Chinese Physics C Vol. 43, No. 2 (2019) 023106

Estimating the production rates of D -wave charmed mesons via the
semileptonic decays of bottom mesons”

Kan Chen(Ffi)">"

Hong-Wei Ke(f41. 1)

Xiang Liu(XJ#)"*”  Takayuki Matsuki"*"

'School of Physical Science and Technology, Lanzhou University, 73000, China
’Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou, 730000, China
*School of Science, Tianjin University, Tianjin 300072, China
4Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8602, Japan
*Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan

Abstract: Using the covariant light-front approach with conventional vertex functions, we estimate the production

rates of D-wave charmed/charmed-strange mesons via the B, semileptonic decays. As the calculated production

rates are significant, it seems possible to experimentally search for D-wave charmed/charmed-strange mesons via

semileptonic decays, which may provide an additional approach for exploring D-wave charmed/charmed-strange

mesons.
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1 Introduction

With accumulation of experimental data, more and
more open-charm and open-bottom states are reported by
the experiments (see the review paper [1] for more de-
tails). Among the observed states, there are abundant can-
didates for charmed and charmed-strange mesons includ-
ing the famous Dy((2317) and D;;(2460). In recent years,
experimentalists have especially made great progress in
observing D-wave charmed mesons, as well as D-wave
charmed-strange mesons. For example, the observed
D*(2760), D(2750) [2, 3], D%,(2860) and D?,(2860) [4, 5]
are good candidates for 1D states in charmed and
charmed-strange meson families [6-15]. In addition,
D7 ,(2860) [16, 17] can be assigned to a 1D state of
charmed-strange meson, although there exist other inter-
pretations [18-25]. Readers can refer to Refs. [26, 27] for
more information on D-wave charmed and charmed-
strange mesons.

When examining the production processes involving
D-wave charmed and charmed-strange mesons, we ob-
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serve that these states are mainly produced via nonlepton-
ic weak decays of bottom/bottom-strange mesons.
However, as an important decay mode, semileptonic de-
cays of B/B; mesons are the ideal platform for producing
D-wave D/D; mesons because they can be estimated
more accurately than nonleptonic decays. In order to es-
timate the branching ratios of these processes, we need to
perform a serious theoretical study of the production of
D-wave D/Dg; mesons via the semileptonic decays of
B/ B, mesons, which is the main task of the present work.

We adopt in this work the light-front quark model
(LFQM) [28-32], which is a relativistic quark model.
Since the involved light-front wave function is mani-
festly Lorentz invariant and the hadron spin is construc-
ted by using the Melosh-Wigner rotation [33, 34], LFQM
can be suitably applied to a study of semileptonic decays
of B/B,; mesons. In Refs. [35-48], the production rates of
S- and P-wave D/D; mesons have been estimated through
the decay processes of B/B; in the covariant LFQM.

As of yet, there has been no study of the production
of D-wave D/D; mesons via the semileptonic decays of

* Supported by the National Natural Science Foundation of China (11222547, 11175073, 11647301), the National Program for Support of Top-notch Young Profes-

sionals and the Fundamental Research Funds for the Central Universities
1) E-mail: chenk16@]zu.edu.cn
2) E-mail: khw020056@hotmail.com
3) E-mail: xiangliu@lzu.edu.cn
4) E-mail: matsuki@tokyo-kasei.ac.jp

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main-

tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society
and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub-

lishing Ltd

023106-1



Chinese Physics C Vol. 43, No. 2 (2019) 023106

B/B; mesons in the covariant light-front approach, which
makes the present work, to our knowledge, the first pa-
per on this issue. As shown in the following sections, the
technical details relevant for the above processes are far
more complicated than for S- and P-wave mesons. Thus,
our work is not only an application of LFQM, but is also
a development of this research field since the formulas
presented can be helpful for studying other processes in-
volving D-wave mesons. We consider this aspect valu-
able to the readers and provide the details of our analysis.

Finally, we hope that the present study will stimulate
the interest of experiments in their search for D-wave
D/D; mesons via the semileptonic decays of B/B;
mesons, as it opens another window for exploring D-
wave D/D; mesons and contributes to gathering more ex-
perimental information.

This paper is organized as follows. In Section 2, we
introduce the covariant light-front approach for D-wave
mesons and their corresponding form factors. In Section
3, we give our numerical results including the form
factors and the decay branching ratios. In Section 4, the
relation between the light-front form factors and the re-
quirements from the heavy quark symmetry are presen-
ted. The final section is devoted to a summary of our
work. In Appendices A through E, we give the algebraic
details related to the production of D-wave mesons via
B(s) semileptonic decay in LFQM, while Appendix F is
devoted to proving the Lorentz invariance of the matrix
elements in the toy model proposed in Ref. [49] with a
multipole ansatz for vertex functions.

2 Covariant light-front quark model

In the conventional light-front quark model, the quark
and antiquark inside a meson are required to be on their
mass shells. One can then extract physical quantities by
calculating the plus component of the corresponding mat-
rix element. However, as discussed in Ref. [35], this ap-
proach may result in missing the so-called Z-diagram
contribution, so that the matrix element depends on the
choice of frame. A systematic way of incorporating the
zero-mode effect was proposed in Ref. [49] by maintain-
ing the associated current matrix elements frame inde-
pendent, so that the physical quantities can be extracted.

In this work, we apply the covariant light-front ap-
proach to investigate the production of Dfjj mesons via
the semileptonic decays of B/B; mesons (see Fig. 1),
where D7} denotes a general D-wave D/D; meson. First,
we briefly introduce how to deal with the transition amp-
litudes.

According to Ref. [49], the relevant form factors are
calculated in terms of Feynman loop integrals, which are
manifestly covariant. The constituent quarks inside a had-
ron are off-shell, i.e. the incoming (outgoing) meson has

"

D (P")

B, (P)

Fig. 1.
B(y) — D, "v. p'e» is the momentum of the incoming (out-

Diagram of the meson transition processes

going) B/B, (D-wave D,) meson. p/”” denotes the mo-
mentum carried by the bottom (charm) quark, while p, is
the momentum of a light quark.

the momentum P = p'"” + p,, where p|"” and p, are
the off-shell momenta of the quark and antiquark, re-
spectively. These momenta can be expressed in terms of
the appropriate internal variables (x;, p’, ), defined by,

Py =xP", (1

Pio=x1P +p, pa=x2P| —pl, (2)
with x; +x; = 1. In the light-front coordinates, P’ = (P'",
P, P)) with p*=p94 p3, which satisfy the relation
P2 = P'*P'~ — P2, One needs to point out that there exist
different conventions for momentum conservation in the
covariant light-front and conventional light-front ap-
proaches. In the covariant light-front approach, four com-
ponents of a momentum are conserved at each vertex,
where the quark and antiquark are off-shell. In the con-
ventional light-front approach, the plus and transverse
components of a momentum are conserved quantities,
where the quark and antiquark are required to be on their
mass shells. Thus, it is useful to define internal quantities
for on-shell quarks

’+ /+
Py = x P,

p’f+m’12 +p’f+m§

2 2
My =(ej+e)” =

, G3)

X1 X2

Wy = M2 = = ma )2, 4)
e = \mEHptep?, ex= \mi+plHpl, ()

xa M| m% + p’f
2 2x M ’

p:= (6)
where M(’)2 is the kinetic invariant mass squared of the in-
coming meson. ef.’) denotes the energy of quark i, while
m} and m, are the masses of the quark and antiquark, re-
spectively.

In Ref. [35], the form factors for semileptonic decays
of bottom mesons into S-wave and P-wave charmed
mesons were obtained within the framework of the cov-
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ariant light-front quark model. In the following, we adopt
the same approach to deduce the form factors for the pro-
duction of D-wave charmed/charmed-strange mesons by
semileptonic decays of bottom/bottom-strange mesons.
Here, D-wave D/D,; mesons, denoted as Dzm, Dfs)zn D;*;)Z,
and Dj; , have quantum numbers 28+l =3D, Dy, 3D;,
and 3Ds, respectively. In the following, we use this nota-
tion for simplicity.

In the heavy quark limit my — oo, the heavy quark
spin so decouples from the other degrees of freedom.
Hence, a more convenient way to describe charmed/
charmed-strange mesons is to use the |/, j;) basis, where J
denotes the total spin and j, denotes the total angular mo-
mentum of the light quark. There exists a connection
between the physical states |/, j;) and the states described
by 7,8 for L =2 [50, 51], i.e.,

oo =P 3)= Va0
|D(v)‘>— _> \/7|D(y)2 \/7|D(€)2 (®)

This relation shows that two physical states D), and D[,
with J® =2 are linear combinations of D;‘S)z( D») and
Df’)2(3D2) states. When dealing with the transition amp-
litudes for the production of Dy, and D(Y)2 states, we

need to consider the mixing of states as in Egs. (7) and
(8).

One can write the general definition of the matrix ele-
ments for the production of D-wave D/D, mesons via the
semileptonic decays of B/B; mesons, i.e.,

(D (P €M) |V Boy(P) = €uwvape”™ P*dP2n(g?),
< (P, €A u|B(s>(P’)> =

—ile)” fo(q) + € P|Puap.(q*) + quap—(q*)}.
(Do (P".€")|Au| Bo(P")) = —€uwape”™ PAP (g,
(Di o (P, €")| V| Bioy(P)) =

i{m()el; P+ € P PP Puzo (9P + quz- ()]}

(10)
(DEa (P €M) |Au] Bioy(P))) = —€uvape”™ PAP &1 (g),
(D{a(P” €M) |Va| By (P))) =
i{m (@) P+ € P PP P2 (4 + ()]}
(1)
(Dl (P €D Vil B (P)) = Guvape ™™™ PAPoP ¢ Y(G),
(Digs P €M) |Au] Bs(P)) =

- i{w(qz)e;l'v*anP“ + e('y'ﬁ*yP"PﬁPy [P‘uo+ (@) +quo- (qz)]} .
(12)

—P” and €0123 = 1. 6;1*, 6;1':

Here, p=P +P"”, qg=P’

and ¢, are the polarization vector (tensors). The details
of the derivation are given in Appendix E. The Lorentz
invariance has been assumed when deriving these form
factors. One should note that the B(;) — D[} transition oc-
curs through a V- A current, where D, denotes the gen-
eral p-wave charmed (charmed- strange) meson. For the
semileptonic decays involving 3D, and 3Djs states, a €uvap
term arises in (D(m( (5)3)|V |B(A)> which corresponds to
the contribution of the vector current. Contrary to the
case of *D; and 3Dj states, for 'D, and 3D, states, the
€uvep term arises from the axial vector current. A minus
sign is added in front of this term, so that we have

< Z(;N Aﬂ|B(s)> = €uape” " PP ¢Pn")(¢%). When the sign
of the €44 term is fixed, the signs of the other form
factors can also be determined.

