 2017, 88(3): 033509 doi: 10.1063/1.4978629
[7] Arlt G. Domain contributions to piezoelectricity in ceramics[C]//Proceedings of the IEEE Symposium on Ultrasonics, Honolulu, USA: IEEE, 1990: 733−742
[8] Kim S, Miyauchi R, Sato Y, et al. Piezoelectric actuation mechanism involving extrinsic nanodomain dynamics in lead-free piezoelectrics[J]. Advanced Materials, 2023, 35(11): 2208717 doi: 10.1002/adma.202208717
[9] 王义冬, 李庆春, 赵慧. 压电陶瓷驱动器迟滞非线性误差的建模与分析[J]. 计算机测量与控制, 2023, 31(2): 196−203 (in Chinese) Wang Y D, Li Q C, Zhao H. Modeling and analysis of hysteresis nonlinear error of piezoelectric ceramic actuator[J]. Computer Measurement & Control, 2023, 31(2): 196−203
[10] 于志亮, 刘杨, 王岩, 等. 基于改进PI模型的压电陶瓷迟滞特性补偿控制[J]. 仪器仪表学报, 2017, 38(1): 129−135 (in Chinese) doi: 10.3969/j.issn.0254-3087.2017.01.017 Yu Z L, Liu Y, Wang Y, et al. Hysteresis compensation and control of piezoelectric actuator based on an improved PI model[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 129−135 doi: 10.3969/j.issn.0254-3087.2017.01.017
[11] 陈海初, 王宣银, 张蕊华, 等. 压电陶瓷驱动精密流量阀的设计与建模[J]. 浙江大学学报(工学版), 2008, 42(11): 1936−1939, 1945 (in Chinese) Chen H C, Wang X Y, Zhang R H, et al. Design and modeling of precise flux valve driven by piezoelectric ceramics[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(11): 1936−1939, 1945
[12] 胡小玲, 徐科军, 杨庆庆, 等. 压电比例式阀门定位器的控制方法研究[J]. 电子测量与仪器学报, 2011, 25(11): 978−984 (in Chinese) Hu X L, Xu K J, Yang Q Q, et al. Study on control method of proportional piezoelectric valve positioner[J]. Journal of Electronic Measurement and Instrumentation, 2011, 25(11): 978−984
[13] 于红燕, 王池, 赵士燕, 等. 静态膨胀法真空系统[J]. 真空科学与技术学报, 2008, 28(1): 90−93 (in Chinese) Yu H Y, Wang C, Zhao S Y, et al. Development of static expansion vacuum system[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(1): 90−93
[14] 姚雪琦, 董云宁, 闫睿, 等. 便携式分压力质谱计校准装置的性能测试研究[J]. 真空科学与技术学报, 2024, 44(4): 306−311 (in Chinese) Yao X Q, Dong Y N, Yan R, et al. Performance study on portable calibration apparatus of mass spectrometers for partial pressure[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(4): 306−311
[15] 卢耀文, 陈旭, 李得天, 等. 便携式真空计校准装置[J]. 真空科学与技术学报, 2013, 33(5): 462−467 (in Chinese) doi: 10.3969/j.issn.1672-7126.2013.05.13 Lu Y W, Chen X, Li D T, et al. Novel type of portable vacuum gauge calibration apparatus[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(5): 462−467 doi: 10.3969/j.issn.1672-7126.2013.05.13
[16] Yang C S, Shang D S, Chai Y S, et al. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells[J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4190−4198 doi: 10.1039/C6CP06004H
[17] Zhai K, Shang D S, Chai Y S, et al. Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite[J]. Advanced Functional Materials, 2018, 28(9): 1705771 doi: 10.1002/adfm.201705771