[1] CHUBUKOV V, GEROSA L, KOCHANOWSKI K, SAUER U. Coordination of microbial metabolism[J]. Nature Reviews Microbiology, 2014, 12(5): 327 - 340 . doi: 10.1038/nrmicro3238
[2] FIGLIA G, WILLNOW P, TELEMAN A A. Metabolites regulate cell signaling and growth via covalent modification of proteins[J]. Developmental Cell, 2020, 54(2): 156 - 170 .
[3] DISKIN C, RYAN T A J, O’NEILL L A J. Modification of proteins by metabolites in immunity[J]. Immunity, 2021, 54(1): 19 - 31 .
[4] ISHIHAMA A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks[J]. FEMS Microbiology Reviews, 2010, 34(5): 628 - 645 .
[5] DU X, LI Y, XIA Y L, AI S M, LIANG J, SANG P, JI X L, LIU S Q. Insights into protein-ligand interactions: mechanisms, models, and methods[J]. International Journal of Molecular Sciences, 2016, 17(2): 144 .
[6] GEROSA L, SAUER U. Regulation and control of metabolic fluxes in microbes[J]. Current Opinion in Biotechnology, 2011, 22(4): 566 - 575 .
[7] HARMEL R, FIEDLER D. Features and regulation of non-enzymatic post-translational modifications[J]. Nature Chemical Biology, 2018, 14(3): 244 - 252 .
[8] FANG Z, QIN H, MAO J, WANG Z, ZHANG N, WANG Y, LIU L, NIE Y, DONG M, YE M. Glyco-decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation[J]. Nature Communications, 2022, 13(1): 1 900.
[9] ZHANG H, OU J, YAO Y, WANG H, LIU Z, WEI Y, YE M. Facile preparation of titanium(IV)-immobilized hierarchically porous hybrid monoliths[J]. Analytical Chemistry, 2017, 89(8): 4 655-4 662.
[10] HAUCK A K, HUANG Y, HERTZEL A V, BERNLOHR D A. Adipose oxidative stress and protein carbonylation[J]. Journal of Biological Chemistry, 2019, 294(4): 1 083-1 088.
[11] SCHLOSSAREK D, ZHANG Y, SOKOLOWSKA E M, FERNIE A R, LUZAROWSKI M, SKIRYCZ A. Don’t let go: co-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes[J]. The Plant Journal, 2023, 113(5): 904 - 914 .
[12] HABERKANT P, STEIN F, HÖGLINGER D, GERL M J, BRÜGGER B, van VELDHOVEN P P, KRIJGSVELD J, GAVIN A C, SCHULTZ C. Bifunctional sphingosine for cell-based analysis of protein-sphingolipid interactions[J]. ACS Chemical Biology, 2016, 11(1): 222 - 230 .
[13] NIPHAKIS M J, LUM K M, COGNETTA A B, CORREIA B E, ICHU T A, OLUCHA J, BROWN S J, KUNDU S, PISCITELLI F, ROSEN H, CRAVATT B F. A global map of lipid-binding proteins and their ligandability in cells[J]. Cell, 2015, 161(7): 1 668-1 680.
[14] KALLEMEIJN W W, LUEG G A, FARONATO M, HADAVIZADEH K, GROCIN A G, SONG O R, HOWELL M, CALADO D P, TATE E W. Validation and invalidation of chemical probes for the human myristoyltransferases[J]. Cell Chemical Biology, 2019, 26(6): 892 .
[15] PIAZZA I, KOCHANOWSKI K, CAPPELLETTI V, FUHRER T, NOOR E, SAUER U, PICOTTI P. A map of protein-metabolite interactions reveals principles of chemical communication[J]. Cell, 2018, 172(1/2): 358 - 372 .
[16] SCHOPPER S, KAHRAMAN A, LEUENBERGER P, FENG Y, PIAZZA I, MÜLLER O, BOERSEMA P J, PICOTTI P. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry[J]. Nature Protocols, 2017, 12(11): 2 391-2 410.
