

CuSo的高压拉曼光谱和X射线衍射

姜峰 赵慧芳 谢亚飞 姜昌国 谭大勇 肖万生

High Pressure Raman Spectroscopy and X-ray Diffraction of CuS₂

JIANG Feng, ZHAO Huifang, XIE Yafei, JIANG Changguo, TAN Dayong, XIAO Wansheng

引用本文: 姜峰,赵慧芳,谢亚飞,等.CuS₂的高压拉曼光谱和X射线衍射[J].高压物理学报,2020,34(4):040104.DOI: 10.11858/gywlxb.20200509 JIANG Feng, ZHAO Huifang, XIE Yafei, et al. High Pressure Raman Spectroscopy and X-ray Diffraction of CuS₂[J]. Chinese Journal of High Pressure Physics, 2020, 34(4):040104.DOI: 10.11858/gywlxb.20200509

在线阅读 View online: https://doi.org/10.11858/gywlxb.20200509

您可能感兴趣的其他文章

Articles you may be interested in

NaCl-O₂体系高温高压化学反应的拉曼光谱证据

Raman Evidences of Chemical Reaction of NaCl– O_2 System at High Pressure and High Temperature

高压物理学报. 2017, 31(6): 692 https://doi.org/10.11858/gywlxb.2017.06.003

羟碳铈矿的高压拉曼光谱研究

High-Pressure Raman Spectroscopic Study of Hydroxylbastnsite-(Ce) 高压物理学报. 2019, 33(6): 060105 https://doi.org/10.11858/gywlxb.20190847

金刚烷的高压拉曼光谱研究

Raman Scattering Investigations of Adamantane under High Pressure 高压物理学报. 2019, 33(5): 051101 https://doi.org/10.11858/gywlxb.20190832

BiFeO3高压拉曼光谱研究

High Pressure Raman Investigation of BiFeO₃

高压物理学报. 2018, 32(5): 051202 https://doi.org/10.11858/gywlxb.20170698

高氯酸钠高压相变的拉曼光谱证据

Raman Evidences for Phase Transition of Sodium Perchlorate at High Pressure 高压物理学报. 2018, 32(4): 041201 https://doi.org/10.11858/gywlxb.20180543

金刚石荧光机制的研究及其对高压拉曼光谱测试的意义

Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry 高压物理学报. 2019, 33(4): 043101 https://doi.org/10.11858/gywlxb.20180689 DOI: 10.11858/gywlxb.20200509

CuS,的高压拉曼光谱和 X 射线衍射

姜 峰^{1,2,3},赵慧芳^{1,2,3},谢亚飞^{1,2,3},姜昌国^{1,2,3},谭大勇^{1,2},肖万生^{1,2}
(1.中国科学院广州地球化学研究所矿物学与成矿学重点实验室,广东广州 510640;
2.广东省矿物物理与材料研究开发重点实验室,广东广州 510640;
3.中国科学院大学,北京 100049)

摘要:利用金刚石压腔在高温高压条件下合成了黄铁矿结构 CuS₂,结合显微拉曼光谱和同步辐射 X 射线衍射实验,发现黄铁矿结构 CuS₂在低于 30 GPa 的压力范围内保持稳定,无结构 相变发生。高压拉曼光谱研究结果显示,CuS₂的所有拉曼模频率随压力升高呈连续单调线性增加。对 X 射线衍射实验获得的 CuS₂体积随压力变化关系进行 Birch-Murnaghan 状态方程拟合,得到零压晶胞体积 V_0 = 193.8(5)Å³,体积模量 K_0 = 99(2)GPa, K_0 '=4(固定)。运用第一性原理理论计算,得到 CuS₂的拉曼模频率和晶胞体积随压力变化关系均与实验观测结果保持一致。与其他黄铁矿结构过渡金属二硫化物 MS₂(M = Mn, Fe, Co, Ni)对比,发现 MS₆ 配位八面体大小(M—S键长)主导晶胞的体积大小和晶体的压缩性,并推测 CuS₂中 Cu 离子可能以+2 价形式存在。研究结果弥补了黄铁矿结构 CuS₂高压拉曼光谱和 X 射线衍射研究的缺失,证实其在高温高压下的结构稳定性,对全面认识 CuS₂的物理化学性质及黄铁矿结构物质的 统一规律具有重要价值,对于探索 Cu 在地球深部的价态和赋存形式也具有指示意义。