We now focus on the hadronic matrix elements given
by Eqgs. (9)-(12). Here, we show how to calculate them by
taking the B, — D[, transition as an example, where
va)l denotes the 3D1 state of the charmed/charmed-
strange meson. The corresponding matrix element for
B — D( 51 can be written as

D *
( (zl) < (S)](PI/ 6//)

Following the calculations in Ref. [35], we first obtain the
B, — D[, transition form factors, and then calculate the
processes involving the other D-wave charmed/charmed-
strange states. The details for the other matrix elements
are given in Appendix A. Here, one needs to introduce
the vertex wave functions to describe B, and D(s)1
mesons. The expression for a vertex function for an ini-
tial B, meson was obtained in Ref. [35]. In the follow-
ing, we give a detailed discussion for the vertex function
of the final state Df;; meson.

The D-wave vertex function has been studied in Ref.
[52]. We list all D-wave vertex functions in Appendix B;
one may refer to Ref. [52] for more details. First, we use
3Dy vertex functions for calculating the B, — Dy, trans-
ition.

In the conventional LFQM, p/| and p, are on their
mass shell, while in the covariant [49] light-front ap-
proach, the quark and antiquark are off-shell, but the total
momentum P’ = p| + p, is still the on-shell momentum of
a meson, i.e. P2 = M’? , where M’ is the mass of the in-
coming meson. One needs to relate the vertex function
deduced in the conventional LFQM to the vertex in the
covariant light-front approach. A practical method for
this process has been proposed in a covariant light-front
approach in Ref. [49]. We obtain the corresponding cov-
ariant vertex function as

. .,
ZI{JDI [’yﬂ - W (pl —p2)#] E‘u, (14)

Bu

Vu=Au Bo(P)),  (13)

where H:p, and W:p, denote the corresponding scalar
functions for 3D state.
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. . . B.,D,,,
The explicit expression for the matrix element B,"",

which corresponds to the hadronic one-loop Feynman
diagram of Fig. 2, reads

P/

P P

—_———

P2

Fig. 2. (color online) A hadronic one-loop Feynman dia-
gram for the process shown in Fig. 1. The V-4 current is at-
tached to a blob in the upper middle of the circle.

! . 144
BuDiy, _ 3 NC 4 7 HP (lHlDl) 3D, _xrry
B —i d'p)————=§ '€
- PYyNTNTNG TR €

g (2n)*
where N, is the number of colors, Ni(”) = p'l(”)2 - m'l(”)2

(15)
+ie,

N, = p} —mj3 +ie. H}ys is the vertex function of a pseudo-
scalar meson, and

Sy =Tr{

Yo ﬁ (py —Pz)v}( V4 my) (1= ys)

(F+m)ys (~#, +m2)}- (16)

One can integrate over p|~ via a contour integration
with d*p} = P"*dp|"dx,d?p’ /2 and the integration picks
up a residue p, = p,, where the antiquark is set to be on-
shell, p7 =m3. The momentum of the quark is given by
the momentum conservation, p| = P’ — p,. Consequently,
after performing the p|~ integration, we make the replace-
ments:

Ni(”) N NI(H) =x (M/(//)2 _ M(’)(/’)Z)
Hp — hp,

44
Hi, —

’”
3
D,

17 1’7
3D, i szl s

d*p! : dpd?p’
f—, P\ b, s H—inf{—fuh}h,ib o,
N{N{ Ny ! sziNi, |

where the explicit trace expansion of § ;ﬁ ', after integrat-
ing Eq. (15) over p|~, is presented in Appendix A. In ad-

dition, A}, is given in Ref. [35] as,
X1X2 1

Ne +2m;

where ¢ is the solid harmonic oscillator for S-wave and
describes the momentum distribution of the initial By
meson.

As noted in Ref. [52], after carrying out the contour

hp = (M7 - M) @, (17)

integral over p|~, the quantities H.;

Dy WJ’I’)I and € are re-
placed by &

’” /7’

w!p, and &, respectively. Here, i}, is re-

'éDl’
lated to /; D, as,
h{‘/D1 — (MNZ _M('J/Z) —\lx]XZh:D], (18)
which is derived in Appendix B, and
72 72 72 2
+m +m
mp= T P T (19)

X1 X2

with !/ = p), —x2q..

As pointed out in Refs. [35, 49], p] can be expressed
in terms of the external vectors, p’ and @:

PY =(P = o) = 1P+ (0,0,
TR
X P+ J ’

where @ = (0%, 0 ,0,)=(2,0,0,) [35, 49] is a light-like
four vector in the light-front coordinate system. Since the
constant vector @ is not Lorentz covariant, the presence
of @ terms implies that the corresponding matrix ele-
ments are not Lorentz invariant. This @ dependence also
appears in the products of two pi's. This spurious contri-
bution is related to the so-call zero-mode effect and
should be canceled when calculating physical quantities.

Initiated by the toy model proposed in Ref. [49], Jaus
developed a method which allows calculating the zero-
mode contributions associated with the corresponding
matrix element. p| as well as the products of a couple of
p}'s can be decomposed into products of vectors P, g, @,
and g,,, as shown in Appendix C, with functions A,
B™. and C'™, where B™ and C™ are related to @-de-
pendent terms. Based on the toy model, the vertex func-
tion of a ground state pseudoscalar meson is described by
a multipole ansatz,

1
+ E[XZP,_ —

8

i (20)
NA

Ho(p}, p3) =
which is different from our conventional vertex functions.
Jaus has proven that at the toy model level, the spurious
loop integrals of B, B(f; and C?), Cg vanish in the fol-
lowing integrals,

i 4 7 Mr(lm)
o | iy @
where M = B™ or ™. This fact is a natural con-
sequence of the Lorentz invariance of the theory. The @-
dependent terms have been systematically eliminated in
the toy model since the B(lz) and C % give trivial contribu-
tions to the calculated form factors [49].

However, this method has a narrow scope of applica-
tion. Note that Jaus proposed this method in a very simple
multipole ansatz for the vertex function. One may get
totally different contributions from the zero-mode effects
once the form of a vertex function for a meson is
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changed. For instance, as indicated in Ref. [53], for the
weak transition form factors between pseudoscalar and
vector meson, the zero-mode contributions depend on the
form of the vector meson vertex,

I'* =y* - 2k— Py)"/D, (22)
where the denominator p contains different types of
terms. (Readers can also refer to Refs. [54-59] for more
details.)

Beyond the toy model, the method of including the
zero-mode contributions in Ref. [49] was further applied
to study the decay constants and form-factors for S-wave
and p-wave mesons [35]. In Ref. [35], Cheng et al. used
the vertex functions for S- and P-wave mesons deduced
from the conventional light-front quark model, which are
different from the multipole ansatz proposed by Jaus. In
[35], they applied the method of the toy model to cancel
the C!™ functions. As for B! functions, they have nu-
merically checked that B™ give very small contributions
to the corresponding form factors. That is, when the mul-
tipole vertices are replaced by conventional light-front
vertex functions, and by setting BY" and C™ functions
equal to 0, one can still obtain very good numerical res-
ults for the decay constants. Indeed, as indicated in Ref.
[49], the numerical results obtained by applying conven-
tional vertices are even better than those for vertices from
the multipole ansatz.

It is natural to expect that this method can also be ap-
plied in our calculations of the form factors for the trans-
ition processes of D-wave mesons. In order to calculate
the corresponding form factors, one also needs to elimin-
ate the B™ and C functions introduced in the D-wave
transition matrix elements. In the following, we intro-
duce our analysis of the zero-mode contributions.

Following the discussion in Refs. [35, 49], to avoid
the & dependence of p/ , as well as of the product of a
couple of pi's, one needs to do the following replace-
ments:

AL 1 1
P = P#A(l )+‘1ﬂA(z ! (23)
NP (2 2 2
Puby —g,NA )+P P, A( ) ( gy +qu P )Ag)
+qua Ay, (24)

Al AL AL

P1uP1yPle = (gp.vPa +8ua Py + ng/,)A(f)

+ (gﬂV‘Ia + 8uagy + gvaqﬂ)A(23)

+P,P,P,AY + (Pﬂpvqa +PugyPs
+q,quPa/)A£t3) + (qﬂqu(, +q.Pyqq
+Puya) AS” + 4. (25)

where the B™ and C™ functions are disregarded at the
toy model level, and their loop integrals vanish mani-
festly if conventional vertices are introduced. We give

more details in the following discussion.

For the terms of products that are associated with A,
the zero-mode contributions are introduced and the fol-
lowing replacements should be made to eliminate the @-
dependent terms

Ny — Zy =N| +m? —m3 + (1 - 2x)M"

[q +(qP)] PJIL

(26)

Pla = PuAVZ - AP + g, |A

A0z, + LF A(”}, 27)
7

ﬁ/lyﬁllyN2 _)g/lVA(Z)ZZ + P Pv(A(Z)Zz - 2A(3))

P
+(Pugy+ 4P AP 2 + AP L AD)
e

+quar|AD 2y 4P A“>A<2>] (28)
where p= P’ + P” and A§) and 22 are functions of x;, p’2,
P’ -q., and ¢*. These functions have been obtained in
Ref. [49]. Again, in the above replacements, B™ and c™
can be naturally disregarded at the toy model level and
their loop integrals vanish manifestly with a standard
meson vertex.

Let us take the second rank tensor decomposition
(m)

LYANNV4

PPy, as an example how to effectively set the B,
and C™ functions to 0 and eliminate the @-dependent
terms. There are two @-dependent functions in the lead-
ing order of @ -decomposition, i.e. B(lz) and C(lz).

From Ref. [49] we have

BY =AclV - A, (29)

By introducing the explicit expression of C(]” from Ref.
[49], one can easily obtain

BY = -A'N, + 42, - AP (30)

in the toy model. The loop integral of B(lz) naturally van-
ishes. On the other hand, beyond the toy model, this term
should also be eliminated manifestly, i.e. we have the re-
placement

APR, - Az, - AP (1)
The same procedure can be applied to Ciz) , which gives,

AP, - AVZ, + qq'—fA(f). (32)

We would like to emphasize that beyond the toy mod-
el, when the conventional light-front vertex functions are
introduced, elimination of B! is also necessary when
calculating semileptonic form factors with S-wave and p-
wave mesons as final states. However, one would obtain
very small corrections since, as described earlier, these
B"™ functions give small contributions.

Expanding $ W‘, and replacing the ﬁ’lﬂﬁ’lvﬁz, PP
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P, N, P, and N, terms with the replacements in Egs.
(23)-(24) and Egs. (26)-(28), we can obtain the form
factors for the >Djstate by comparing with the general
definition of a matrix element glven in Eq. (9). We note
that, since in the expansion of § W‘ there is no term with
three pi's, Eq. (25) is not used. This equation just helps to

N,
2y Ne _ “php,
gp(q”) = (1_ )N’N”
2h/h’,
= | dpd?p, — D
fD(‘]) 16 3 2 Pi(l_ )N;N;'

e h” {[A(ll)(Zmz—m’l’—m'1)+A(21)(m’1'—m'1)+m'1]—

LY N4

find the tensor decomposition of plﬂplsz. This proced-
ure is identical to what was used for the tensor decompos-
ition of f)’lﬂﬁz by analyzing the product of p; f/,.

