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Simple black holes with anisotropic fluid”
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Abstract: We study a spherically symmetric spacetime made of an anisotropic fluid whose radial equation-of-state is

given by p; = —p. This case allows analytic solutions and is a good example for studying the static configuration of a

black hole plus matter. For a given equation-of-state parameter w, = p,/p for angular directions, we find the exact

solutions of the Einstein equation described by two parameters. We classify the solutions into six types based on the

behavior of the metric function. Depending on the parameters, the solutions can have event and cosmological hori-

zons. One of the solution types corresponds to a generalization of the Reissner-Nordstrom black hole, the thermody-

namic properties for which are obtained in a simple form. The solutions are stable under radial perturbations.
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1 Introduction

What kind of matter can coexist with a black hole in
static equilibrium? Evidently, an ordinary matter may not
be in equilibrium with a classical black hole because of
the gravitational attraction near the horizon and the radi-
ation reaction. Considering quantum mechanical Hawk-
ing radiation from the black hole, one may devise an
equilibrium system [1]. However, there are well-known
examples where matter stays in a stable manner around a
black hole, e.g., the charged black hole solution. In the
case of the Reissner-Nordstrom solution, the stress-en-
ergy tensor of the electro-magnetic field outside the black
hole is anisotropic and satisfies p; = —p in the radial dir-
ection and p, = p in the transverse direction. Another ex-
act solution was investigated in Ref. [2], in which the
matter field is assumed to be isotropic with a negative
pressure, p = —p/3. In this case, the energy density van-
ishes at the black hole event horizon. Noting these ex-
amples, it is worthwhile to analyze the solutions of the
Einstein equation with a negative radial pressure and an
anisotropic configuration in order to understand the equi-
librium configurations of matter and a black hole.

A comprehensive collection of static solutions of the
Einstein field equation with spherical symmetry can be
found in Stephani et. al. [3], Delgaty and Lake [4], and
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Semiz [5]. Most of them are focused on isotropic fluids
because astrophysical observations support isotropy. The
perfect Pascalian-fluid (isotropic-fluid) assumption is
supported by solid observational and theoretical argu-
ments. The Einstein gravity for such isotropic cases has
been studied comprehensively, and hence the recent at-
tention has been drawn by the isotropic objects in new
gravity theories such as the massive gravity. In this the-
ory, relativistic stars [6], neutron stars [7], and dyonic
black holes [8], for example, have been investigated very
recently. Other than this tendency, the anisotropic ob-
jects in the Einstein gravity have drawn attention for quite
a while. Even though there is no full consensus that an-
isotropic pressure plays an important role in compact star,
interest in anisotropic pressure has grown recently [9-13].
The reader can find other examples related to anisotropic
matter in the following works. In relativistic stellar ob-
jects, matter with exotic thermodynamical properties that
lead to anisotropy was studied in [14, 15] (and references
therein). The local anisotropy in self-gravitating systems
was studied in [14, 16]. The pressure anisotropy that af-
fects the physical properties such as stability and struc-
ture of stellar matter was discussed in [17]. The self-grav-
itating charged anisotropic fluid with barotropic equation-
of-state was considered in [18-20]. For an Einstein-Max-
well system, anisotropic-charged stellar objects consist-
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ent with quark stars were studied in Ref. [21]. The Ein-
stein field equation was solved by assuming a specific
mass function in Refs. [22-24]. Very recently, the covari-
ant Tolman-Oppenheimer-Volkoff equations for aniso-
tropic fluid were derived in Ref. [25].

Following this recent trend, we consider in this work
an anisotropic fluid in order to find exact solutions of the
Einstein field equation. Adopting the polar coordinates in
§2, we write the metric for a general spherically symmet-
ric spacetime as (for derivation of field equations, see
e.g., Ref. [26])

ds? = gap()dx?dx? + r(x)(d6” + sin” 6d¢?), (1)

where g,, is an arbitrary metric in a two-dimensional
Lorentzian manifold (g.,, M?). When g®(D,r)(Dpr) # 0,
where D, is the covariant derivative in M2, we can set r
as a coordinate in M2 without loss of generality and then
the metric may be written as

ds* =— f(t,Ne”*""dr* + f(1,r)”" dr?
+r*(d6? +sin® 6d¢?), )

where we do not assume that spacetime is static.

