[1] VERKOUTEREN J R, STAYMATES J L. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples[J]. Forensic Science International, 2011, 206(1/2/3): 190 - 196 .
[2] ROSCIOLI K M, TUFARIELLO J A, ZHANG X, LI S X, GOETZ G H, CHENG G, SIEMS W F, HILL H H. Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection[J]. Analyst, 2014, 139(7): 1740 - 1750 . doi: 10.1039/C3AN02113K
[3] MÄKINEN M, NOUSIAINEN M, SILLANPÄÄ M. Ion spectrometric detection technologies for ultra-traces of explosives: a review[J]. Mass Spectrometry Reviews, 2011, 30(5): 940 - 973 . doi: 10.1002/mas.20308
[4] ROSCIOLI K M, DAVIS E, SIEMS W F, MARIANO A, SU W, GUHARAY S K, HILL H H. Modular ion mobility spectrometer for explosives detection using corona ionization[J]. Analytical Chemistry, 2011, 83(15): 5965 - 5971 . doi: 10.1021/ac200945k
[5] MÄKINEN M A, ANTTALAINEN O A, SILLANPÄÄ M E T. Ion mobility spectrometry and its applications in detection of chemical warfare agents[J]. Analytical Chemistry, 2010, 82(23): 9594 - 9600 . doi: 10.1021/ac100931n
[6] YAMAGUCHI S, ASADA R, KISHI S, SEKIOKA R, KITAGAWA N, TOKITA K, YAMAMOTO S, SETO Y. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents[J]. Forensic Toxicology, 2010, 28(2): 84 - 95 . doi: 10.1007/s11419-010-0092-z
[7] 仓怀文, 李杭, 黄卫, 张远智, 李京华, 王卫国, 李海洋. 基于脉冲波形调控离子分布提升离子迁移谱性能的研究[J]. 分析化学, 2021, 49(12): 2067 - 2074 . CANG Huaiwen, LI Hang, HUANG Wei, ZHANG Yuanzhi, LI Jinghua, WANG Weiguo, LI Haiyang. Improving performance of ion mobility spectrometry using Bradbury-Nielsen ion gate pulse waveform modulation[J]. Chinese Journal of Analytical Chemistry, 2021, 49(12): 2067 - 2074 (in Chinese).
[8] 代渐雄, 段忆翔. 微波诱导等离子体离子迁移谱仪性能及影响因素的研究[J]. 分析化学, 2016, 44(11): 1686 - 1691 . DAI Jianxiong, DUAN Yixiang. Research of influence factors on performance of microwave induced plasma ionization ion mobility spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(11): 1686 - 1691 (in Chinese).
[9] CHEN C, CHEN H, JIANG D, LI M, HUANG W, LI H. Enhancing the sensitivity of ion mobility spectrometry using the ion enrichment effect of non-uniform electrostatic field[J]. Sensors and Actuators B: Chemical, 2019, 295: 179 - 185 . doi: 10.1016/j.snb.2019.05.088
[10] CHEN C, TABRIZCHI M, LI H. Ion gating in ion mobility spectrometry: principles and advances[J]. TrAC Trends in Analytical Chemistry, 2020, 133: 116100 . doi: 10.1016/j.trac.2020.116100
[11] CHEN H, CHEN C, LI M, WANG W, JIANG D, LI H. Achieving high gating performance for ion mobility spectrometry by manipulating ion swarm spatiotemporal behaviors in the vicinity of ion shutter[J]. Analytica Chimica Acta, 2019, 1 052: 96 - 104 . doi: 10.1016/j.aca.2018.11.045
[12] DU Y, WANG W, LI H. Bradbury-Nielsen-gate-grid structure for further enhancing the resolution of ion mobility spectrometry[J]. Analytical Chemistry, 2012, 84(13): 5700 - 5707 . doi: 10.1021/ac300887g
[13] GUO K, ZHENG Y, HU H, LIANG J. Simulation study of inverse diffusion counterbalance method for super-resolution ion mobility spectrometry[J]. Frontiers in Chemistry, 2022, 10: 1004615 . doi: 10.3389/fchem.2022.1004615
[14] HONG Y, LIU S, HUANG C, XIA L, SHEN C, JIANG H, CHU Y. Simultaneous improvement of resolving power and signal-to-noise ratio using a modified hadamard transform-inverse ion mobility spectrometry technique[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(11): 2500 - 2507 . doi: 10.1007/s13361-017-1773-1
[15] ILBEIGI V, TABRIZCHI M. Peak-peak repulsion in ion mobility spectrometry[J]. Analytical Chemistry, 2012, 84(8): 3669 - 3675 . doi: 10.1021/ac3001447
[16] SPANGLER G E. Theory for inverse pulsing of the shutter grid in ion mobility spectrometry[J]. Analytical Chemistry, 2010, 82(19): 8052 - 8059 . doi: 10.1021/ac100240t
[17] TABRIZCHI M, JAZAN E. Inverse ion mobility spectrometry[J]. Analytical Chemistry, 2010, 82(2): 746 - 750 . doi: 10.1021/ac902009c
[18] LIU S, HUANG C, SHEN C, JIANG H, CHU Y. A novel driving mode for ion shutter based on alternating current superposition and its application to ion mobility spectrometry[J]. Sensors and Actuators B: Chemical, 2015, 211: 102 - 110 . doi: 10.1016/j.snb.2015.01.061
[19] 刘升, 黄超群, 沈成银, 储焰南. 非对称离子门控制方法和对离子迁移谱分辨率的改善[J]. 光谱学与光谱分析, 2013, 33(11): 2881 . doi: 10.3964/j.issn.1000-0593(2013)11-2881-05 LIU Sheng, HUANG Chaoqun, SHEN Chengyin, CHU Yannan. Asymmetric control method for ion shutter and the resolution improvement of ion mobility spectrum[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2881 (in Chinese). doi: 10.3964/j.issn.1000-0593(2013)11-2881-05
[20] TADJIMUKHAMEDOV F K, PUTON J, STONE J A, EICEMAN G A. A study of the performance of an ion shutter for drift tubes in atmospheric pressure ion mobility spectrometry: computer models and experimental findings[J]. Review of Scientific Instruments, 2009, 80(10): 103103 . doi: 10.1063/1.3242276
[21] DU Y, WANG W, LI H. Resolution enhancement of ion mobility spectrometry by improving the three-zone properties of the Bradbury-Nielsen gate[J]. Analytical Chemistry, 2012, 84(3): 1725 - 1731 . doi: 10.1021/ac203013u