关键词:黄铁矿结构; CuS2; 拉曼光谱; X 射线衍射; 高压

中图分类号:O521.2; P311.9 文献标识码:A

黄铁矿结构(*Pa*3, *Z*=4)是 MX₂型化合物的一种典型结构,原型为天然矿物黄铁矿(FeS₂)。在该立 方结构中,M原子占据4*a*(0,0,0)位置,X原子占据8*c*(u,u,u)位置,形成共角顶的AB₆配位八面体^[1], 如图1所示。一些二硫化物MS₂(M=Mn, Fe, Co, Ni, Cu, Zn, Ru, Os等)^[2-4]和二氧化物MO₂(M=Be, Mg, Zn, Cd, Na等)^[5-6]均能够结晶成黄铁矿结构。另外,黄铁矿结构也是许多二氧化物和二氮化物在 高压下的稳定多形,如SiO₂、GeO₂、SnO₂、PbO₂、FeO₂、RuO₂、OsO₂、IrO₂、PtO₂、PtN₂、PdN₂等^[7-9]。由于 Fe和SiO₂是地球内部的重要组成元素和化合物,深入研究高压下黄铁矿型结构在地球科学和材料科 学的发展过程中具有重要意义。例如,近期黄铁矿型结构FeO₂和FeO₂H_x的高温高压实验和理论研究 进展^[10-11]为理解下地幔环境中各种元素的化学性质和原子间的相互作用提供了新视角。

作为黄铁矿结构的典型代表, 过渡金属二硫化物 MS₂(M = Mn, Fe, Co, Ni, Cu 等)由于具有良好的 光电性质和催化性能被广泛地研究和应用, 其高压行为(如高压稳定性、结构相变和金属-绝缘体转变 等)也受到高度关注^[12-16]。同时, 过渡金属二硫化物还可以成为地球深部和气态巨行星内部 SiO₂ 等重 要矿物的类比研究对象^[17], 有利于发现 SiO₂ 等黄铁矿结构的高压多形, 并了解这些高压多形的物理化 学性质。

与其他黄铁矿结构二硫化物不同, CuS₂需要在高温高压条件下才能合成^[18-19],导致相关研究相对 较少。以CuS₂为主要组成成分的天然矿物黑硫铜镍矿(Cu, Ni, Fe)S₂需要Ni、Fe等类质同像替代进入

 ^{*} 收稿日期: 2020-02-17;修回日期: 2020-02-26
 基金项目:国家自然科学基金(41572030);中国科学院战略性先导科技专项(B类)(XDB18010403)
 作者简介:姜 峰(1995-),男,硕士研究生,主要从事高压矿物学研究.E-mail: fengjiang@gig.ac.cn
 通信作者:肖万生(1968-),男,博士,研究员,主要从事高压矿物学研究.E-mail: wsxiao@gig.ac.cn

晶格才能保持稳定^[20]。CuS₂是一种深紫色晶体, 具有金属导电性^[21],并在低温下显示超导电性^[22], King 等^[23]对高温高压合成的CuS₂单晶进行了详 细的晶体结构研究,并与MS₂(M=Mn, Fe, Co, Ni) 等晶体结构参数和MS₆八面体畸变程度进行比 较,认为CuS₂中Cu的价态为+2价。然而,CuS₂ 的多种光谱和理论研究认为Cu为+1价态^[21,24-26]。 晶体化学与光谱学测量结果之间的矛盾或许隐含 有价值的科学信息。

据相关研究报道,迄今只有 Hupen 等^[27]对 CuS₂开展过高压原位研究工作。Hupen 等利用同 步辐射能量色散 X 射线衍射技术在 0~6 GPa 压 力范围对 CuS₂开展原位测量,认为黄铁矿型 CuS₂在约 1 GPa 压力下会发生向白铁矿结构

- 图 1 黄铁矿(Pa3)MX2 晶体结构示意图(蓝色大球和黄色 小球分别表示 M 和 X 原子)
- Fig. 1 Pyrite-type(*Pa*3) MX₂ crystal structure (M and X atoms are shown as big blue and small yellow spheres, respectively.)