After including the zero-mode effect 1ntr0duced by
the B™ and C functions, we get the explicit form

factors gp(q®), fp(q*), ap+(g*) and ap_(¢*) as

2
W 1 }’ (33)
BDl

{2[4A(12) (m2 - m;) + m% (ma’ + m'l) - mz[(ma' +m )2 + x(M"2 - M(')'z)

+x(M? = MP) = g*|+m [mim] +m? = M2+ x(M? = MZ) + Zo| +m) [-M"? + x (M2 - M?) +Zz]]

)
A [2m2 (—mz -mf + m’l) +2my{m) + M+ M - q2 - 222] }, (34)
3D|
ap+(q?) = 1]6\7 3 dx,d®p’, %{ -2 [A(ll) (2m2 +mj — Sm’l) + m’l] - 2A(2]) (—m’l’ - m’l) - 2(A(22) + A(32)) (4m’1 - 4m2)

2[ M) _ 4@
AV -4
’ 1 2
w§D‘ (

- A(z)) (4m2 +4mym! —4moym| —4m'm

—2M"? -2M" +247) + (-A - A + 1)

x| mi? + 2m iy +mi? 4+ x (M2 = M)+ x (M2 - M) - 7| + 4(A(11)Zg —AD - (AT 2y -240AP)

2 2
(M) 4 (D WM~ My ),
—(A] A2, +AVVAS 7 —APAS ])]}

’ 44

) =2 P —PD
4p- 16713 (1 _ )N/N//
— 6| + [(2A(“+2A(” 2) 23 - dmam} —m}

D,
+ )C(M’2 - M(')z) +q°
72

M _Mr/Z M
+12(AVZz, + T AP |-8(aPz, +2
2 q2 1 4

2 2
L ADL@™MB ™MD 0 A“)))]}
1 1 q2 1 2 .

The same procedure can also be applied for the trans-
itions in the case of 'D,, *D, and 3D; states, as given
in Appendix A. In the following, we continue to discuss
these states and focus on the new issues that need
to be introduced when dealing with higher spin D-wave
states.

By analogy to the conventional vertex functions ob-
tained in Appendix B, we write the covariant vertex func-
tions for 'D,, 3D,, and 3D; in one loop Feynman dia-
grams as,

|+ (249 + 24 =240 (=4m3 -
72 _

(35)

{ =245 (2my = m! = 3m} ) = 245" (4my + m! = Tm} ) - (245 + 24D (4m', — 4my)

—2m my +m? - 2M"* — x(M”2 - Mé’z)

dmom|| +4mom| +4mym] + 2M"? +2M"% - 2q2)

M/
A;1>A§2>) ~4Z,+ 4(A§“Z2 —AP —2(AAY 7,

(36)

l'HlDz’ySKﬂKVEﬂV, (37)

1 1 1
iH: + K, + K.K,|e", 38
Lisp, [Wlez YuYv beD Yully val)z u v} (38)

2K, 2K,
— |+ K Ko | vy +
Wip, Wip,

2K,
+Ko Ky | yu+ e, (39)
W3D3

l'I'I;xD3 [KﬂKv (7& +

where Hxs.p, and Ws.p, are functions of the associated
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states in momentum space.

In order to obtain the B(;)—>D(Y)2, D’(“m

form factors, the matrix elements are denoted as

transition

By = Dy (P ) |[Vie— A Bo(P)). (40)
Bg“’(D::)z) E< (P €)|Vu—A |B(S)(P/)> @1
B, ") = Dy (P ) V= A By (P)).  (42)

It is straightforward to obtain explicit expressions for the
corresponding one loop integrals as

BB@)(D(”;:)) _ 3 N fd4 , H ( HlDz)SlDz 6*/laﬁ (43)

“ (271_)4 P N' N//N uap ’
BB(X)(D(";Z)) — 3 N fd4 , H/ ( H:’DZ)S‘DZ 6*/laﬁ (44)
“ (271_)4 P N' N//N uap ’

H (il
Bm(Dxu) 3 N 4 ( xD) D w11afv
B, dtp Dl gD, .45
” (27r)4f PYTNTNT NG © mapr© 45)

By integrating over p|~ as discussed in the case of

Biy(Divy)

B, , the following replacements should be made,

plﬂplyp]aplﬁ (gyvgaﬂ"‘gﬂagvﬁ"'gﬂﬁgm)A +<gﬂVP P,B"'g/mP Pﬂ"'g,uBPP +gvaP P,B"'ngPP +garBPP)A2

N = B = ey (M2 = M),
H}, — hp,
HYy — Wy = (M = M%) \xixah),
Wi — Wiy,

2
Where M in the subscript or superscrlpt denotes 'D,, 3D,
and D3, so that the physical quantities corresponding to
different transitions can be easily distinguished. The ex-
plicit forms of 4}, are given by Eq. (B9) in Appendix B.
e #aﬁ’ S D;; and
S W‘ﬁv in Appendix A. After performing the contour integ-
ral over pi”, the quantities A}, w}, and &’ replace H},,
W}, and €”, respectively. The next step is to maintain the
) independence, so that Bﬁj) and ij) vanish manifestly
when the zero-mode effect is included.

Apart from decomposing the tensors as in Egs. (23)-
(27) for the B(;) — Dy, transition discussed above, for
J =2 states, one also needs to consider the product of four
p}'s to obtain the reduction of ﬁ/l/,ti)’lvﬁ/l(yN2’ which has

been done in Ref. [35]

We also present the trace expansions of §p

“)

+ [gw (PGQB + PﬁQa) +8ua (quﬁ + Pﬁqv) +8u8(Pyvqa + Pagy) + 8va (P,uQ,B + Pﬁ%t) +8& (Pﬂqa + Paqﬂ)

4 4
+8ap (qu\/ + qu,u)]Ag ) + (gpv‘IonB + 8uaqvdp t+ 8usqdv9a + 8vaqudp t &vpqude +gozBQ/1‘]v)A£1 )
+ PPy PoPpAS) +(PuPyPogp+ PuPyqaPp + PugyPoPp + quPyPoPy) AL

(P Pyqaqp + PuPoqvqp + PuPpqyvqa + PyPoquqp + Py Ppquqa + P Pﬁ‘]ﬂQv)A

“)

+(9u9va0Pp + 4uvPadp + 4uPrdads + Pudvdadp) A + udvdadpAs’ (46)

LYY BN 4

and the corresponding tensor decomposition of PP P

Al Al AL

N, is given by

Aol (i P el st ) 2720 S|

+ PuP Py (A2 =245 AP - A )+ (PuPyga + PugyPo + quPyPs) (A(3)Z + A(Z)A(z)

32

2
—m
= 2A(4))
q

"2 —m
(q,,qVP +quPyqq + Pﬂqvqa) (AG)ZZ +2 Bq DA(4) A(4)) + qﬂqua{AS)Zz

q'P[ m,e_ L o 2}}
+3L(ADA® (4 .
ol e R 3q2( D)

AL AL AY

Furthermore, in the B — D( 3 transition, > PP Pio P 5

N5 can be replaced by the product of five p

(47)

A

1's. The deriva-

tion of the explicit form for p1,p), P, PP, is given in Appendix C. Accordingly, we obtain

1) We should mention that there is a typo in Ref. [35] for the A" function, whose correct expression is given by A}" = VAL -

ED
qZ 4
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Al Al

A 4 4 4 4
plyplvplaplﬁNZ —>11,1VQ’3A(1 )Zz + Igﬂvaﬁ (A(2 )22 - ZA(]UA(1 )) + I3;1vaﬁ [A?)Zz +A(11)A(1 ) _B

2 2
mp—m
Ay Ay )
q

+14,Wﬁ(A Y7, +2 Bq DA<1)A<4>]+15ﬂvaﬁ(A( 12, 24D AP - 24D AD) + Igyap(AL 2

q2

+ 18/11/(5,6 (A )Zz +3 Bq DA(I)A(4) A(I)A(4)

+19Wﬁ(A Zy+4-8 L Bq

One can refer to Ref. [35, 49] for explicit expressions
for the Agj) functions.

In fact, after expanding the products of two p's , and
the products of several pi's with N, , to first order in @,
we find that the condltlons deduced from the B and
C™ functions can be independently expressed in terms of

(OO (1) 44
(A AP - 24 AS ))

Table 1

The replacements AY) 1 corresponding to the conditions B;;,

2 2
myp—nt
+ L LADAR - ADAD - 24 AD) + g (A N7, +2 "~ DA<2>A<3) 2A<]”A§{‘>]
‘ 7

(1) 44
24V AS
q2

(48)

the lower order of A;(’,Z) functions. To illustrate this point,
we give in Table 1 all replacements deduced from
B™ =0 and C!™ =0. Strictly speaking, these equations
hold only when loop integration of these functions has
been performed. The relations presented in Table 1 have
been applied to Egs. (26)-(28) and Egs. (47)-(48).

B(!+1) 0 and C(I+1) 0.

o)
Related A 1) functions

j+1 j+1
By

)
Related A 1) functions

c§“ -2

BY APR, Az, AP c? AR, - A7, + qq'—fAj”

BY APR, — AP Z, 240 BY APR, - AV 7, +A<13>‘1q'—;D -AY

c? APR, - AVZ, cy AP, - Az, +2q P APAY
AR A2 A A A A A
BY APy - AQ 7, +A§2)A<,2>qq'—f -249 BY ADNy - ADZ, + ZZTPA?) —Af)

e APy - A7, + Z—;(A%Z el APR, - APz, + 3 A“)A(3) 7 (A<12>)2
B(]S) A(24)N2 N A(24)22 _ 2A(11)A(]4) B(ZS) A(34)N2 N A(34)Zz +A(11)A(14)qq'_2P _A(2| )A(14)
BY APR, — AP Z, 24047 —24VAP BY ARy > AP 7, + qq'—PA(3>A<2> ~APAD 244
BY AP, - AYZ, + 2‘2—;)A<22>A‘23) -240A%) BY APRy - A 7, + 4" APAY —240AY)
c? AVR, - Az, c APR, > Af{”z2 + 2%DA§‘ AW

c? APR, - APz + 4qq'—f (A4 —24504")

The replacements presented in Table 1 can be proven
for the toy model vertex, as given in Appendix F. This in-
dicates that a generalization of Jaus's model to higher
spin J states is possible. However, when a conventional
D-wave vertex function is introduced in the loop integra-
tion of Eq. (21), it is difficult to prove these identities.
We emphasize that for the conventional light-front ver-
tex functions, the replacements listed in Table 1 work

very well for obtaining the form factors and semileptonic
decay widths. Besides, the vanishing of @-dependent
terms BU™ and C™ is not only the result of Jaus's model,
but also a requirement for obtaining physical quantities,
i.e. for keeping the Lorentz invariance. Hence, we contin-
ue to use the replacements listed in Table 1 to perform
our analysis.
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3 Numerical results

In the framework of the light-front quark model [35,
52, 60], one usually adopts a single simple harmonic os-
cillator (SHO) wave function to approximate the spatial
wave function of a meson, where the parameter 8 of the
SHO wave function is extracted from the corresponding
decay constant. Due to the limited information on the de-
cay constants of D-wave charmed/charmed-strange
mesons, we adopt a different approach.

In Refs. [26, 27], the mass spectra of D/D; mesons
have been systematically studied in the framework of the
modified Godfrey-Isgur (MGI) model, from which their
numerical spatial wave functions were also obtained. As
illustrated in Appendix B, we adopt numerical spatial
wave functions as input for our calculations (see Ap-
pendix B for more details). In Tables 2 and 3, we present
the masses and eigenvectors of the wave functions for D-
wave D** and D:* mesons,D/D; precisely described by
expansion in twenty-one SHO bases, where the expan-
sion coefficients form the eigenvectors.