The simplifying assumptions mostly used for matter
are those of vacuum, electromagnetic field, and a perfect
fluid. For example, the vacuum assumption with ansatz
(1) gives uniquely the Schwarzschild metric [27], the
simplest and best-known black-hole solution. The stress
tensor for an anisotropic fluid compatible with spherical
symmetry is

Tyv =(o+ pZ)M,uuv +(p1 - pZ)xuxv + P28uvs (3)
where p is the energy density measured by an observer
comoving with the fluid, and «* and x* are its timelike
four-velocity and a spacelike unit vector orthogonal to u*
and angular directions, respectively. This 7,, together
with ansatz (1) can describe, for example, the interior of
static, spherically symmetric, and extremely high-density
stars. In addition, we need to introduce the equation-of-
state, which is the relation between p; and p. In cosmo-
logy, one usually assumes the barotropic condition for the
equation-of-state,

Pi = Wwip, “)
with w; =0 describing the dust, w; = 1/3 the radiation,
w; < —1/3 the dark energy, and w; < —1 the phantom en-
ergy. Because the energy-momentum tensor is given by
T, = diag(—p,p1,p2,p2), one of the Einstein equations
GY =0 gives

f(r,p = f(r). (5)

Several general requirements for 7, are imposed,
collectively known as energy conditions. For example,
the weak energy condition states that the energy density
should be non-negative to every observer. Alternatively,
one might impose strong or dominant energy conditions.
For the anisotropic fluid, the energy conditions take the

following form: the weak energy condition, p >0,
p+pi=0; the strong energy condition, p+ p; >0,
o+ Xipi = 0; the dominant energy condition, p > |p;|; and
the null energy condition, p + p; > 0.

In general, u, and x, can be chosen to be arbitrary
timelike and spacelike four-vectors. Since we are trying
to find static solutions, we restrict them in the present
work to satisfy u, o (9,), and x, o (9,), . Let us now con-
sider a matter field across an event horizon described by
the fluid form in Eq. (3). Inside the horizon, where g, > 0
and g, <0, the coordinate » plays the role of time. Then
—p; and —p play the roles of energy density and pressure
along the spatial ¢ direction, respectively. With this ex-
change of roles, the energy conditions mentioned above
do not change and the energy density and pressure are
continuous across the horizon when w; = —1. In the case
of wy # —1, the pressure must be discontinuous at the ho-
rizon rgy unless p(rg) =0, which implies that solutions
satisfying w; # —1 and p(rgy) # 0 must be dynamical. In
this work, we require w; = —1 so that the energy density is
continuous across the horizon, which replaces a bound-
ary condition. In Ref. [4], various tests of acceptability
for the isotropic fluid, such as the positivity of energy
density and pressure, the regularity at the origin, the sub-
luminal sound speed, etc. were applied to a vast number
of candidate solutions.

Let us describe the motivation for anisotropic matter.
The anisotropic fluid can be used to study effectively stat-
ic matter fields. Traversable wormholes were widely
studied recently [28, 29] based on various gravity theor-
ies. The solutions require the existence of exotic materi-
als which violate energy conditions and have (effective)
negative anisotropic pressures. For example, the Morris-
Thorne type wormhole satisfies p+ p; +2p, =0 [30]. As
will be shown below, these materials can also be used to
support matter outside the black-hole horizon. In the case
of a scalar field, the equation-of-state varies depending on
the kinetic term. It takes a negative value when the field
is non-dynamical, which can be studied by an anisotropic
fluid with negative pressure. One example is the mono-
pole-black hole in the nonlinear sigma model, which will
be shown later. In the case of a static electric field, the
equation-of-state is given by p; = —p and p, = p , and the
trace of the stress-tensor vanishes. This results in the
well-known Reissner-Nordstrom black hole. As was dis-
cussed earlier, the condition that matter stays static at the
horizon requires w; = —1 explicitly. Therefore, it is worth-
while to study the solutions of the Einstein equation for
anisotropic fluid with w; = —1 and various values of w; ,
as an extension of the Reissner-Nordstrom black hole.