[17] SRIDHARAN S, KURZAWA N, WERNER T, GÜNTHNER I, HELM D, HUBER W, BANTSCHEFF M, SAVITSKI M M. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP[J]. Nature Communications, 2019, 10(1): 1 155.
[18] WRIGHT M H, SIEBER S A. Chemical proteomics approaches for identifying the cellular targets of natural products[J]. Natural Product Reports, 2016, 33(5): 681 - 708 . doi: 10.1039/C6NP00001K
[19] QIN F, LI B, WANG H, MA S, LI J, LIU S, KONG L, ZHENG H, ZHU R, HAN Y, YANG M, LI K, JI X, CHEN P R. Linking chromatin acylation mark-defined proteome and genome in living cells[J]. Cell, 2023, 186(5): 1 066-1 085.
[20] JIANG S, LI H, ZHANG L, MU W, ZHANG Y, CHEN T, WU J, TANG H, ZHENG S, LIU Y, WU Y, LUO X, XIE Y, REN J. Generic diagramming platform (GDP): a comprehensive database of high-quality biomedical graphics[J]. Nucleic Acids Research, 2025, 53(D1): D1670 - D1676 . doi: 10.1093/nar/gkae973
[21] COUKOS J S, LEE C W, PILLAI K S, LIU K J, MOELLERING R E. Widespread, reversible cysteine modification by methylglyoxal regulates metabolic enzyme function[J]. ACS Chemical Biology, 2023, 18(1): 91 - 101 . doi: 10.1021/acschembio.2c00727
[22] MONTGOMERY D C, SORUM A W, MEIER J L. Chemoproteomic profiling of lysine acetyltransferases highlights an expanded landscape of catalytic acetylation[J]. Journal of the American Chemical Society, 2014, 136(24): 8 669-8 676.
[23] QIN W, ZHANG Y, TANG H, LIU D, CHEN Y, LIU Y, WANG C. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages[J]. Journal of the American Chemical Society, 2020, 142(25): 10 894-10 898.
[24] KULKARNI R A, BAK D W, WEI D, BERGHOLTZ S E, BRINEY C A, SHRIMP J H, ALPSOY A, THORPE A L, BAVARI A E, CROOKS D R, LEVY M, FLORENS L, WASHBURN M P, FRIZZELL N, DYKHUIZEN E C, WEERAPANA E, MARSTON LINEHAN W, MEIER J L. A chemoproteomic portrait of the oncometabolite fumarate[J]. Nature Chemical Biology, 2019, 15(4): 391 - 400 . doi: 10.1038/s41589-018-0217-y
[25] KELLY B, O’NEILL L A J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity[J]. Cell Research, 2015, 25(7): 771 - 784 . doi: 10.1038/cr.2015.68
[26] ARTS R J W, NOVAKOVIC B, TER HORST R, CARVALHO A, BEKKERING S, LACHMANDAS E, RODRIGUES F, SILVESTRE R, CHENG S C, WANG S Y, HABIBI E, GONÇALVES L G, MESQUITA I, CUNHA C, van LAARHOVEN A, van de VEERDONK F L, WILLIAMS D L, van der MEER J W M, LOGIE C, O’NEILL L A, DINARELLO C A, RIKSEN N P, van CREVEL R, CLISH C, NOTEBAART R A, JOOSTEN L A B, STUNNENBERG H G, XAVIER R J, NETEA M G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity[J]. Cell Metabolism, 2016, 24(6): 807 - 819 . doi: 10.1016/j.cmet.2016.10.008
[27] LAMPROPOULOU V, SERGUSHICHEV A, BAMBOUSKOVA M, NAIR S, VINCENT E E, LOGINICHEVA E, CERVANTES-BARRAGAN L, MA X, HUANG S C, GRISS T, WEINHEIMER C J, KHADER S, RANDOLPH G J, PEARCE E J, JONES R G, DIWAN A, DIAMOND M S, ARTYOMOV M N. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation[J]. Cell Metabolism, 2016, 24(1): 158 - 166 . doi: 10.1016/j.cmet.2016.06.004
[28] O’NEILL L A J, ARTYOMOV M N. Itaconate: the poster child of metabolic reprogramming in macrophage function[J]. Nature Reviews Immunology, 2019, 19(5): 273 - 281 . doi: 10.1038/s41577-019-0128-5
[29] ZHANG X, SCHALKWIJK C G, WOUTERS K. Immunometabolism and the modulation of immune responses and host defense: a role for methylglyoxal?[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2022, 1 868(8): 166 425.