We emphasize that for semileptonic calculations there
are no free parameters as all parameters were fitted by
potential model calculations. We also checked the input
wave functions from the GI model in Refs. [26, 27] , and
obtained very close results for the semileptonic decay

form factors and branching ratios. We point out that once
the x? of the mass spectrum fit is well controlled, we get
consistent results by using the input wave functions from
the potential model.

Although the observed D*(2760), D(2750) [2, 3],
D7;,(2860) and D7;(2860) [4, 5] could be good candidates
for 1D states in charmed and charmed-strange meson
families [6-15], we take in this work the theoretical
masses of D-wave D/D; mesons as input for studying
these semileptonic decays.

In our calculations, the other input parameters are the
constituent quark masses, m, =220 MeV, m;=419
MeV, m.=1628 MeV and m;, =4977 MeV, which are
consistent with those given in the modified GI model [26,
27]. In order to determine the shape parameter 8 for the
initial pseudoscalar bottom and bottom-strange mesons,
we use directly the results of lattice QCD [61], where
f5 =190 MeV and fg =231 MeV. B can then be extrac-
ted from these two decay constants by [35]

V2N, 1
fr 22— | dnd’p| ———e-
167 Vo (1= x2) M)
X [m’lxz +my(1 - xz)] ¢ (x2,p)), (49)

where m| and m; denote the constituent quark masses of b
and light quark, respectively. Finally, we have 85 = 0.567
GeV and Bp. = 0.6263 GeV for bottom and bottom-strange

Table 2. Predicted masses and eigenvectors of the numerical wave functions for p+ charmed mesons from the modified GI model [26, 27].

n2S+ L, Mass (MeV) Eigenvector
1°D; 2762 [{0.74,-0.46,0.35,-0.24,0.17,-0.12,0.09, -0.06,0.05,-0.03,0.02,-0.02,0.01,-0.01,0.01,-0.01,0,0,0,0,0}]
»D, 3131 {-0.55,-0.13,0.28,-0.38,0.36,-0.33,0.28,-0.23,0.19,-0.15,
0.12,-0.10,0.08,-0.06,0.05,-0.04,0.03,-0.02,0.02,-0.01,0.01}
1'D, 2773 [{-0.93,0.27,-0.21,0.08,-0.06,0.03,-0.02,0.01,-0.01,0,-0.01,0,0,0,0,0,0,0,0,0,0}]
2'D, 3128 [{-0.35,-0.70,0.40,-0.37,0.21,-0.17,0.09,-0.07,0.04,-0.04,0.02,-0.02,0.01,-0.01,0,0,0,0,0,0,0}]
13D, 2779 [{0.94,-0.26,0.20,-0.07,0.06,-0.02,0.02,-0.01,0.01,0,0,0,0,0,0,0,0,0,0,0,0}]
23D, 3135 [{-0.33,-0.72,0.40,-0.37,0.20,-0.16,0.09,-0.07,0.04,-0.03,0.02,-0.02,0.01,-0.01,0,0,0,0,0,0,0}]
1°D; 2779 [{0.90,-0.33,0.22,-0.11,0.07,-0.04,0.03,-0.02,0.01,-0.01,0.01,0,0,0,0,0,0,0,0,0,0}]
23D; 3130 [{0.41,0.62,-0.42,0.38,-0.24,0.18,-0.12,0.09, -0.06,0.04,-0.03,0.02,-0.02,0.01,-0.01,0.01,0,0,0,0,0}]
Table 3. Predicted masses and eigenvectors of the numerical wave functions for D;* charmed-strange mesons from the modified GI model [26, 27].
S+, Mass(MeV) Eigenvector
13D, 2865 [{0.78,-0.44,0.33,-0.21,0.15,-0.09,0.07,-0.04,0.03,-0.02,0.02,-0.01,0.01,-0.01,0,0,0,0,0,0,0}]
. ).22,-0.34,0.41,-0. .31,-0.25,0.20,-0.15,0.12.
23D, 3244 [?5.3)’9(,0‘0’7,?5‘0’5(,00’4, —)52’3(,)(?0’2, —)OAZ’Z(?OA(())’I s (—)0;’1?00’1,0}
1'D, 2877 [{-0.96,0.20,-0.17,0.05,-0.05,0.01,-0.02,0,0,0,0,0,0,0,0,0,0,0,0,0,0}]
2'D, 3247 [{0.26,0.81,-0.36,0.33,-0.15,0.12,-0.05,0.05,-0.02,0.02,-0.01,0.01,0,0,0,0,0,0,0,0,0}]
1’D, 2882 [{-0.96,0.19,-0.17,0.04,-0.04,0.01,-0.01,0,0,0,0,0,0,0,0,0,0,0,0,0,0}]
23D, 3252 [{0.25,0.82,-0.36,0.33,-0.14,0.12,-0.05,0.04,-0.02,0.02,-0.01,0.01,0,0,0,0,0,0,0,0,0}]
1°D; 2883 [{-0.94,0.26,-0.18,0.07,-0.05,0.02,-0.02,0.01,-0.01,0,0,0,0,0,0,0,0,0,0,0,0}]
23D; 3251 [{-0.32,-0.75,0.40,-0.33,0.18,-0.13,0.07,-0.05,0.03,-0.02,0.01,-0.01,0,0,0,0,0,0,0,0,0}]
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mesons, respectively.

In Appendix A, we list the detailed expressions of the
form factors relevant for the production of 3Dy, ' D, 3D,,
and 3Djs states. Following the calculations in Refs. [35,
49], we choose the ¢* =0 frame. Due to the equality
¢* =q*q~ —¢>, the results obtained for the form factors
are only applicable in the ¢*> <0 region. This means that
we need to extrapolate our results for the form factors to
the time-like region.

We introduce the so-called z-series parametrization
used in Refs. [62-64] to obtain our form factors in the
time-like region. This parametrization is suggested by the
general and analytical properties of form factors [63]. The
explicit expression can be written as [64]

2 FO) 2
F) = e {1451 (g - 2(0)

1
3@’ - z<0>3]) +b3(2(47)* ~ 2(0)

+2 [y - z(0>3])}, (50)

where the following conformal transformation is intro-
duced,

_ N(mg+mp)? —g? = \J(mp+mp)* — (mg—mp)

V(mg+mp)? — g%+ \[(mp +mp)? — (mp —mp)?
(51
In order to get accurate matching for the transition form
factors of B, to D-wave charmed/charmed-strange
mesons, two parameters b; and b, are introduced. In Ta-
ble 4, the fitting parameters and the form factors for

<DZ‘;‘) |V -A| B(S)> transitions are given.

We present the form factors obtained for the

g

itions in Table 4. In addition, we show the ¢*> dependence
of the form factors in Figs. (3)-(6). From Figs. (3)-(6), we
see that z3/»— and o_ have a positive sign, and z3,», and o,
a negative sign, which is a requirement from HQS. We
discuss the relation between our form factors and the con-
straints from HQS in Sec. 4.

With the above preparatory results, we perform nu-
merical calculations of the branching ratios for the By
semileptonic decays to D-wave D/D; mesons, which are
listed in Table 5. The magnitudes of the branching ratios
presented in Table 5 are expected to be typical values for
B, decay to D-wave Dy via semileptonic processes.

We note that the production of D-wave charmed/
charmed-strange via B, semileptonic decay processes
have also been studied by the QCD sum rule [65, 66] and
the instantaneous Bethe-Salpeter method [51]. The res-
ults of these theoretical calculations are given in Table 6.
Due to different sets of parameters and different ap-
proaches, there are discrepancies between different mod-
el calculations, so that the search for semileptonic decays
relevant for the production of D-wave D/D; mesons will
be an intriguing issue for future experiments.

4 Relations in the heavy quark limit

For the processes discussed in this work, the trans-
ition amplitudes can be expressed using the deduced
light-front form factors. Indeed, in the heavy quark limit,
the light-front form factors can be related by Isgur-Wise
(IW) functions &(w) and {(w). The heavy-quark limit
provides rigorous conditions for our calculations.

The B — Dj, and By — D|,), transitions in the
heavy quark limit are related to the IW function &(w)

By = 1D;, (2D;),1D),(2D),), 1D}, ,(2D;, ;) trans-  defined in Ref. [67] by the following equation:
0.10 ——————————— 0025 04— 0.12
0.05 10 g0 0.015}+ -10 nf/?DVZ 03 mg‘/?Dz 0.09 + wBaDg
2 K e
0 P 4
D*\ 0.005 | 0.06 |
~0.05} -0i ]
f 02f  —10nZy2 .
o1l | —0.005} / 003 10y"™P5
o5l 015 b
x 107 x 1073
2aF ] T
0.04 __ji—-———— gl | oon o]
0.03 _\ 0-008 1
' 1.5 255 1
— 0.005 }
0.02 —af? z5P2
12} 4 0.002} 11l

01 2 3 45 6
q* (GeV?) q* (GeV?)

01 2 3 4 5 6

01 23 45 6 01 2 3 45 6
q* (GeV?) q* (GeV?)

Fig. 3. (color online) The q2 dependence of form factors for g pi, D,, D, and p; transitions.
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o / 0 / 0241 { 702} 1
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~07f { —0.0af s | o7 / 03} -

ol Jogsle— ) ool ) 04

B—2D* *
—aZ2 o <l ) 0B—2D3
0.11 / 0.012 -21;/2202/ 6 25/2 2D, 23 /

0081 7000} o, 1 2 \ L&y B ]
" 32+ i, %

o T T T o3sf ] T
fg?D§l 0.08 | ! 1 _ mz;;DQ BeD53

0.04 F 031fF —0.1}
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65 - 300

N
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Fig. 4. (color online) The q dependence of form factors for 8, - D, Dy, and p,, D!, transitions.

512 52°

0.05 - HZTZDI 1 52— 1.3+
0.006 - 4
0.02 . . . L . . . . -12 . . . L 0.8 . . . L
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
g’ (GeV?) ¢’ (GeV?) 7’ (GeV?) 7’ (GeV?)

Fig. 5. (color online) The q2 dependence of form factors for p - 205, 2D,, 2D}, and 2D; transitions.

6V2 -6 2 The B — Dz and By — D, transition form
é(w) == —= Vmgmp gD(q )= —————/p(q") . (93
V3 w- (w? = 1) mpmp factors are related to the IW function {(w) by the follow-
. ing relations:
Y P apa = YD 2
- 3\/”1_D ap+\q ap-q - w+2 ap+\q 5 \/_ mBmD ) 5 5 mg 1 )
{(w )————1 :(q )=—§ 3V 1 >ms(q”)
2)) 2 m3m n (qz) 1 mBm (qz) \/§ w+ mp 1 —w
—ap-(q°)) = pmpni(q”) = ——— [—m: 5
2 w—1\Nmp ? m 5 5
° =2 \ﬁ(mf)ﬂs_(cf)) =5 \ﬁ \mymp
3 2 2 mp V3 : 3
= \mpmp(z:1(q7) —z:-(q)), 1
(52) —(@34(a*) = 2:-(47) = 29(q") ymymp
and obey the additional HQS relation
2 2 mB W(Clz)
23.:(g") +2:.(¢") =0, (53) e (0+(q )= 0-(g")),
where w = (m% +m% — ¢*)/(2mpmp). (54)
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Table 4. Form factors for the semileptonic decays of B, to 1D- and 2D-wave Dy, mesons.