In this work, we consider the case when w; = —1 for
which exact analytic solutions exist. We classify the solu-
tions according to the value of w,. In Section 2, we de-
rive the Tolman-Oppenheimer-Volkoff equation for the
anisotropic fluid. In Section 3, we obtain the exact solu-
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tions for the case w; = —1. In Section 4, we classify the
solutions into six types and discuss the corresponding
black-holes. In Section 5, we study the stability of the
solutions. We summarize the results in Section 6.

2 Field equation
With the metric (2) and f(z,r) = f(r) as in Eq. (5) , and

the energy-momentum tensor (3), the Einstein equation
becomes

1 5. f
0 _ _
GO —ﬁ + ﬁ + 7 = —Sﬂp(}’), (6)
1 ’ o' (t,r
Glaat e Lo L JYCD _gph, )
T I r r
2 S Ly 3 s L5
Gz—r + ) 2r6(t,r) ) 6(t,r)+46(t,r)
- gé”(r, r) = 8w py(r). ®)
Since we assume w;=-1, the combination

Gy—-G| =0 gives 6(t,r) = (). Redefining the time co-
ordinate, we can set 6 = 0 without loss of generality. The
metric now reduces to

ds? = —f(r)de* + f(r)"'dr? + r*(d6* +sin* 0dp*).  (9)

This means that a hypersurface-orthogonal Killing
vector exists in spacetime. Thus, spacetime is static in the
region where f >0, and p = p(r) , and p, = p,(¥) holds for
consistency. The first equation (6) can be formally integ-
rated to give

fn=1-222, (10
where the mass function m(r) is defined by
m(r) = 4n f rp(r)dr. (11)

Here, the integration constant is absorbed into the
definition of m(r). If one requires the analyticity of space-
time at the center, this requires m(r) =msr® +msr +---
around r = 0, where m3, ms are constants, which restricts
the form of p(r). Substituting Eq. (10) into Eq. (8), we ob-
tain the expression for p; in terms of p as

pr=—p-", (12)

which can also be obtained from the conservation law
VKT, = 0.

3 Analytic solutions

The purpose of this work is to find analytic solutions
of the Einstein equation. We restrict our interest to the ex-
actly solvable case with

wy =—1. (13)

When p has the role of energy density, the energy condi-
tions restrict the types of matter to physically allowed
ones. Among these conditions, the positivity of energy
density appears to be crucial. In addition, all energy con-
ditions require w; > —1. Specifically, the dominant en-
ergy condition requires w; < 1 and the strong energy con-
dition requires w, > 0. Therefore, when 0 <w, < 1, all en-
ergy conditions are satisfied. As we assume p; = wyp, Eq.
(12) can be solved to give m(r) for w, # 1/2, the density
and radial pressure

n()= M+ i o) =-p)= DR (1)
where M and K are constants. For energy density to be
non-negative, we require

rg" = (1-2wy)K >0, (15)

where the positive parameter ry for the length (mass)
scale was introduced for convenience because the dimen-
sion of parameter K is dependent of the value of w,. The
energy density and pressure are singular at the origin or at
infinity when wp > —1 and w, < —1, respectively. In order
to have a smooth limit w, — 1/2 , we introduce a new
mass parameter
7o
. 16
2(1-2ws) (16)
The solutions for wy = 1/2 can then be obtained by
taking the limit w, — 1/2 of Eq. (14), which gives
, 1o r ro
=M +—=1 —_, = —.
m(r) 5 108 P p(r) S
All other physical formulae for w, =1/2 can be ob-
tained in the same manner. Therefore, we will not dis-
cuss the wy = 1/2 case separately. The metric function in
Eq. (10) becomes