[30] LEVY M J, MONTGOMERY D C, SARDIU M E, MONTANO J L, BERGHOLTZ S E, NANCE K D, THORPE A L, FOX S D, LIN Q, ANDRESSON T, FLORENS L, WASHBURN M P, MEIER J L. A systems chemoproteomic analysis of acyl-CoA/protein interaction networks[J]. Cell Chemical Biology, 2020, 27(3): 322 - 333 . doi: 10.1016/j.chembiol.2019.11.011
[31] YANG F, JIA G, GUO J, LIU Y, WANG C. Quantitative chemoproteomic profiling with data-independent acquisition-based mass spectrometry[J]. Journal of the American Chemical Society, 2022, 144(2): 901 - 911 . doi: 10.1021/jacs.1c11053
[32] UCHINOMIYA S, NAGAURA T, WEBER M, MATSUO Y, ZENMYO N, YOSHIDA Y, TSURUTA A, KOYANAGI S, OHDO S, MATSUNAGA N, OJIDA A. Fluorescence-based detection of fatty acid β-oxidation in cells and tissues using quinone methide-releasing probes[J]. Journal of the American Chemical Society, 2023, 145(14): 8 248-8 260.
[33] KAJIWARA K, OSAKI H, GRESSIES S, KUWATA K, KIM J H, GENSCH T, SATO Y, GLORIUS F, YAMAGUCHI S, TAKI M. A negative-solvatochromic fluorescent probe for visualizing intracellular distributions of fatty acid metabolites[J]. Nature Communications, 2022, 13(1): 2 533.
[34] WU Z, HE K, CHEN Y, LI H, PAN S, LI B, LIU T, XI F, DENG F, WANG H, DU J, JING M, LI Y. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo[J]. Neuron, 2022, 110(5): 770 - 782 . doi: 10.1016/j.neuron.2021.11.027
[35] TAMIMA D U, SARKAR D S, ISLAM D M R, SHIL A, KIM D K H, REO D Y J, JUN D Y W, BANNA H, LEE S, AHN P K H. A small-molecule fluorescence probe for nuclear ATP[J]. Angewandte Chemie International Edition, 2023, 62(15): e202300580. doi: 10.1002/anie.202300580
[36] LI T, WANG A, ZHANG Y, CHEN W, GUO Y, YUAN X, LIU Y, GENG Y. Chemoproteomic profiling of signaling metabolite fructose-1,6-bisphosphate interacting proteins in living cells[J]. Journal of the American Chemical Society, 2024, 146(22): 15 155-15 166.
[37] DIXIT A, JOSE G P, SHANBHAG C, TAGAD N, KALIA J. Metabolic labeling-based chemoproteomics establishes choline metabolites as protein function modulators[J]. ACS Chemical Biology, 2022, 17(8): 2 272-2 283.
[38] HURBEN A K, ERBER L N, TRETYAKOVA N Y, DORAN T M. Proteome-wide profiling of cellular targets modified by dopamine metabolites using a bio-orthogonally functionalized catecholamine[J]. ACS Chemical Biology, 2021, 16(11): 2 581-2 594.