F(4?=0) F(qax) by ba F(q*=0) F(qnay) b by
P 0.0006 —0.0024 156.1 215.9 P —0.0061 -0.0021 31.9 -41.3
et 0.041 -0.104 92.36 925.3 £ -0.259 0.011 40.0 148.0
ol —0.023 —0.024 7.4 —-21.4 aP 0.054 0.064 2.9 -17.8
ay i 0.035 0.039 6.2 -22.0 ap”Pn -0.093 -0.116 12 -15.1
nyy -0.00174 ~0.00169 10.8 —42.8 ney 02 0.0043 0.0049 4.8 -35.2
iy 0.013 —0.008 54.0 149.0 iy -0.027 0.021 69.8 -22.0
G —0.0015 ~0.0012 17.6 ~70.6 anle 0.0044 0.0049 6.2 ~41.8
P 0.0018 0.0016 14.2 -58.1 PG ~0.0052 ~0.0059 52 ~39.2
ng,; P2 -0.015 -0.020 2.2 -8.5 ngi P 0.015 0.020 -2.9 -8.6
mi;? 0.304 0.286 114 -27.7 mey e -0.327 -0.312 113 -36.2
55, 0.0039 0.0078 —243 68.8 e ~0.0043 —0.0082 -23.8 74.5
e 0.0089 0.0101 6.5 —62.7 P —0.010 -0.013 -0.56 -17.54
o 0.002 0.003 —6.85 7.00 Bl —0.0021 -0.0031 -7.6 9.5
WS 0.077 0.095 2.1 -21.7 Bl —0.101 -0.127 1.1 -22.5
03 —0.0015 —0.0024 -8.1 20.0 o 0.0016 0.0023 —6.34 2.73
o505 0.0018 0.0028 -6.0 1.7 Bl —0.0020 -0.0029 —6.9 45
P —0.0095 —0.0087 15.5 -97.4 g™ 0.0079 0.0076 14.2 914
£ -0.631 -0.563 16.0 —49.0 £ 0.491 0.438 16.5 —45.5
ar 0.066 0.084 3.4 -7.7 apn —0.064 —0.082 -5.2 2.5
ap P —0.102 —0.133 —4.8 -1.1 ap 0 0.101 0.132 —6.1 8.6
ny 0.0076 0.0103 -8.3 17.9 nyy 2 ~0.0074 -0.0099 -9.5 31.2
iy 2 ~0.058 -0.036 30.6 -128.4 iy 20 0.0296 0.0030 63.1 ~198.2
Pt 0.0087 0.0118 -8.3 17.6 e ~0.0087 -0.0117 -9.6 30.9
P -0.010 -0.013 -1 12.9 40 0.011 0.014 -8.7 226
ng P 0.0116 0.0154 -7.0 14.5 nlsy 20 -0.0117 -0.0152 -7.1 18.9
mg 22 -0.196 -0.191 11.7 —43.4 sy 20w 0.203 0.197 12.2 -35.6
P —0.0061 —0.0091 -15.5 53.0 P 0.0064 0.0092 -15.9 55.2
PP —0.0076 -0.0099 -6.0 15.6 235y 0% 0.0077 0.0098 -5.1 10.7
yB20 0.0021 0.0030 -11.2 35.0 B2 —0.0021 -0.0029 -11.7 412
B2 0.214 0.273 -3.73 -5.3 Wwhs =20l —0.189 -0.241 -5.1 2.1
o205 —0.0012 —0.0016 9.5 25.2 o 0.0011 0.0015 9.5 28.2
o205 0.0019 0.0027 -10.6 30.0 PP —0.0019 —0.0026 -10.9 34.6
and and
0+(q2) + 0‘(q2) =0. (59 C=Ln) = L) = Lasptzsn) = Llasme—zsn)
These relations are model independent, which is the con- =L = L) = L0.-0)- (57)
i o e, Forexampl, n g (9
front quark model satisfy these relations. 6V2 5
To present our numerical results, we rewrite Eq. (52) S = _f Mpip 1gD(q ). (58)
and Eq. (54) as
& =8g,) = &(f) = Elan+an) = Elap.—ap) £ = -V6 ol 59
) = U«/HWDQ)' (59)

:é:(nz/z) = 6(’"‘4/2) = é:(zzm—lz/zf)’ (56)
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Fig. 6. (color online) The q2 dependence of form factors for B, - 207, 2Dy, 2D’

s12 522

and 2D, transitions.

Table 5. Branching ratios for the B(;) semileptonic decay to 1D and 2D states of charmed/charmed-strange mesons.

Decay mode t=e t=p t=1 Decay mode t=e t=p t=1
B — Dyt 6.62x107° 6.53x 1073 1.35%x107° By — Dy, tve 1.97x107* 1.94x 1074 2.37x107°
B— D)l 1.16x107° 1.14x107° 1.21x1078 By — Dy tve 1.07x 1073 1.05x 1073 1.04x 1077
B— Dyt 539%1074 531x107* 7.40x 1076 B; — Dy tve 5.05x1074 4.97x107* 6.62x107°
B — D3t 7.20% 1073 7.08x 1073 6.50x 1077 By — Diytve 1.13x 1074 L11x107* 8.78x 1077
B — 2D\ tv, 7.86x 1075 7.73%107° 8.07x 1077 By — 2D7, v 6.37x107° 6.25x107° 3.76x 1077
B —2D;tve 8.77x 1076 8.58x107° 7.55% 1070 By — 2D, tve 9.88x107° 9.65x107° 436x107°
B — 2Dyl 8.57x 1073 8.40x 1073 1.04x 1077 By — 2Dplve 7.02x107° 6.88x 1073 6.16x1078
B —2D3tve 1.63x1074 1.59% 1074 8.64x 1078 By — 2Dy, 8.96x 1073 8.74x 1073 3.24x1078

Table 6. Branching ratios for the semileptonic decay of 1D charmed (charmed-strange) meson produced via B meson obtained from various theoretical

predictions.

Decay mode Ref.[51] Ref. [66] Decay mode Ref.[51] Ref.[67]
B— Djev, - 6.0x107° Bs = Djjeve - 2.85x 1077
B — Djuv, - 6.0x107® By — DYy uvy - 2.85%1077
B— DTTT/, — - B; — Djlﬂ'/, -

B — Djeve 4.1x107* 6.0x1076 By — D,eve 52x107* 3.4x1077
B — Dyuv, 4.1x107 6.0x1076 By — Dipuvy 51x10™ 3.4x1077
B — Djtv, 2.7%107° - By — D, Tvr 3.4x1076
B — Dsev, 1.1x1073 1.5x107* B; - Dyeve 1.7x1073 1.02x107*
B — Douvy 1.1x1073 1.5x 1074 Bs — Doy 1.7x1073 1.02x107*
B— Drtvr 8.0x107° - B; = Dy 1v: 1.4x107°
B — Diev, 1.0x1073 2.1x107* By — Dizeve 15x1073 3.46x1074
B — Diuvy, 1.0x1073 2.1x107* By — Diuvy, 1.4x1073 3.46x1074
B — Ditv, 5.4x107° - By —> Di;Tvr 9.5%107°
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Other &) terms correspond to the expressions given in
Eq. (52). The same notation is also used in Eq. (54) and
Eq. (57). Using the above notation, we present the numer-

ical results for IW functions for B — 1D

() (/)
1D(),2D\),).1D

Table 7.

(3)1(2D(3)1)

(S)3(2D(s)3) light-front form factors in

Table 7. The IW functions for the light-front quark model for q2=0 and ¢? = g2, -
=0 @* = Gax =0 4% = Gnax q*=0 4* = G =0 4* = Gax
B—D} B—D)) B—2D] B—2D))
e 0.051 Gy 0.85 127 g 127 T 0.75 1.05
B—»D B—)ZD B~>7D
I 0.053 los 2.81 & 1.18 e 2.68
BA»D B"Dlz BA»ZD B—2D),
Elametan) 0.076 0.088 Lespoes o) 0.66 0.98 Elanosin) 0.21 0.27 ((wsmhmi) 0.63 0.86
B—D? B—»ZD
g 0168 0.198 ot 0.53 0.72
B—»D’ B— D% B—2D), B—-2D%
Enr 0.070 0.068 o 0.43 0.64 oy 0.33 0.44 o 0.48 0.67
BHD’ B—D% B~>7D’ B—2D%
Eom 0.086 o 025 035 Eo? 0.53 o 0.69 0.93
& 0.067 0.056 B-D; 0.68 1.00 ) 0.40 0.54 5203 0.59 0.83
23/2+-23/2~ 2(04-0-) (23/24=23/2-) 2(04-0-)
232+ 0.0015 0.0012 04 -0.0015 —0.0024 32+ —0.0086 -0.0117 04 —0.0012 —0.0016
23/2- —0.0018 —0.0016 o- 0.0019 0.0028 23/2- 0.0099 0.0134 o- 0.0019 0.0027
Bs—D', B;—D, Bs—2D%, B;—2D',
g 0.58 . 0.92 1.37 o 1.23 o 0.79 1.08
B,\ﬂDr B ~>D By ~>2D; By ~>2D
el 036 L 321 o2 1.02 T 3.01
E\~>D B;HD E,~>2D B;%ZD
z‘:(umwn ) 0.23 0.31 §(~5/2++ S 0.73 1.07 fwnwm ) 0.21 0.28 Lieaantinns) 0.67 0.90
B-D, By—2D%
Eap.-ap) 0.44 058 g 0.54 0.72
By ﬁD By —>l) By ~>ZD By —>2[)
g(nw) 0.18 0.21 I 0.48 0.71 f(nm) 0.33 0.44 {0 0.51 0.70
By—D, By— D", By—2D, By—2D%,
G 0.18 (ol 034 0.47 Eor 2 0.29 B30 0.61 0.83
By —>D By —)D By —>2D By —»ZD
g 020 0.23 o 0.74 109 g7t 043 0.57 s 0.61 0.82
232+ 0.0044 0.0049 04 0.0016 0.0023 232+ —0.0086 -0.0115 0+ 0.0011 0.0015
23/2- —0.0052 —0.0059 o- —0.0020 —0.0029 3/2- 0.0105 0.0140 o- —0.0019 —0.0026
In Table 7, we present the calculated IW function val- exist in B— 2D, 2D(') 2D; and By — 1D (2D3),

ues for ¢> =0 and ¢° = ¢2,,,. We give the results for B —
1D7, 1D(2'), 1D} processes, the results for B — 2D*,2D(') 2D;
and B, — 1D*,2D*)1DY)(2D")),1D*,(2D*,) canbe ob-
tained in a similar way. From Table 7, we find that &),
é:(fo)o g(am-#aD,): fnma fm;,z and f(z3/2+_Z]/27) are similar and ap-
proximately meet the requirement of Eq. (52). In addi-
tion, z3/2+ has an opposite sign to that of z3;,_, which is
approximately satisfied in Table 7. However, the value of
&w,.-a,) 1S about two times larger than the other ¢ form
factors, which implies a violation of Eq. (52). The trans-
ition form factors in B — D, and B — Dj processes can be
related by IW function ¢. We find that the numerical res-
ults of &,.,, {ty), {owy» and (o, -y are close, so that the rela-
tion in Eq. (55) for the form factors o0,(¢*) and o_(g%)
holds. We also find a discrepancy in the {,,) function,
which is about 2-3 times larger than the other ¢ functions.