M=M

fn=1-2 2 (7)
where M and K can be rewritten using Egs. (15) and (16).
As we are interested in the solutions with matter, we re-
strict our interest to the case with ro #0. For1/2 <w, < 1,
the spacetime structure must be very similar to the Reiss-
ner-Nordstrom geometry. For the isotropic fluid with
wi =wy = —1, M and 3K represent the mass of the (anti)-
de Sitter black hole and the cosmological constant, re-
spectively. Let us now analyze the curvature singularities.
The scalar curvature,

72w ’

R=

>

Wy — 1 (”O )2(W3+1)
}’2

0 r

is singular at the origin and at infinity when
—1 <wy # 1 and wy < —1, respectively. Therefore, it is reg-
ular everywhere only when wy; =—1 or 1. The Krestch-
mann invariant is given by
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48M%  16(wy+ 2wy + MrE"
+
ro (1 —=2wp)r2wa+5
4(4w‘21 + 4w3 + 5w§ + l) ,,ng
(1= 2wp)2 w4

Note that the numerator of the last term is positive
definite and the apparent divergence for w, = 1/2 disap-
pears when the parametrization of Eq. (16) is introduced.
Therefore, the term is singular at the origin or at infinity
when w, > —1 or w; < —1, respectively. When w, = —1, the
first term becomes singular at the origin unless M =0.
For ry #0, the Krestchmann invariant is regular every-
where only when M =0 and w, = -1, which is nothing
else but the (anti)-de Sitter spacetime. In summary,
spacetime is singular at infinity when w, < —1 and singu-
lar at the origin when M # 0. The singularities can be na-
ked or covered by (cosmological) event horizons depend-
ing on the nature of spacetime.

Before discussing the details of each solution, we
would like to discuss the positivity of energy density
when there exists an event horizon in the solution. Be-
cause ¢ and r coordinates exchange their roles of time and
space, —p; plays the role of energy density in the region
of f(r) <0. Therefore, in the presence of a horizon, the
energy density is positive definite over the whole space
when w; <0 and p >0, which is satisfied by the present
solution.

RabcdRade =

4 Classification and black hole solutions

The properties of the solution of Eq. (17) is com-
pletely determined by the functional behavior of f(r). We
classify the solutions into six types as following.

(I) Schwarzschild: f(r) changes the signature from
negative to positive with r.

(I) Schwarzschild-de Sitter: f(r) changes the signa-
ture from negative to positive and then to negative again.

(IIT) Reissner-Nordstrom: f(r) changes the signature
from positive to negative and then to positive again.

(IV) de Sitter: f(r) changes the signature from posit-
ive to negative.

(V) Naked singular: f(r) is positive definite.

(VI) Anisotropic cosmological: f(r) is negative defin-
ite.

The classification of the solutions is shown in Fig. 1.
The Roman numbers I-VI denote the type of solution
with respect to the value of (wp,2M’/rp).

Rather than discuss all the details, let us illustrate
only the case of wpy>1/2. Asymptotically,
lim, e f(r) = 1. Around the origin, f(r) is a decreasing
function with f(0) = co. Its derivative is

_ 2ro [M Wy (}"() )2W3_1}

ro 2wy—1\r

VI I
A\

Extremal| BH

—

1I

v I

DO [

Fig. 1.
horizontal and vertical axes denote w, and 2M’/ro, respect-
ively. The blue curve represents 2M’/ry = (1-2w)~!, for
which M = 0. Each line in the figure is labeled by the text of
the same color.

