| [1] | HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization [J]. Advanced Materials, 2018, 30(41): 1706293. doi: 10.1002/adma.201706293 |
| [2] | ZHANG S, LIU J X, YANG M, et al. Effects of multi-component co-addition on reaction characteristics and impact damage properties of reactive material [J]. Materials & Design, 2018, 153: 1–8. doi: 10.1016/j.matdes.2018.04.077 |
| [3] | CHEN J L, GUO T, SONG J X, et al. The characteristics of combustion reactions involving thermite under different shell materials [J]. RSC Advances, 2020, 10(56): 33762–33769. doi: 10.1039/D0RA05415A |
| [4] | BRATTON K R, HILL K J, WOODRUFF C, et al. Tailoring impact debris dispersion using intact or fragmented thermite projectiles [J]. Journal of Applied Physics, 2020, 128(15): 155108. doi: 10.1063/5.0023990 |
| [5] | JOSEFSON B L, BISSCHOP R, MESSAADI M, et al. Residual stresses in thermite welded rails: significance of additional forging [J]. Welding in the World, 2020, 64(7): 1195–1212. doi: 10.1007/s40194-020-00912-4 |
| [6] | MA X X, LI Y X, HUSSAIN I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties [J]. Advanced Materials, 2020, 32(30): 2001291. doi: 10.1002/adma.202001291 |
| [7] | DENG S L, JIANG Y, HUANG S D, et al. Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches [J]. Combustion and Flame, 2018, 195: 303–310. doi: 10.1016/j.combustflame.2018.04.028 |
| [8] | GLAVIER L, TATON G, DUCÉRÉ J M, et al. Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE [J]. Combustion and Flame, 2015, 162(5): 1813–1820. doi: 10.1016/j.combustflame.2014.12.002 |
| [9] | SHIN M S, KIM J K, KIM J W, et al. Reaction characteristics of Al/Fe2O3 nanocomposites [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1768–1773. doi: 10.1016/j.jiec.2012.04.003 |
| [10] | 陈嘉琳, 郭涛, 姚淼, 等. 含不同形貌MoO3的Al/MoO3铝热剂的热性能和燃烧性能 [J]. 含能材料, 2022, 30(2): 121–129. doi: 10.11943/CJEM2021105 CHEN J L, GUO T, YAO M, et al. Thermal properties and combustion properties of Al/MoO3 thermite containing MoO3 with different morphologies [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 121–129. doi: 10.11943/CJEM2021105 |
| [11] | MARTIROSYAN K S, WANG L, VICENT A, et al. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use [J]. Nanotechnology, 2009, 20(40): 405609. doi: 10.1088/0957-4484/20/40/405609 |
| [12] | HE W, LYU J Y, TANG D Y, et al. Control the combustion behavior of solid propellants by using core-shell Al-based composites [J]. Combustion and Flame, 2020, 221: 441–452. doi: 10.1016/j.combustflame.2020.07.006 |
| [13] | ZHU Z Y, MA B, TANG C M, et al. Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe2O3 nanotube [J]. Physics Letters A, 2016, 380(1/2): 194–199. doi: 10.1016/j.physleta.2015.09.041 |
| [14] | SONG J X, GUO T, YAO M, et al. A comparative study of thermal kinetics and combustion performance of Al/CuO, Al/Fe2O3 and Al/MnO2 nanothermites [J]. Vacuum, 2020, 176: 109339. doi: 10.1016/j.vacuum.2020.109339 |
| [15] | ZHUANG Z H, XU K D, LIU B Z, et al. Improved reactivity and energy release performance of core-shell structured fuel-rich Si/PTFE energetic composites [J]. Combustion and Flame, 2023, 255: 112889. doi: 10.1016/j.combustflame.2023.112889 |
| [16] | LIU Z H, HE C, ZHUANG Z H, et al. Ignition and energy release performance of dual-oxidant Al/MnO2/CuO ternary thermites under rapid heating conditions [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(7): e202400005. doi: 10.1002/prep.202400005 |
| [17] | YANG C, WANG W Y, LI Y H, et al. Quantitative study on chemical effects of actual/simulated recirculated exhaust gases on ignition delay times of n-heptane/ethanol fuel blends at elevated temperature [J]. Fuel, 2020, 263: 116327. doi: 10.1016/j.fuel.2019.116327 |