Indeed, from Table 7 we note that discrepancies
between the results obtained in the light-front quark mod-
el and the expectations from the heavy quark limit also

D(’)(ZD(’)) 1D*3(2D ;) transition processes. We point out

that the relations in Egs. (52)-(55) were derived in the
heavy quark limit, while in our calculations we intro-
duced definite masses for ¢ and b quarks, which could in-
dicate that the 1/mg correction could play an essential
role for some form factors.

5 Summary

In the past several years, considerable progress has
been achieved in observing p-wave D/D; mesons in vari-
ous experiments [2-5]. These observations enrich the
D/D; meson families. Although all candidates for pD-
wave D/D; are produced in nonleptonic weak decays of
B/B; mesons, we studied in this work the possibility of
producing 1p and 2D D/D; meson families via
semileptonic decays, although 2p states of D/D; meson
families have not yet been experimentally observed.

In order to get numerical results for semileptonic de-
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cays, we adopted the light-front quark model, which has
been extensively applied in the studies of decay pro-
cesses including semileptonic decays [35-48]. Our study
in the framework of LFQM shows that the analysis of the
production of the relevant D-wave D/D; mesons via B/B;
mesons is much more complicated than the analysis of S-
wave and p-wave D/D, mesons [35-37]. We have given
detailed derivation of many formulas necessary for ob-
taining the final semileptonic decay widths. The numeric-
al results obtained show that the semileptonic decays of
B/B; mesons are suitable for searching for p-wave
charmed and charmed-strange mesons. Furthermore, we
have shown that our light-front form factors approxim-
ately satisfy HQS requirements.

Theoretical studies of the By semileptonic decays to
D-wave charmed mesons were performed in the past us-
ing the QCD sum rule [65, 66] and the instantaneous
Bethe-Salpeter method [51]. We have noted that differ-

Appendix A: Trace expansion and form factors

In this Appendix, we present the detailed expansions of s W L

'Dy 3D, 3D . .
SW/}, Swﬁ and SWﬁv Form factors associated with these expres-
sions are also given.

When integrating over p|~, we need to do the following integra-

tions
/h/l
B(r)(D(m) 2 le a3Dy snry
B dp s Al
g 167r3 TRyl (AD
A3D] _ 1 7
Sy —Tr{ YV—E(IH —PZ)V
1

== i€y [P} PP (i) —m) + pif (m] +m| —2my) + " PP | + ﬁ

x leﬂflﬁﬁpl qBPp +28uy [mZ ((1 _Nl N"
—m) (M’2

ent theoretical groups have given different results for the
B(s) semileptonic decays to D-wave charmed mesons.
Thus, experimental search for semileptonic decays pre-
dicted by our results could provide a crucial test for the
theoretical frameworks for studying B semileptonic de-
cays.

As indicated by our numerical results, semileptonic
decays of pseudoscalar B/B; mesons could be the ideal
platform for investigating D-wave charmed and charmed-
strange mesons. With the LHCb continuing to take data at
13 TeV and the forthcoming run of Belle-II, we expect
further experimental progress.

Kan Chen would like to thank Qi Huang and Hao Xu
for helpful discussion. We also would like to thank Yu-
Ming Wang for the suggestion of form factors adopted in
this work.

hl h//
B(r)(D(qz) f f 2 071D, 'p, xuaﬁ
B dp — 23 A2
1671'3 (1 _ )N/ N// pap € ( )

I h//
B(S)(D(;)Z) f f 2 073p, &> Dz xl/(lﬁ
B d°p| —§ A3
Tor A= N| Ny b€ (43

hoh,
B(\)(D(;)W) 2 073D; a’Ds3 //*(y/fv
By 16n* P ON/NT TN N7 uabv (Aad)
where the trace expansions of s W' S#f ;, SWI: g and § }Wﬁv are

(B +m )y (L =y5) (B, +m} ) ys (<, +m2>}

(40}, -3a,-P,)
Dy

mrllz) (M//Z _ N// N, — //2 _ m%)

- Ny —mj —mz) 2m\m m2]+8plﬂplv(m2 ml) Z(P;lqv+quv+2t]u¢]v)m'1

+2p§#PV(m] —m )+2plluq,,(3m1 —mj —2m2)+2Pﬂplv(m] +m )+2‘1;1P3v(3m3 +my —2m2)

1
+ 7 (4pllv_3q‘/_
2a)3D]

Pv){Zp’l# [M'2 M —? 2Ny + Z(m’1 —mz)(m'l’ +m2)]

+qy [q2 —2M”? +N{—N{ +2N; - (m; +m'1')2 +2(m; —mz)z] +P, [qz -N{-NY —(m; +m'|’)2]}, (A5)

(p2-p7), (P2~ P1 s

Vs )

l
S/m/j Tr{

=- %if,uvmi (

(B +m) v (1 =y5) (1 +mi)ys (= +m2)}

Po—4p), + 3qn)(Pﬁ —4pig+ 3q/3)P”p'1‘rq‘S - {% (Pa —4pi, + 3qn)

X(Pﬁ —4pig+ Sqﬁ) [_‘Iu (2m§ dmom') — ' + 2m ] +m/E = 2M"? + 2Ny — NJ + N + qz)

#200, [2ma ) 2 =) =M 20 4P Py

Vi) N AN —qz]]}, (A6)
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1 1 (rl)y 0 (pe-pp), (P2 pY)
S,m,s Tr{y5 e ——YaYp+ o ——Ya #ﬁ + @ fl)“ %
2

(pﬁl +m) )yﬂ(l —75)(15’1 +m’1)y5 (=42 +m2)}

2 L, €apos (Pﬂ 4p" Bt 3qp) {(m'1 + m'l')P‘Tp'lﬁ —q° [p'l‘T(Zmz +my —m))+m] P‘T]}
3D,

Swi,, €ussP' P ( a—4p’1(,+3qa)(1’ﬁ—4p'w+3qﬁ) o i,,/ (Pﬁ 4p1,3+3qﬁ)
3D, 20

X{gw [m%(m'll—m'l)+m2((m'l'—mi)2+Ni'+N{ —-q ) m )+ (miz—M'2+Zz +N{)
+m (M"Z—Zz—N{')]+p'm [61;1 (2m2 +m'l'—3m’1)+4(m'1 —mz)p'lﬂ+(m'l'—m'1 Pﬂ]
+2m2p'1”q,y—m’l'(Pap1'u+plyqa)+m [ Papl”+P#q‘,+q#(P +2qq)— 3191”%]}

1
_ @ (Pa —4pl, + SqQ) (Pﬁ - 41’3/3 + 3qﬁ) {7ql, (2m§ —4mom| - ”2 +2mym} + mﬁz

—2M"™ +22) = N + Nj +2) +2p},, [20ma = m Yomy = m}) = M2 = M 422, + ¢

+Py [( —m,) +N{’+N{—q2]},

(A7)
0 o, (PZ—P'{)(, (pz—pl)ﬁ +(P2—P'{)V +(pz—p’1’)a (Pz—P'l')V( +(pz—P1)ﬁ)
papBy 2 ) Yy ;/ 2 2 VB wg/
Ds D3
(p2-pY) (p2-p7) (p2-1Y)
—— Pl yat 2 (B + 7 )3 L =y5) (B + 1) ys (= +m2)
3D3
3i 5 ’ iz ’ ’ ’ ’ i
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The corresponding form factors for the ! D, state are
4h/ h//
Ne PTIDy () _ 40) _ 40
n( )——fdxzdz’ﬁA -AY AP, A9
0= Yo p*u—x)N;N;[ VoA Ay (49
P7py 2 _ 403 _ 43 1 , ) ., 2 )
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’ ’’
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167 (=08 A
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o) AP _ o) (4® @ 4@ _ 4@ 6) @04 F 1,0 _ @
—2(A3 LAY =4 )+(A3 2, -2A0AY) - A§ )+2(A4 Zy+ MDA 44T - Ay
P
+ (Ag3)zz 2L 404D —Af{”)}}, (all)
q
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h,h
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The corresponding form factors for the 3D, state are
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The corresponding form factors for the 3D state are

3
Ne 2 P 3Dy ’ 1) 1) 2 ) (3) 2 3) (3) 3) (4D 1) (2)
y(q)—mjfdxzd me{Zml(SAl +3457 =347 - 6A7 +AY =340 +347) 4340 + A — 1)+ 2m] (AV - AT 245
12
(3) 2 (3) (3) 3) 1) (2) 2 (3) (3) (3) (2) (3) (3) “) (ORI
+AD 4240 44D =AY A+ 2y 241 4447 444D 249 - 44 - 24 )+;—,(A1 —24 2249 £ AP 424 4 A )} (A17)
‘D}

3,y
w(qz)—16 3 fdxzd SRy )13/013\/ {2[(2A§”+2A<2‘)—A(22>—2A<32>—Af’—1)[m§(—m’l’—m’1)+m2[(m’l’+m’1)2+x(M"2—M6'2)+x(M'2—M62)—qz]

i i 0% (002 M) [0 (0072 0132) || s [2 54~ 5AD 340 24 4 4]

M/2 _ M//Z
—_— A(f)) +AYZ,+2 APAY + 7, )

e
+ m'l( - 1247 +2440) +24A0) - 1245 — 244 - 1240 - z(A;”zz + —_—
7
2 3 3 1 M?-M" o 2 M2 -M" ), 1 2 2 3
+m§’(4A(1)74A(1>—4A(2)—2(A(2)Zg+ - Aﬁ))mg)zﬁz - A(Z)A(I)+Zz)7(m§’+m§)(2(A(l)ngA(l))f(Ag)bfZA(]))
q q

(AD 24D 24D + AP + 249 + AD) [2ms + ) (m - )~ M2 = M7 4. 7| 424075 +2(2:A

o ®»4P_ L0 12
—2(A3 Z+AY - - AS ))]— -
q w3D3

2 0 2\ 4 (1) 4 @) @,  MP-M"7 o @ (D) 4@ @ W& P @ 6 @
+5 (M2 - M) AP A ) -4(AT 2y + ——— (D) —2((A2 2, -240A%) +2(A 2, + AV A A -2(a2, - A )) ,

3q%
(A18)
3h/ h//
0.(¢ )_ dxyd?p’, b 2m|(7A(l)+3A(l) 154 — 1847 + 1345 347 +274 +1540 - 44 + A - 4(3(A(4)+A(4))+A(4))—1)
167 3 (1- )NIN/I 6 7 8