(color online) The classification of the solutions. The

When M is positive, f’(r) vanishes at r,, = [warg/(2wy—
HM]Y@=Dyy and £(r) has a minimum value at 7,

oM 1R 1 _[(ZWQ—I)M 2w/l

m) =1-— +
Srm) 2wy 1 2

2wy —1 2M
i (1— )xP,

warg

2W2 ro

where P represents a series function of 2w, — 1)M/wary,
which is positive. The minimum value f(r,,) is positive
when 2M’ /ry < 1. In this case, the metric function is pos-
itive definite for all » and the singularity at the origin is
naked. The metric belongs to type V. The case M <0 also
belongs to this type. On the other hand, when f(r,,) <0
i.e. 2M’ /rg > 1, the spacetime has two horizons at radii r.
satisfying f(r.) = 0. Therefore, the spacetime is of type
III. When 2M’/ry = 1, the two horizons coincide and are
extremal.

The solutions corresponding to a black hole are of
type I, II, and III. Type IV solution is similar to the de
Sitter spacetime having a cosmological horizon. On the
other hand, type V solution possesses a naked singularity.
Type VI solution corresponds to a cosmological solution
undergoing anisotropic expansion/contraction, which is
bounded by a cosmological horizon. In this case, the sin-
gularity at » = 0 is located at the future/past infinity .

4.1 TypelandIl

Type I solutions exist only when 0<w; <1/2 and
M >0. The geometry takes the form of a modified
Schwarzschild spacetime. The functional form of f(r) at
r=0 is governed by the —2M/r term, which implies that
r =0 is a singularity. The geometry is asymptotically flat
because f(r) approaches a constant value as r — co. There
exists an event horizon rgy satisfying f(rgg)=0.
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However, the energy density is not sufficiently localized
so that the total mass diverges as r — co.

If wy, =0, the solution takes a modified Schwarz-
schild form with a solid angle deficit. After introducing
new coordinates y=r/a and 7 =at, where a = V1-K,
the metric becomes

ds? = —(I—Z—M)d72+L2~
y 1-2M/y
where M = M/a>. The horizon is at r = 2M/a?. The mass
function increases with » as m(r) = M + Kr/2. At the hori-
zon, it is m(rgy) = M/a?. The fluid with w, = 0 is equival-
ent to the self-gravitating global monopole [31], and the
monopole-black hole in the nonlinear sigma model with
the hedgehog ansatz [32].

Type II solution exists only for w; <0 with
(1=2wy)"' <2M’/ry < 1. The geometry takes the form of
the modified Schwarzschild-de Sitter solution. The func-
tional form of f(r) at r~0 is governed by the -2M/r
term, which implies that r = 0 is a singularity. Asymptot-
ically, f(r) — —Kr*™! goes to negative infinity. There are
two horizons satisfying f(r) = 0, one is the black-hole ho-
rizon r_ and the other the cosmological horizon r,. The
cosmological horizon resembles that of the de Sitter
spacetime. When w; = -1, the geometry becomes the
Schwarzschild-de Sitter spacetime with f(r)=1-2M/r—
Kr.

The mass inside » monotonically increases. The total
mass inside the cosmological horizon becomes

ry | 2M 1 0 2w, I
= —|— 4+ [— = —.
mire) = [ re | 1-2w, (r+ 2

+ (ay)*(d6? +sin® 6d¢?),

4.2 Typelll

Type III is the most interesting because it contains the
Reissner-Nordstrom solution as a specific case with
charge Q=ry when w, =1. The solution exists when
2M’[ro<1and 2M’/ro =1 for 0 <wp <1/2 and wy > 1/2,
respectively. The geometry of the type III solution takes
the form of the Reissner-Nordstrom solution in the sense
that it has an inner horizon »_ in addition to the outer
black-hole horizon at r. , given by f(r,)=0. For
wy < 1/2, the mass function increases with r. Therefore,
the solution fails to describe a localized object such as a
star.

