[1] LI M, LU J, CHEN Z, AMINE K. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1 800 561.
[2] KWADE A, HASELRIEDER W, LEITHOFF R, MODLINGER A, DIETRICH F, DROEDER K. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290 - 300 . doi: 10.1038/s41560-018-0130-3
[3] AISSOU S, REKIOUA D, MEZZAI N, REKIOUA T, BACHA S. Modeling and control of hybrid photovoltaic wind power system with battery storage[J]. Energy Conversion and Management, 2015, 89: 615 - 625 . doi: 10.1016/j.enconman.2014.10.034
[4] GAO T, WANG Z, CHEN S, GUO L. Hazardous characteristics of charge and discharge of lithium-ion batteries under adiabatic environment and hot environment[J]. International Journal of Heat and Mass Transfer, 2019, 141: 419 - 431 . doi: 10.1016/j.ijheatmasstransfer.2019.06.075
[5] WANG Z, OUYANG D, CHEN M, WANG X, ZHANG Z, WANG J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(6): 2 239-2 247.
[6] DU X, YANG B, LU Y, GUO X, ZU G, HUANG J. Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes[J]. Journal of Materials Chemistry C, 2021, 9(21): 6 760-6 765.
[7] LIU C, WAN J, DONG W, WANG X, CHEN J, LI S, MAO C, ZENG D. Rapid detection of ppb level electrolyte leakage of lithium ion battery (LIB) by WO3 hollow microsphere gas sensor[J]. Materials Today Communications, 2023, 35: 106 398.
[8] LU Y, ZHANG S, DAI S, LIU D, WANG X, TANG W, GUO X, DUAN J, LUO W, YANG B, ZOU J, HUANG Y, KATZ H E, HUANG J. Ultrasensitive detection of electrolyte leakage from lithium-ion batteries by ionically conductive metal-organic frameworks[J]. Matter, 2020, 3(3): 904 - 919 . doi: 10.1016/j.matt.2020.05.021
[9] WANG H, XIONG R, CUI Z, WAN J, SA B, WU X, SONG W, WANG X, ZENG D. Ultrasensitive detection for lithium-ion battery electrolyte leakage by rare-earth Nd-doped SnO2 nanofibers[J]. ACS Sensors, 2023, 8(4): 1 700-1 709.
[10] ESSL C, SEIFERT L, RABE M, FUCHS A. Early detection of failing automotive batteries using gas sensors[J]. Batteries, 2021, 7(2): 25 . doi: 10.3390/batteries7020025
[11] MATEEV V, MARINOVA I, KARTUNOV Z. Gas leakage source detection for Li-ion batteries by distributed sensor array[J]. Sensors, 2019, 19(13): 2 900.
[12] ZHANG E, YAN W, ZHOU S, LING M, ZHOU H. Fe3O4@uio66 core-shell composite for detection of electrolyte leakage from lithium-ion batteries[J]. Nanotechnology, 2023, 34(13): 135 501.
[13] HORSTHEMKE F, FRIESEN A, MÖNNIGHOFF X, STENZEL Y P, GRÜTZKE M, ANDERSSON J T, WINTER M, NOWAK S. Fast screening method to characterize lithium ion battery electrolytes by means of solid phase microextraction-gas chromatography-mass spectrometry[J]. RSC Advances, 2017, 7(74): 46 989-46 998.
[14] SUN J, LI J, ZHOU T, YANG K, WEI S, TANG N, DANG N, LI H, QIU X, CHEN L. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313 - 319 . doi: 10.1016/j.nanoen.2016.06.031
[15] YU S, XIONG J, WU D, LYU X, YAO Z, XU S, TANG J. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis[J]. Environmental Science and Pollution Research, 2020, 27(32): 40 205-40 209.
[16] MöNNIGHOFF X, MURMANN P, WEBER W, WINTER M, NOWAK S. Post-mortem investigations of fluorinated flame retardants for lithium ion battery electrolytes by gas chromatography with chemical ionization[J]. Electrochimica Acta, 2017, 246: 1 042-1 051.
[17] HENSCHEL J, WIEMERS-MEYER S, DIEHL M, LURENBAUM C, JIANG W, WINTER M, NOWAK S. Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes[J]. Journal of Chromatography A, 2019, 1 603: 438-441.
[18] SAVIGNAC L, DAWKINS J I G, SCHOUGAARD S B, MAUZEROLL J. Determining the effect of dissolved CO2 on solution phase Li+ diffusion in common Li-ion battery electrolytes[J]. Electrochemistry Communications, 2021, 125: 106 979.
[19] DOHMANN J F, HORSTHEMKE F, KÜPERS V, BLOCH S, PREIBISCH Y, KOLESNIKOV A, KOLEK M, STAN M C, WINTER M, BIEKER P. Galvanic couples in ionic liquid-based electrolyte systems for lithium metal batteries-an overlooked cause of galvanic corrosion?[J]. Advanced Energy Materials, 2021, 11(24): 2 101 021.
[20] PARHIZI M, CACERES-MARTINEZ L E, MODEREGER B A, KENTTÄMAA H I, KILAZ G, OSTANEK J K. Determining the composition of carbonate solvent systems used in lithium-ion batteries without salt removal[J]. Energies, 2022, 15(8): 2 805.
[21] HENSCHEL J, PESCHEL C, GÜNTER F, REINHART G, WINTER M, NOWAK S. Reaction product analysis of the most active “inactive” material in lithium-ion batteries-the electrolyte. II: battery operation and additive impact[J]. Chemistry of Materials, 2019, 31(24): 9 977-9 983.