2y [-AD 4D 524D ~ 4D 24D A+ AD 1+ 4D+ 2 (24D 4842 + 842~ 104 - 204 ~ 104D + 44D + 1242 + 124

4AD) + [[mgz+m;f2+x(Mf2_M(;2)+x(M~2_M~2) &+ 20 (- 340 34D 4342 1 64D

wg’D3
—AD 4340 =340 345 — AD) + 1)+ (M2 + M = 2m3 — g + 2 may — 2mym] + 2m]m )
x(-241" +647 + 647 - 64T - 1247 - 647 + 245" + 64L + 64T +247") - 4[(A(54)Zz -2404%

P P
-2404")+3 (A(:)Zz + L ADAD _ADL DD 2A(1')A(34)) +3 (A(74)Zz 2L APAP AP 2A§”A§;‘>)
7 q
5 A(” ne .p
[A(“)z +3” PADAD _aDA® 4 + =2 - (A7, -AP)+3(a0 2, -24))) +3(A§2>zz AP
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o | dndp) m{zmz( =24~ 440 +44P +164 - 245 + 1247 - 1647 - 264 - 1245 +44L + 12450 + 124" + 44 ))
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+2m [9A<|“ +13457 —9A% - 3047 + 347 - 2147 + 2140 + 3345 + 1547 -4 (ALY +3 (A + 4) + A - 3] +2m] (A - A - 245
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Appendix B: Conventional vertex functions for D-wave mesons

In the conventional light-front approach, a meson with mo-
mentum p and spin J can be defined as

|MP2S*1 Ly, 0)) = f [@p1dpa}202n) 6> (P~ p1 - )

Z‘i’gz(131sﬁz,ll,ﬂz)|41(P1,/11)512(P2,/12)>, (B1)
I
where ¢ and g, denote the quark and antiquark inside a meson, re-
spectively, and p; and p, are the on-shell light-front momenta of
the quark and antiquark, respectively. The symbol “~” means an
operation on a momentum to extract only plus and transverse com-
ponents, i.e.,

p=(p"ps).pL=(p".p%).p" = : (B2)
and

3 dP+d2PJ.
(') 207

{br .05} = v (0, (p)) =2(27°) 6 (B = B S

la(p1,4)3(p2, 42)) = b}, (p1)d} (p2)10),

In the light-front coordinate, the definition of the light-front rel-
ative momentum (x, p, ) reads

Y=x P, pr=xoP", xi+xm=1,
Pl =X Py =% 1+ (B3)

P2 =x2P,—p,.

The meson wave function ‘Pg in momentum space is ex-

piL=x1PL+p,,

pressed as
1
VN

Wr5 (51,2 A1, o) = ——= (LS LS LS TR (62, p ) e, (x2,p1),
(B4)

where ¢y, (x2,p.) describes the momentum distribution of the con-

stituent quarks inside a meson with the orbital angular momentum

L, and (LS;L;S.|LS;JJ;) is the corresponding Clebsch-Gordan (CG)

coefficient. In Eq. (B4), Rilsjz transforms a light-front helicity

(11,42) eigenstate into a state with spin (S,S ;)

1
\/QM() (M() +my +mp)

. r0=75 for S=0
with {rlz—¢(sz) for S=1"

Rilsazz (x2,p1) = 12(.171,/11)(?+M0)1"5V(l72,/12)

(B3)

where p is the momentum of the meson in the rest frame,

2 2 2 2
_ mi+pi mi+p _
P=pi+po, M(Z): IXI L +% and M, = ,;MS—(ml—m2)2. Us-

ing the spinor representation of # and v from Appendix of Ref.

[68], the explicit expression for Rilsjz is calculated in Ref. [69].
With the potential model for a definite meson state with
quantum numbers n,25*!L;, its mass and the corresponding numer-
ical spatial wave function can be calculated. The spatial wave func-
tion can be obtained by expansion of a set of SHO wave functions
(the number of basis SHO wave functions is N), where the expan-

sion coefficients form the corresponding eigenvector.

The meson wave function ‘P;;z(m,pz,/l],/lz) in momentum

space reads

: 1
W (p1.pa A1 o) = —= (2SS RS TR (xpu) @y (x.py)

=
LA R 30erer 1 1

R i

Xt (p1, A1) (P+Mo)Tas+ip v (p2. ).

_ 1 PN

- W V2Mo (Mo +my +my)

@(p1, A1) (P+Mo)T s v (P2, 42).

- 30e1e2
Here, oy = Z $aanz(x, pL)w oMy’ where
(== 2n! 1\ -2 1 (p?
RpD =\ s 1575 (B)e 7 L (ﬁ), B7)

a, are the expansion coefficients of the corresponding eigenvectors,
and Tps+1p , denotes the corresponding vertex structure of p-wave

(B6)

mesons.

One can further simplify these wave functions by using the Dir-
ac equations p u(pi)=mu(p;) and p,v(p2) = -mav(p1). After this
simplification, the wave function of p-wave mesons can be written
as "

T _
o5~ (P1o P2 A1, 0) = A (p1, A0 Hos 1y Ty V(P2 2) - (BS)

with

/ L1 G 2 2112 2

hy =—4]— — Mgy —(my —mp)~ || My — (m1 +m2)" | on,
D) Ne N2My 12\5M§ﬁ2[ o= m =[5 = om e

WL

Ip, = N. MOﬁZQDM

v /L\ﬁ; P AR
0, = VN, V3 Moﬂz‘PN, 3p; = N, 3 Moﬁz‘PN,

1
;v _ _ _ u v _ ny
F3Dl = |:7/,l (»4)3[)[ (I’l pZ)y]f P r]DZ —VSKquf 5

(B9)

e,

1 1
wT'ylfyv + T')’HKV + o K,K,

4 —
F3D2 =7s
3Dy 3Dy 3D,

2K, 2K, 2K
Fg[)3 = [Kqu [70/ + %) + K/JK(Y (Yv + wiv] + K(YKV(Vy + wiﬂ):l e,

W3 psy D3 °D3
(B10)
and
mi+m)?-M§ 1202
Wi =, Wi, = ,
P 2Mo +my +my *Dy [Mg—(ml +m2)2] [Mg—(ml —mz)z]
2M M
“’?D :_702’ Wp, == —
2 M(z)—(ml —mp) 2 my —mj

L«)sD3 :M0+m1 +my.

(B11)

1) We need to mention that a minus sign is needed in front of g, which is a typo in Ref. [52].
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Appendix C: Tensor decomposition

The second-order tensor decomposition of by, and the third-
order of ﬁ’luﬁ;vﬁ/m are given in Ref. [49]. The fourth-lorder tensor
decomposition of PP PPl is obtained in Ref. [35] ) Fora 3D,
state, we need the fifth-order tensor decomposition of PP PPy ﬁﬁz.

Here. we iust include the leading-order contribution from &. and

get the following expression,

12 6
Al Al AP AL A . 5 5
PP\ PraPipPis = Z LinapsAY + Z MjuwrﬁﬁB_(,' )+

i=1

with

J=1

Liyvaps =(88P)uyaps = 8uv (8P)aps + 8ua (8P)yps + 8up (8P)vas + 86 (§P)yap + (gmg/sa +8vp8as + gvé'gn[f) Py,

Louvaps =(88Dyuvaps = 8uv (8D aps + 8ua (8D s + 8up (8D vas + 86 (8D yap + (gmgﬁa +8vp8as + gvagaﬁ) Qus

Liyyops = (gPPP)um/jd = guvPaPsPs + permutations,
Luyvaps =(8PPQ)yaps = 8uv (PPQ)ops + permutations,
Lsyyaps = (quq)umﬁ(; =g (qu)(yﬁé + permutations,

Leuvops =(8999 uvaps = uvdadpds + permutations
L7yvttﬁ6 =(PPPPP)pV(yﬁ6 = P/JPVP(tPﬁpdy

LSpm,Bé = (PPPPq)ﬂmﬁ‘; = PHPVPaPﬁqJ + P”PVP(, ,3P5 + P“PanPﬂP[g + PHqVP(,PﬁPJ + qHPVPaPﬁP(;,

)

Louyaps =(PPPqq)yaps = (PPP)yya (q9)ps + permutations,
Liouveps =(PPqqq)yaps = (PP)yy (949)qps + permutations,

Liipvaps =(P4q9Q uyaps = Pudvdadpds + uPvdaqpds + 4udvPoqpds + 4udvdoPpqs + 4udvqaqpPs,

Lioyvaps =(99999 uyaps = 9udvqaqpds

1 - .
Miyveps = (gPPcT))/lmﬁ(; = P [g,,v (PP®)qps + permutanons] R

N 1
M2,umrﬂ5 :(gpqw)#vaﬁﬁ = ﬁ [

8uy (Pg@d)qps + permutati(ms] ,

- 1 - - - - -
Msuops =(PPPP@)ygs = = |PuPyPaPpiss + PuPyPoiopPs + PuPyiePgPs + PuioyPo PgPs + 0y PyPaPpPs)

N 1 ~ )
Mayvaps =(PPPq®),,,qp5 = =P [(PPP)M (q@)ps +permutatzons],

~ 1 . .
Msyyaps =(PPqqd),yaps = P [(PP),,V (9@ apis + permumttons],

- 1 - .
Mepvaps =(P4qqd),yaps = P [(qqq)wa (P@)gs + permutanons].

- 1 - - - - -
Nl/,mxﬁd = (ggw)”v(yﬁé = ﬁ [gyv (gw)(,ﬁa + 8ua (gw)v/jé +8up (gw)vms +8us (g(‘))vn/j + (gva/gﬂﬁ +8vs8as + gvégarﬁ) C‘)/,z] 5

- 1 - ‘
Noyvaps =(8990)uvaps = 75 [g,uv(qu)(yﬁﬁ +permutatwnS],

. 1 ~ g . ~ ~
Nauvaps =(99990)aps = =5 [qﬂqvqaq/swa +4uGvqa@pqs + qudv@aqpds + qudvqaqpda + quvq(xq/sqa] .