(*Pnnm*)的可逆相变。白铁矿结构与文献中常见的 CaCl₂结构等型^[4, 28], 而对于大多数 MX₂ 化合物的高 压结构演化来说, CaCl₂结构是黄铁矿结构的低压相^[7, 29]。因此, CuS₂相变还需要更高精度的高压 X 射 线衍射及其他高压测量方法证实。

本研究利用金刚石压腔高压装置开展了 CuS₂的高温高压合成及其高压拉曼光谱和 X 射线衍射测 试。黄铁矿结构 CuS₂ 可在 6~33 GPa 压力范围,通过电阻外加热方式(800 K)和激光加热方式 (1500~2000 K)合成,并对其进行高压拉曼光谱和 X 射线衍射测试,探索黄铁矿结构 CuS₂在 0~30 GPa 压力范围的结构稳定性。同时,对黄铁矿结构 CuS₂开展第一性原理理论计算,并将计算结果与实验结 果进行对比验证。研究结果对于认识 Cu 在地球深部环境中的价态和赋存形式具有重要意义。

1 实验技术和理论计算方法

将分析纯化学试剂 Cu、S 以及 CuS、S 分别按化学计量比 1:2 和 1:1 称量,并在玛瑙研钵中研磨 1.5h 充分混合,作为合成 CuS₂的初始反应物。高温高压合成实验采用两种类型的金刚石压腔(DAC)装置: 一种为可与显微激光加热系统连接的对称型 DAC 装置(LH-DAC),光谱仪接收样品热辐射谱,并用黑 体辐射公式拟合实验温度;另一种为电阻丝加热的 DAC 装置(RH-DAC),用 NiCr-NiAl 热电偶测量实验 温度。两种 DAC 装置的金刚石对顶砧砧面直径均为 300 μm。实验采用 T301 不锈钢片封垫,预压厚度 约 35 μm,用电火花打孔器在中心钻一个直径 105 μm 的小孔作为样品腔。共进行了 4 组 CuS₂ 的合成 实验。激光加热实验(Exp1 和 Exp2)初始样品均为 Cu+2S 混合物,隔热层和压力介质为 KCl,采用"三 明治"方式装样,并加入红宝石微粒用于测压^[30],实验压力分别为 7.0 和 34.1 GPa,实验温度 1 500~2 000 K。 电阻丝加热实验的装样方法与激光加热实验相同,实验样品分别为 Cu+2S(Exp3)和 CuS+S(Exp4),采 用 SrB₄O₇: Sm²⁺作压标^[31],实验压力分别为 12.4 和 16.6 GPa,实验温度为 800 K,恒温约 1 h。通过拉曼 光谱鉴定 4 组实验合成产物。

拉曼光谱测试采用 Renishaw 2000 型显微共聚焦拉曼光谱仪。选用波长为 532 nm 的激光作为激发 光源,用 20×物镜聚焦激光光斑,样品处光斑大小为 3 μm×3 μm。采用背反射方式收集样品信号,通 过 1 800 线每毫米光栅分光,由热电冷却的 CCD 探测器采集信号。采谱波段范围 100~800 cm⁻¹,光谱 分辨率 1 cm⁻¹,采谱时间 40 s。高压原位角色散 X 射线衍射实验在中国科学院高能物理研究所同步辐 射装置 4W2 线站开展。入射 X 射线波长 λ 为 0.619 9 Å,光束被聚焦到约 60 μm×20 μm 大小。 Pilatus 探测器收集衍射图谱,样品到探测器的距离由 CeO₂标定。利用 Fit2D 软件^[32] 对采集的二维衍射 图进行积分处理。Birch-Murnagham 状态方程参数由 EosFit7 程序^[33] 拟合得到。运用 GSAS-II 软件^[34] 对 6.2 GPa 压力点的粉末衍射谱进行 Rietveld 结构精修。 CuS₂的第一性原理理论计算采用 Material Studio 软件的 CASTEP 计算模块。运用 Perdew-Burke-Ernzerhof 泛函的广义梯度近似(GGA)方法估算交换相关能^[35]。赝势选择 OTFG 超软赝势, 截断能设置 为 700 eV, 第一布里渊区 k 点取样为 $6 \times 6 \times 6$ 网格。为确保较好的收敛, 能量、最大力场、最大应力和 最大位移分别为 5.0×10^{-6} eV/atom、 0.01 eV/Å、 0.02 GPa 和 5.0×10^{-4} Å。