[39] ZHAO X, STEIN K R, CHEN V, GRIFFIN M E, LAIRSON L L, HANG H. Chemoproteomics reveals microbiota-derived aromatic monoamine agonists for GPRC5A[J]. Nature Chemical Biology, 2023, 19(10): 1 205-1 214.
[40] JI Y, SUN L, CHEN Y, QIN P, XUAN P. Sirtuin-derived covalent binder for the selective recognition of protein crotonylation[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205522. doi: 10.1002/anie.202205522
[41] DONG H, ZHAI G, CHEN C, BAI X, TIAN S, HU D, FAN E, ZHANG K. Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes[J]. Science Advances, 2019, 5(7): eaaw6703. doi: 10.1126/sciadv.aaw6703
[42] CHEN C, CHEN C, WANG A, JIANG Z, ZHAO F, LI Y, HAN Y, NIU Z, TIAN S, BAI X, ZHANG K, ZHAI G. ENL reads histone beta-hydroxybutyrylation to modulate gene transcription [J]. Nucleic Acids Res, 2024, 52(17): 10 029-10 039.
[43] HICKS K G, CLUNTUN A A, SCHUBERT H L, HACKETT S R, BERG J A, LEONARD P G, AJALLA ALEIXO M A, ZHOU Y, BOTT A J, SALVATORE S R, CHANG F, BLEVINS A, BARTA P, TILLEY S, LEIFER A, GUZMAN A, AROK A, FOGARTY S, WINTER J M, AHN H C, ALLEN K N, BLOCK S, CARDOSO I A, DING J, DREVENY I, GASPER W C, HO Q, MATSUURA A, PALLADINO M J, PRAJAPATI S, SUN P, TITTMANN K, TOLAN D R, UNTERLASS J, van DEMARK A P, VANDER HEIDEN M G, WEBB B A, YUN C H, ZHAO P, WANG B, SCHOPFER F J, HILL C P, NONATO M C, MULLER F L, COX J E, RUTTER J. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase[J]. Science, 2023, 379(6 636): 996-1 003.
[44] 叶明亮, 李柯佳. 探测能量状态发生变化的蛋白或配体与蛋白亲和力的方法: 中国, CN117665082A[P]. 2024-03-08.
[45] LI K, CHEN S, WANG K, WANG Y, XUE L, YE Y, FANG Z, LYU J, ZHU H, LI Y, YU T, YANG F, ZHANG X, GUO S, RUAN C, ZHOU J, WANG Q, DONG M, LUO C, YE M. A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands[J]. Nature Methods, 2025, 22(2): 278 - 282 . doi: 10.1038/s41592-024-02553-7
[46] RUAN C, WANG Y, ZHANG X, LYU J, ZHANG N, MA Y, SHI C, QU G, YE M. Matrix thermal shift assay for fast construction of multidimensional ligand-target space[J]. Analytical Chemistry, 2022, 94(17): 6 482-6 490.
[47] PANTOLIANO M W, PETRELLA E C, KWASNOSKI J D, LOBANOV V S, MYSLIK J, GRAF E, CARVER T, ASEL E, SPRINGER B A, LANE P, SALEMME F R. High-density miniaturized thermal shift assays as a general strategy for drug discovery[J]. SLAS Discovery, 2001, 6(6): 429 - 440 . doi: 10.1177/108705710100600609
[48] LUCK K, SHEYNKMAN G M, ZHANG I, VIDAL M. Proteome-scale human interactomics[J]. Trends in Biochemical Sciences, 2017, 42(5): 342 - 354 . doi: 10.1016/j.tibs.2017.02.006
[49] SOWMYA G, BREEN E J, RANGANATHAN S. Linking structural features of protein complexes and biological function[J]. Protein Science, 2015, 24(9): 1 486-1 494.
[50] VANDEREYKEN K, SIFRIM A, THIENPONT B, VOET T. Methods and applications for single-cell and spatial multi-omics[J]. Nature Reviews Genetics, 2023, 24(8): 494 - 515 . doi: 10.1038/s41576-023-00580-2