On the other hand, the matter distribution is localized
sufficiently if w, > 1/2. The total mass over the whole
spacetime is finite and is given by

ro ,
2m—1) " (18)

Note that f(rg) = 1-2M’/ry <0, which implies that ry
is located in between the two horizons, r_ < rg < r.. The
surface gravity of the black hole at r = r, is

M=M +

fry) _ 1

2 ry

_ 1 1 ro 2w
T2, rs

The entropy and the black hole temperature are given
by

K=

[ (2W2—1)M]
Wy — —————
I+

> 0. (19)

2w,
K 1 1o :

S=n?, Ty=—= 1-=] | 20

e TH 2 47Tr+{ (}ﬁr) } (20)

Treating r, as a function of M and ry in the variation-
al relation 6f(r,) =0 in Eq. (17), and using Eqgs. (18),
(20), one gets the first law of the black hole thermody-
namics in the form,

TydS =2nTyrodry = 6M — ®dry, (21)
where the potential takes the form,
Wy ro 2w,—1
= — . 22
2wy, — 1 (r+) (22)

For the case w, = 1, this provides the correct value of
the electric potential with a charge Q = ry.

5 Stability

Let us check the stability of the spacetime with aniso-
tropic fluid by introducing linear spherical scalar perturb-
ations. Let us write the metric in the form,

ds* = —e’df* +e'dr? + ¢dQ3. (23)

The general energy-momentum tensor is given by Eq.

(3) with p; = w;p, where the velocity and the radial four-
vectors are given by

u = [e7 V1 +v2,eV%,0,0],
X = [e7 v, e\ 1+12,0,0], (24)

where v corresponds to a normalized radial velocity and
x"u, = 0. The components of the stress tensor now become

T? =(1 +w1)peu_")/2v m,
Ty = —p[1+ (1 +wi)v],
T{ = plwi +(1+wi)V’],
T3 = pws. (25)
We introduce the perturbations of the metric for a giv-
en background solution vo(r), 29(r), and uo(r) as
e =e""(1+6v),
et =M1 +60),
e = (1 +6p),
P =po+0p. (26)
The linearized coordinate transformations of ¢ and r
are given by

t=T+0t(F,F), r=F+0r(P. 27)
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Under this transformation, the metric (23) can be
written as

ds? = =1 +6v)de* + PO (1 +6)dr? + (1 + 6u)dQ?
= —e"D[1 +6v+v)0r + Voot + 2581]d7*

+2[e"or — ot |didF

+eMD[1 +64+ )67 + Aot + 267 1dF*

+ et [1 + O + por +[106t] do?, (28)
where the overdot and the prime denote the derivatives
with respect to .f and 7, respectively. In Eq. (28), we can
impose vo =0, 4o =0, and iy = 0.

We choose the gauge for 6r and 6z such that
Ofi = 6p+ pgdr = 0. (29)
Omitting tilde in 7 and 7, the metric (28) becomes
ds? =—e"[1+6v(t, N)dP +e* [1+6A(t, r)]dr? +edQ?.  (30)
The 6GY part of the Einstein equation based on the

Zoi=0= ebér=e"otr,

metric (30), after introducing e” = f(r) = e~, gives v as
HydA Pov HodA
- =8r(l+w) e my=-——0" (3]
I R T ET i

We may use this equation as a definition of v. The
6G)) part,
Q) 2pa0f'(r)
4 G
provides the definition of 6p. The 6G{ part becomes
% [2;1661/ - (/162 + 2#%;)(”))6/1} = 8w 6p. (33)

Combining Eq. (32) and Eq. (33), we write 6V’ by
means of 64 and 61”:
,UO 1+3w; , f(r
2w — + +(1+w
R R AT
Finally, the 6G3 part becomes
04 f(r)[ ( 3f’) ( f) ,
- 26v oV — — |64
2f(r) 4 Ho™ 7y f
Zf” 2f’

f 7 )6/1} 8mwap. (35)

Using uo(r) =2logr after substituting Egs. (34) and
(33) into Eq. (35), we get a differential equation for the
perturbation 5§14