2 结果和讨论

2.1 黄铁矿结构 CuS₂ 的高温高压合成

图 2 为 4 组合成实验高温处理前后的拉曼光谱。加热前,由于 CuS 高压非晶化,在约 15 GPa 实验 压力下基本难以观测到拉曼峰,而 Cu 单质无拉曼活性峰,因此 4 组实验在反应前测得的拉曼光谱均属 于单质 S 的高压相^[36-37]。加热后,4 组实验都得到由 3 个拉曼峰组成的全新谱图,表明实验样品在不同 压力经不同温度处理后得到了相同的新相。新相在常温常压下的 3 个拉曼峰频率 (ω₀) 在表 1 列出,与 Anastassakis 等^[38] 给出的黄铁矿结构 CuS₂ 的拉曼峰位和峰形特征基本一致,可初步确认实验合成的新 相为黄铁矿结构 CuS₂,后述同步辐射 X 射线衍射实验结果将进一步证实。已有的 CuS₂ 合成实验条件 基本均在 7.0 GPa、1 500 K 温压范围以内^[2, 18-19, 21],本次 4 组实验在更宽范围的温压条件下均合成出黄 铁矿结构 CuS₂, 拓展了 CuS₂ 的合成温压范围,同时说明了 CuS₂ 在 34.1 GPa、2 000 K 温压范围内是热力学稳 定态。

图 2 不同条件下 4 组实验反应前后的特征拉曼光谱(LH 和 RH 分别代表激光加温和电阻丝加温, 4 组实验中加温前所测拉曼信号均为单质硫的高压相,加温后产物为黄铁矿结构 CuS₂)

Fig. 2 Raman spectra of the four experiments at different conditions before and after reaction (LH and RH represent laser heating and resistance heating, respectively. Before heating, all the Raman peaks in four experiments belong to the high-pressure phase of elemental sulfur. After heating, the reaction products are pyrite structure CuS₂.)

Symmetry classification	$\omega_0/\mathrm{cm}^{-1}$		$(d_{1}/d_{n})/(am^{-1}CDa^{-1})$		Mathal
	This work	Ref.[38]	$- (d\omega/dp)/(cm^3)$	γ	Method
$E_{\rm g} + T_{\rm g}(1)$	213	207	2.45	1.14	
$T_{\rm g}(2)$	266	264	3.06	1.14	Exp.
$A_{\rm g} + T_{\rm g}(3)$	512	512	1.75	0.34	
$T_{\rm g}(1)$	206		2.33	0.97	
$E_{ m g}$	207		2.31	0.96	
$T_{\rm g}(2)$	257		3.11	1.04	Calc.
$T_{g}(3)$	495		1.80	0.31	

表 1 黄铁矿结构 CuS₂ 的拉曼频率随压力变化及格临爱森参数 (γ)

Note: The $K_0(\text{Exp.}) = 99$ and $K_0(\text{Calc.}) = 85.6$ are used respectively to calculate the Grüneisen parameters. They are obtained from the fitted Birch-Murnaghan EOS in this work.

1.41

0.24

群论分析结果表明, 黄铁矿结构 CuS₂ 振动模式的不可约表示为 $\Gamma = A_g + E_g + 3T_g + 2A_u + 2E_u + 6T_u$ 。其中 $A_g + E_g + 3T_g$ 为 5 个拉曼活性模, A_g 为完全对称模, E_g 为二重简并模, T_g 为三重简并模。 A_g 和 $T_g(2)$ 分别对应 S—S 原子对同向和反向伸缩振动, E_g 摆动模反映 S 原子在垂直于 S—S 键轴方向的位移, $T_g(1)$ 和 $T_g(3)$ 则对应伸缩模和摆动模的多种组合^[39-40]。利用第一性原理计算黄铁矿结构 CuS₂ 的声子谱, 得到 5 个拉曼峰, 它们的常压振动频率也在表 1 中列出。可以清楚地发现, $T_g(1)$ 与 E_g 以及 $T_g(3)$ 与 A_g 之间的波数差在 5 cm⁻¹ 以内, 使得在非偏振拉曼光谱中难以分辨^[39-40], 导致本次实验和 Anastassakis 等^[38]的拉曼光谱实验中仅观测到 $T_g(1) + E_g$, $T_g(2)$ 和 $T_g(3) + A_g$ 共 3 组拉曼峰。此外, 本研究的实验值和计算值以及 Anastassakis 等^[38]的实验结果三者高度吻合, 准确地描述了黄铁矿结构 CuS₂ 的常压拉曼振动特征。

2.2 黄铁矿结构 CuS, 常温高压拉曼光谱

499

黄铁矿结构 CuS₂由常压加压到 33.0 GPa,并随后卸压至常压过程的拉曼光谱变化特征如图 3 所示。图 3(a)中,随着压力增加,3 个拉曼峰均向高频方向连续移动,至 33.0 GPa 没有拉曼峰增加或消失;卸压过程(图 3(b))则保持与加压过程可逆的变化特征。该现象表明,高压仅使 CuS₂晶体结构致密化,S—S 键和 Cu—S 键压缩引起的振动频率增大,没有导致结构相变,反映黄铁矿结构 CuS₂在 0~33.0 GPa 压力范围内具有结构稳定性。