AN

3
3 M +0()
=1

By contracting p},p}, b}, PP, With @°, ¢°, and g%, and comparing with the explicit expression for P, P3P0 Pl and p p},p,,. we ob-

tain the coefficients, i.e.,

G Z ADAD 4G Z gD 4G  4O) _ AL 4O L gD 4@ 46 _ gD 4@ AG) _ 4D 4
AV =APVAD, AT =APAYR, A7 =APAY, AD =APAD, AD =ADAD, AD =APAD -

5) _ 4 4@ (5) _ (D) 44 5) _ A 4@ 46 _ 4D 4 (5) _ A(D) 4@ G) _ 4 4@
AT =AVAS Ay =AAG Ay = ATATL A = AAY, AT =AA, A =AAY -

S) Z ADBD _ gD 4G O _ 4D @ _ g0 4@ ) _ 4D pd) _ 4(D) 4
BY =ABY -APA®, BY =AY -APAP, BY =AVBY -ANAD,

(5) _ A(D) p*) (1) 4 (%) (5) _ () p4) (OO (5) _ 4D ~#) 1) 4 (4)
BY =aVBY - APAP, BY =B ~aPAP, B = AP -AVAP +

5

2(P- )AL ALY
(S) _ 4@ ~() (5) _ ~(1) 4@ 2 1
Clm=A"Cl", G =C A L

(1)@ (D) 4@
A 8404

Y =cVAf + 22 (pg) - 2 (Pg).
2
q (g%

1) When reproducing the coefficients 4", B(” and ¢{", we find a typo in Ref. [35] whose correct expression is given by AJ” = A}74¢" —

14
2 A]
q2
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Appendix D: Helicity amplitudes and decay widths

In this appendix, we give the explicit forms of helicity form HE(q?) = ifo(@) Fign(g?) /l(mB() m. g%, (D2)
factors for semileptonic decays. The decay widths can be easily ob- 7o

tained from the helicity form factors. o o ; mé(l\_) —mé( . s

We study the production of D-wave charmed/charmed-strange Hylq) =~ JE sz( ., folg)

mesons and their partners via the semileptonic decay of B, 5 5 5

. I 1 L,
mesons. The effective weak Hamiltonian for the B-(07) - D¢ v N (m3<s> mD(m 21 ) @ (D3)

Ty, @)

and B%(07) — D** ¢~ transitions is 2m D, "

Gr _ =

Hetr = — Vep |Cyu(1=y5)b| |0y (1 = y5)v |, (D1
o= 5V o I ] H?(q2)=—f Ay oy @) 5 (folg®)
. . . q* Dl

where Gr is the Fermi coupling constant and V., denotes the

. . . + (m2 —-m2, )aD (q2)+q2a1) (qz)) (D4)
Cabibbo-Kobayashi-Maskawa (CKM) matrix element. By~ DG, TR N ’

The explicit expression for the of decay width of the Here, A(a?,b%,¢2) = (a® —b? —c2)? —4b*c2. With the above equations,
< o1 Vi AIJ|B(A)> matrix element can be obtained by using the one can write the semileptonic decay width in terms of helicity
helicity form factors as amplitudes as

|
dr(B(” - D( )ll ) er(B(A) g D( )ll ) dl"*(B(” g DE‘S)IIY/)) . F_(B(S) g D?s)ll‘_/»
dq? dg? dg? dg?
[1 2172
2 o Am? M o D* ,qz)G Ve
(7 {3m, 07+ o 20 (|H3 -+ [+ 1) (D)
¢ 384my 73

For the production of charmed/charmed-strange mesons with J = 2 via the semileptonic decay of bottom/bottom-strange mesons, we ob-
tain the following total decay width

Al m? » o )

dry (B(r) - D(A)Zl ) g ( By’ Dz) dFL (B(” - D( )ll ) (D6)

dg? 3 am?, dg? 5 . '

oy R (E (TR NS

dr* (B — D), l(’"B M 4 ) (B

( ) = Do v) 1 "D d (B(s) - D(mlv) o7

dq? 2 4m? dg? 5 . '

o), 8D DAD+AD-2M 3 (3)M3(3)5 43 4)$-(3-)

We should emphasize that in our calculations the mixing between !D, and 3D, states has been taken into account. For the form factors F 33
2 2

in the B, — D(/))Z(ZD(’)Z) transitions, the mixing is included in

2y _ % 2 \/3 102
Fi(q))= \Enqn SF@),
3 2
Fs(gh)= \ﬁF<q2>+ \ﬁmf). (D8)
3 5 5

In a similar way, we can obtain the decay width for the production of 3Ds states, i.e.,

where FO) = ), m®" 29 2.

/12 2 2* q
drp(By = Dy 1 (msm "Dt dFL(B(A)HD(A)ll)

= , (D9)
2 4 2
dq 15 4mD;;>3 dq 8D./D-AD+-AD——Y,W,04,0—
2(,.2 2 2
dr*(B) = D7) 1 A (mBm’mDZ\)g’q )dF (B(Y) - Dy, v )
i kT e, i (D10)
D! 8D+/D-AD+,AD- Y W,0+,0—
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Appendix E: Polarization tensor algebra

When considering the polarization vector of a massive vector
boson, the four-momentum in any other inertial system can be ob-
tained by a Lorentz transformation. Hence, it is sufficient to con-
sider the four-momentum in the rest frame,

P =(M,0,0,0). (E1)

In the rest frame, there exist three possible helicities of a spin 1
particle, i.e. the three independent polarization vectors have the
form,

¢ (1= +1) :(o,—i,—i‘,o),
V2© V2
€'(1=0)=(0,0,0,1),
1 i
eﬂu_—l)_(o,ﬁ,—E,O), (E2)
which satisty p-e(1) =0.

In the following, for convenience of the readers, we present the
tensor algebra in the rectangular coordinate system. One can also
do this in the light-front frame by adjusting the corresponding met-
ric tensor, as the tensor algebra will lead to identical results. The
normalization of polarization vectors is given by

€M (D)) =6 (E3)

Due to the Lorentz covariance, the sum over the polarization states
is

*fL v iy ppY v
Dlere ) =g +— =G, (E4)
A 0
PHP
where GH = gh” — , and
M2
D ooy (m) = 5 Gow Gy +Gop Gurp) = 3GopGurr- (ES)

m
In general, the higher-rank polarization tensor must satisfy the
following conditions
Transversility : p"' €y, ;.. un (1) =0,
Symmetric : €u..pp..ptjopin (D = €uy.ppjopiyoogin (Ds

Traceless : 8"/ €y, _y;..p;..n (D) = 0,

Normalization : e;lmﬂn (D) = (=1)"6 0,
Conjugation : e;l“#n (D) = (=Der-#n (= ). (E6)

We take the CG coefficient of the 3D; state to show how to re-
write a CG coefficient in the tensor contracted form. First, we take
the tensor e (L;) €, (S;)(21;mS.|1J;). Due to the Lorentz covariance,
the decomposition of this tensor must be a linear combination of
8ap> Pa OF Gog, Pas 1.€.,

€ap (L) € (S) (215 LS |1J;) = AGope, (J;) + BGopes (J7)

+CGppea (J) + Dpoppey (Jo) + Epappes(J) + Fppppea (J7). (E7)

Multiplying p® on both sides of the above equation, introducing the

transverse condition of Eq. (E7) and having p®G.s =0, we easily
find D=E=F=0. The symmetry property of this CG coefficient
results in B = C. Thus, the original tensor is reduced into a simpler
form

€p (L) 6 (S) Q1 LS |1, = AGage, (J2) + BGapes (J2) + BGppen (JZ()Eg)

Next, the traceless condition is applied by multiplying ¢ on both
sides of Eq. (E8), and we find B=-34/2. We multiply
P (L) e (S ;) on both sides of Eq. (E8), and obtain,

QLS |1) =346 P (L)€ (S ) eg (). (E9)
Here, only one undetermined constant remains. We can assign a
specific value to L,, S, and J; on the left side of Eq. (E9), and intro-
duce the expression for €%#(L,), € (S ) and €3 (J;) on the right side
to solve for A. Finally, we obtain A = — v/1/15, and get

QLLS|1J;)=— \/ge*“v(Lz)ew Se ). (E10)

This example shows how a CG coefficient can be transformed into
a tensor contracted form. In the same way, one can transform the
other CG coefficients.

When calculating the semileptonic decay width, we use the
second-order and third-order tensors. The polarization tensor of a
higher spin state with angular momentum ; and helicity A can be
constructed using lower-rank polarization tensors and CG coeffi-
cients. A general relation reads

G D= D =LA 5 Ay gty (D, (A, (E11)
An—]ﬂn

with 2 = 4, + 4,-1. One can generalize this equation to obtain the po-
larization tensors of higher spin states. Thus, we have

7 (+2) =e (£ 1)e" (1),
¢ (£1) = \/g [*(£)€"(0) + ()" ()],

v (0) = \/E[E“Hl)e”(—l) +e'(-De’(+ D]+ \/ge‘“(O)ev(O), (E12)

for J = 2 state, and
€Y (£3) =e®B(£2)€” (£1),

eP(x2) :%e"ff(iz)d(m + \/g eP()e (£1),
P (1) :\%e"ﬁ(iz)a(ﬂn 24/ %e"ﬁ(il)ev(O) + \/géaﬁ(o)ey(il),

€P(0) =\%e“/3(+1)57(—1) + \/g €P(0)€ (0) + %eaﬁ(—l)é’(ﬂ),
(E13)
for J = 3 state.

Appendix F: Proof of the Lorentz invariance of the matrix elements with a multipole ansatz

In this Appendix, we show explicitly that loop integrals of B(24)

and Bf) vanish analytically for the toy model, i.e. with the multi-

pole ansatz for the vertex functions. This procedure can be exten-
ded to the other B and ™. Let us consider the integral,
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IM] =

i , M
4 fd4pl NG 2N (Fl)
n N\ NN2NJ N,

) as well as N, and

where p is the function related to Aﬁ,’"),BE,’”),C

Z,. By inserting the identities from Table 1, we can prove that the

loop integrals of BU™ and ™ vanish in the multipole ansatz.
Starting from Jaus's result [49], the complete momentum integ-

ral of N, is given by

i 4 7 N2
1 = —_— —_—
[NZ] (27T)4 fd P N/ N/NZN//N//
1
167(2 (A/2 m/Z)(A//Z mr/Z)

0 0
C

yln ‘i Ad (F2)
]A /\I

where
CY = COmy,my = (1 —y)m? +ym? —y(1-y)q?,
C(/)\A — CO(A/,A”),C(I)A — CO(m] ’A//)’CAl — CO(A/,m’l’).
The loop integral of Z, is obtained as
i 4 Z
2] =—— f d*p——2
ent ) S PN N NN,

! d In C C
= uln .
1671'2(/\'2 _ ma2)(A//2 _ m/|/2) CO CO (F3)

Readers can refer to Ref. [49] for the definition of u. Thus, one ob-
tains the replacement N, — Z,, which is related to C(ll) .
Furthermore, the integral of A(lz) is given by
1
32m2(A2 —mP)(A72 - m”z)

fdxf dy(1- x)lnc CAI (F4)

1A 1=

where

Ci1 =C(m|,m{)
=(1 = x)(1 = y)m? + (1 = x)ym/* + xm>
—x(1=)[(1 =M™ +yM"?] = (1 =0y (1 =),

Can =C(A',N"),C1p = C(m|,A”),Ca1 = C(N',m). (F5)
We take the integral 1 [3(24)] as an example and perform the integra-
tion. BS” is similar to B(lz) in Ref. [49]. It contains a A§3)N2 term,
which is proportional to x6(p}*). This means that this term vanishes.
We only need to prove that the other terms in the integral vanish,
ie.,

1Az, -349A01=0. (F6)
By using Eq. (F3) and performing a partial integration, we have
3

12872(A2 = mP)(A"2 = m[%)

1 1
CiiCan
x | dx | dy(l-x)xtin—r2, F7
j(; x\fo‘ e " CiaCai &)
and by introducing Eq. (F4), we directly obtain

3
1287‘(2(/\’2 _ m/2)(A//2 _ //2)

Can
dxf dy(1 - x)2In S1EM. F8
f (1= (F8)

which means that 7 [A(33)Zz - 3A(22)A(12)]

1A' 2] =

2) 4 (2)7 _
13AP A =

=0 and hence,

11B8"1=0. (F9)
Equation 7 [B§5>] =0 can also be obtained by using Eq. (F3) and Eq.
(F4). For the loop integrals of B! and ™ in which I[A}(j)Nz] #0,

one can use the techniques from Ref. [49] and show that
1B, = 11C;"1 =0
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