2060 + (4;4; +3ui + )m} = —8n6p, (32)

oV =w164’ +

}(m. (34)

(2#0 + g C+

1+5w; f'(r)

6/1 _ 7 2(W1 _WZ) ’
% =w;04" + [ p + > 70 0A"+V(r)oA,
36)
where
_ 2wy 14+5wi—4wy f1(r)
Vi = r2 - 2 rf(r)
/ 2 11

Lewi S0 10 a7

ST T

Introducing a new coordinate z as dz = f~'dr and set-
ting 54 = e”'“’g|(r), the perturbation equation becomes

2 _
_ddg21 + 2(W1 Wz)f(r) l+3W1f() dgl
z 1r
w2
+V(2)g1 = —¢&i, (38)
wi
where V(z) = V(r(z)). For large w?, the equation takes the

form, d’g;/dz* ~ (-w;"w?g. Therefore, the system is
possibly stable only when wy > 0.

An interesting situation is the present case with
wi = —1. The off-diagonal component of the stress tensor
T? in Eq. (25) vanishes, and from Eq. (31), 64 is inde-
pendent of time ,

0d=61=0. (39)

Eq. (36) then becomes, after introducing A = 64,

2(1 2
(A+wo) ., 2w

A"+ A
r r
" f/ f’
_(1+w1)[A +(_2f+r) 207 ] 0. (40)

For w; =-1, and ignoring the term in the square-
bracket, the equation allows an exact solution,
1 (26M oK )
S
where 6K represents the variation of K = rng /(1 =2wp).
The metric component g;; in Eq. (30) becomes
gyl = e L+6AEN] = f(r)(1-62)
2(M+6M) K+6K
=1- ( )_ . (42)

r 2w

(41)

+ —_—
roor)

which is simply a redefinition of the parameters M
and K. The perturbations do not cause an instability for
wi = —1. Therefore, the solution is stable under radial per-
turbations. The other types of solutions in the present
model depend on the values of wy. It is interesting that all
of them are stable under perturbations.

6 Summary

We have studied static geometries with an anisotrop-
ic fluid based on Einstein's theory of gravity. Due to the
spherical symmetry, the angular pressure should be iso-
tropic. However, it can be different from the radial pres-
sure without breaking the spherical symmetry. When
p1=-p, the Einstein equation takes a simple form,
pa2 = —p—rp’/2,the solution of which allows various classes
based on p; = wyp.

Formally, using the real radial coordinate, the solu-
tion takes a similar metric as the Schwarzschild-de Sitter-
like spacetime,
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gr_rl =8n=1-—- . (43)

After introducing new parameters M =M’ —ry/2(1-
2w»),and K = r(z)’” /(1 =2w,), we have shown that the space-
time geometry is determined by the parameter 2M’/ry ,
for a given equation-of-state parameter w,. For the iso-
tropic case, M and K correspond to the mass and the cos-
mological constant. When M #0, the solution has a
curvature singularity at r = 0. It has another singularity at
infinity when w, < —1 and ry # 0. On the basis of the be-
havior of the metric function, we classified the solutions
into six types, including black hole solutions (types I, II,
and III), de Sitter-like solution (type IV) and anisotropic
cosmological solution (type VI). Of all solutions, type III

black hole solution with w, > 1/2 describes a physically
relevant localized object. The thermodynamics of the
black hole was shown to have the usual form with a po-
tential ® = wo/(2ws — 1) x (ro/r;)*>~! and charge ro.

We have also performed a stability analysis for aniso-
tropic fluids. For w; = —1, we found that the instability is
a gauge artifact. Therefore, the solution is stable under ra-
dial perturbations. There are other types of solutions in
the present model. It is interesting that all of them are
stable under perturbations. We found fluid configura-
tions which coexist with a black hole in static equilibri-
um. Such stable static black-hole solutions are rare, and
further investigations of these solutions should be per-
formed.
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