[22] HORSTHEMKE F, FRIESEN A, IBING L, KLEIN S, WINTER M, NOWAK S. Possible carbon-carbon bond formation during decomposition? Characterization and identification of new decomposition products in lithium ion battery electrolytes by means of SPME-GC-MS[J]. Electrochimica Acta, 2019, 295: 401 - 409 . doi: 10.1016/j.electacta.2018.08.159
[23] SIM R, LANGDON J, MANTHIRAM A. Design of an online electrochemical mass spectrometry system to study gas evolution from cells with lean and volatile electrolytes[J]. Small Methods, 2023, 7(6): e2201438. doi: 10.1002/smtd.202201438
[24] FANG C, TRAN T N, ZHAO Y, LIU G. Electrolyte decomposition and solid electrolyte interphase revealed by mass spectrometry[J]. Electrochimica Acta, 2021, 399: 139 362.
[25] KOSTERS K, HENSCHEL J, WINTER M, NOWAK S. Online sample pretreatment for analysis of decomposition products in lithium ion battery by liquid chromatography hyphenated with ion trap-time of flight-mass spectrometry or inductively coupled plasma-sector field-mass spectrometry[J]. Journal of Chromatography A, 2021, 1 658: 462 594.
[26] HENSCHEL J, PESCHEL C, KLEIN S, HORSTHEMKE F, WINTER M, NOWAK S. Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling of electrolyte components[J]. Angewandte Chemie International Edition, 2020, 59(15): 6 128-6 137.
[27] PESCHEL C, HORSTHEMKE F, LEIßING M, WIEMERS-MEYER S, HENSCHEL J, WINTER M, NOWAK S. Analysis of carbonate decomposition during solid electrolyte interphase formation in isotope-labeled lithium ion battery electrolytes: extending the knowledge about electrolyte soluble species[J]. Batteries & Supercaps, 2020, 3(11): 1 183-1 192.
[28] FANG C, LAU J, HUBBLE D, KHOMEIN P, DAILING E A, LIU Y, LIU G. Large-molecule decomposition products of electrolytes and additives revealed by on-electrode chromatography and MALDI[J]. Joule, 2021, 5(2): 415 - 428 . doi: 10.1016/j.joule.2020.12.012
[29] WILKEN S, TRESKOW M, SCHEERS J, JOHANSSON P, JACOBSSON P. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy[J]. RSC Advances, 2013, 3(37): 16 359.
[30] LIAO Z, ZHANG J, GAN Z, WANG Y, ZHAO J, CHEN T, ZHANG G. Thermal runaway warning of lithium-ion batteries based on photoacoustic spectroscopy gas sensing technology[J]. International Journal of Energy Research, 2022, 46(15): 21 694-21 702.
[31] LARSSON F, BERTILSSON S, FURLANI M, ALBINSSON I, MELLANDER B E. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220 - 231 . doi: 10.1016/j.jpowsour.2017.10.085
[32] HILDEBRAND S, FERRARIO F, LEBEDEVA N. Comparative overview of methods for the detection of airborne electrolyte components released from lithium-ion batteries[J]. Energy Technology, 2023, 12(1): 2 300 647.
[33] 金淑聪, 吕警, 王景. 便携式吹扫捕集-GC/MS现场快速监测水中苯系物[J]. 生物化工, 2021, 7(3): 22 - 25 . doi: 10.3969/j.issn.2096-0387.2021.03.006 JIN Shucong, LYU Jing, WAN Jing. Portable purge and trap-GC/MS on-site rapid monitoring of benzene series[J]. Biological Chemical Engineering, 2021, 7(3): 22 - 25 (in Chinese). doi: 10.3969/j.issn.2096-0387.2021.03.006
[34] QIU J, XU K, ZHANG T, ZHU H, ZHANG S, LU X, LI X. Development of a portable gas chromatography linear ion trap mass spectrometer (GC-LIT-MS) for VOCs analysis in water[J]. International Journal of Mass Spectrometry, 2024, 497: 117 189.
[35] MASASHI Y, KATSUMI T. New method for determining antoine constants[J]. Journal of Chemical Engineering of Japan, 2010, 43(9): 727 - 729 . doi: 10.1252/jcej.10we047
[36] RAHIMI P, WARD C. Kinetics of evaporation: statistical rate theory approach[J]. International Journal of Thermodynamics, 2010, 8(1): 1 - 14 .
[37] BARRETT J, CLEMENT C. Kinetic evaporation and condensation rates and their coefficients[J]. Journal of Colloid and lnterface Science, 1992, 150(2): 352 - 364 . doi: 10.1016/0021-9797(92)90205-Z
[38] 李守信, 陈青松, 罗鑫, 张文, 曾华英. 吸附法处理VOCs脱附温度的选择[J]. 中国环保产业, 2018(3): 48 - 50 . doi: 10.3969/j.issn.1006-5377.2018.03.012 LI Shouxin, CHEN Qingsong, LUO Xin, ZHANG Wenzhi, ZENG Huaying. Determination on desorbing temperature of VOCs treated by adsorption method[J]. China Environmental Protection Industry, 2018(3): 48 - 50 (in Chinese). doi: 10.3969/j.issn.1006-5377.2018.03.012
[39] SUN X, FAN X, HUANG W, DONG L, SUN Y. Influence of pressure and temperature on the toluene desorption from activated carbon under supercritical CO2[J]. Case Studies in Thermal Engineering, 2023, 52: 103 677.
[40] THOMPSON L M, STONE W, ELDESOKY A, SMITH N K, MCFARLANE C R M, KIM J S, JOHNSON M B, PETIBON R, DAHN J R. Quantifying changes to the electrolyte and negative electrode in aged NMC532/graphite lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(11): A2732-A2740.