图 4 展示了拉曼光谱实验测得的 3 组 CuS₂ 拉曼模 $T_g(1) + E_g$ 、 $T_g(2)$ 、 $T_g(3) + A_g$ 和第一性原理理论 计算得到的 5 个拉曼模 E_g 、 $T_g(1)$ 、 $T_g(2)$ 、 $T_g(3)$ 、 A_g 的频率随压力的变化关系。可以看出,拉曼实验值 与理论计算值在对应压力下非常接近,两者的最大频率相差小于 4%,反映理论计算能很好地描述实验 结果。拉曼实验和理论计算数据显示,所有拉曼模的振动频率随压力升高呈线性增加,对拉曼模分别 进行线性拟合,拟合给出的频率随压力变化(d ω /dp)在表 1 中列出,实验和拟合计算结果一致。理论计 算数据的拟合结果显示, E_g 和 $T_g(1)$ 模的频率变化速率(d ω /dp)非常接近,且常压频率相近,对应拉曼光 谱中始终难以分离的情况。而 A_g 和 $T_g(3)$ 的频率变化速率略有差异,但 A_g 模的强度远大于 $T_g(3)$ 模,在 拉曼光谱中基本表现为 A_g 模信号。

 A_{g}

图 3 CuS₂ 常温加压(a)、卸压(b)过程的代表性拉曼光谱

Fig. 3 Representative Raman spectra of CuS₂ in the process of increasing pressure (a) and releasing pressure (b)

Fig. 4 Experimental and theory calculated pressure dependence of Raman vibrational modes of CuS₂(Black spheres and diamonds correspond to the results of compression process and decompression process of CuS₂ synthesised at Exp4, respectively. Black triangles are data of decompression process of CuS₂ synthesised at Exp2. The stars represent theory calculated points. Solid line and dotted line are linnear fitted with all experimental and calculated data, respectively.)

2.3 黄铁矿结构 CuS2 常温高压 X 射线衍射

图 5 所示为 6.2 GPa 压力下(Expl 温度处理后)产物的同步辐射 X 射线衍射谱,黑色圆形、红色实

线和黑色实线分别对应观测值、计算值和误差曲 线,在图中以相同比例显示,衍射谱下方黑色垂直 短棒为计算 CuS₂(*Pa*3)和 KCl(*Pm*3*m*)的衍射峰 位。除去传压介质 KCl(*B*2)相的衍射峰外,剩余 的衍射峰可以指标化为 *Pa*3 结构。随后选择 KCl(*Pm*3*m*)和 CuS₂(*Pa*3)作为初始结构模型,利 用 GSAS-II 软件对衍射谱进行结构精修。精修结 果如图 5 所示,可见实验和计算结果的 X 射线衍 射谱吻合较好,误差因子 $R_p = 1.65\%$ 、 $R_{wp} =$ 2.85%。因此,确定本次高温高压实验中合成了黄 铁矿结构 CuS₂(*Pa*3),与拉曼光谱测试结果一致。 通过结构精修,得到黄铁矿结构 CuS₂在 6.2 GPa 压力下的晶胞参数 *a* = 5.657 3(6)Å,其中原子占 位情况为 Cu(0,0,0)、S(0.397 4, 0.397 4, 0.397 4)。

图 6 展示了 CuS₂ 由 6.2 GPa 加压至 29.6 GPa, 随后卸至常压过程中的代表性 X 射线衍射谱。随着 压力增加, 传压介质 KCl 和产物 CuS₂ 的衍射峰均逐渐宽化, 反映了非静水压力效应及其导致的样品结 晶度降低。然而, 直到达到最高压力 29.6 GPa, 仍可以辨识出黄铁矿结构 CuS₂ 的(111)、(200)、(210)、

图 6 在加压(a)和卸压(b)过程中 CuS₂在不同压力下的 X 射线衍射图谱(下三角指示产物中的杂质峰, 黄铁矿结构 CuS,和传压介质 KCl 的衍射峰位在图中用短棒标出)

Fig. 6 X-ray powder diffraction patterns at different pressures on compression (a) and decompression (b) (The inverted triangles indicate impurity peaks. The diffraction peaks of pyrite structure CuS₂ and pressure transmitting medium KCl are represented with vertical bars.)

(211)、(220)、(222)、(320)、(321)等衍射峰,表明 CuS₂依然保持黄铁矿结构。卸压至常压过程中, CuS₂的衍射峰仍保持宽状态直到常压,没有再次显现出类似 6.2 GPa 激光加热后的尖锐峰形,所以压力 对样品结晶度变差的影响是不可恢复的。此外,16.7 GPa 时开始出现两个杂峰(图 6中下三角指示),但 它们与其他衍射峰之间无明确几何关系,不能指认为同一种结构。因此,两个杂峰可能对应于激光高 温下可能产生的其他铜硫化合物(如 CuS 等)杂质。黄铁矿结构 CuS₂ 在低于 29.6 GPa压力范围内 X 射 线衍射谱的变化特征说明其在低于 30.0 GPa 压力范围内具有结构稳定性,不发生结构相变,与上述拉 曼实验结果保持一致,与 Hupen 等^[27]发现的结构相变结论不同。

2.4 体积-压力状态方程和格临爱森参数

同步辐射 X 射线衍射实验和第一性原理理 论计算得到的黄铁矿结构 CuS2 的晶胞体积随压 力变化关系如图7所示。实验和计算得到的晶胞 体积在对应压力下非常接近,对应压力最大体积 差小于 2%。运用 Birch-Murnaghan 状态方程分别 对衍射实验数据和理论计算数据进行拟合。将压 力导数 K₀'均固定为 4, 拟合得到黄铁矿结构 CuS_2 零压晶胞体积 V_0 和体积模量 K_0 分别为: $V_0(\text{Exp.}) = 193.8(5) \text{ Å}^3, K_0(\text{Exp.}) = 99(2) \text{ GPa},$ $V_0(\text{Calc.}) = 196.5(2) \text{ Å}^3, K_0(\text{Calc.}) = 85.6(7) \text{ GPa}_{\circ}$ 而 Hupen 等^[27]通过 CuS, 高压衍射实验给出黄铁 矿结构 CuS,的状态方程参数为 V_0 (Hupen)= 194.1(2) Å³, K_0 (Hupen) = 98.8(6) GPa $\boxplus K_0$ ' = 4(固定)。所有状态方程参数在表2中列出。可 以看出,本次实验所得零压体积和体积模量值与 Hupen 等^[27] 给出的结果基本一致, 而第一性原理 理论计算值与两个衍射实验值之间有少许差异。 此外,依据格临爱森参数计算公式

$$\gamma = -\frac{\mathrm{d}\ln\omega}{\mathrm{d}\ln p} = \frac{K_0}{\omega_0}\frac{\mathrm{d}\omega}{\mathrm{d}p} \tag{1}$$

式中: $\omega 和 \omega_0$ 分别为各拉曼模在高压和常压的波数; p 为压力; $d\omega/dp$ 为各拉曼模频率随压力的变化; K_0 选择本研究中状态方程拟合结果 K_0 (Exp.)= 99(2) GPa 和 K_0 (Calc.) = 85.6(7) GPa。计算得到的各振动模的格临爱森参数值(γ)在表 1 中给出。

图 7 理论计算和衍射实验的 CuS₂ 及其它过渡金属二硫化 物 MS₂(M = Mn, Fe, Co, Ni, Cu)的体积-压力变化关系(黑 色圆形和黑色三角形分别对应 X 射线衍射实验和第一性原 理理论计算结果。黑色实线和黑色虚线是对实验和计算数 据进行 Birch-Murnaghan 状态方程拟合结果。蓝色、绿色、 紫色、棕色和红色实线分别为文献给出的黄铁矿结构 MnS₂、FeS₂、CoS₂、NiS₂ 和 CuS₂ 状态方程结果。)

Fig. 7 Pressure-volume relationship of experimental and calculated CuS_2 and other transition metal disulfides $MS_2(M = Mn, Fe, Co, Ni, Cu)$ (The black circles and triangles represent the experimental and observed data of the CuS_2 , respectively. The solid black line and dotted black line are the Birch-Murnaghan equation of state fit respectively with listed parameters. The blue, green, purple, yellow, and red line shows the equation of state of the pyrite structure MnS_2 , FeS_2 , CoS_2 , NiS_2 , and CuS_2 in references.)

作为对比,一些黄铁矿结构二硫化物 MS₂(M = Mn, Fe, Co, Ni)的体积随压力变化曲线也在图 7 中给出,它们的状态方程参数^[14, 27, 41-43] 列于表 2 中。对应压力下,5 种黄铁矿结构二硫化物的体积大小 关系为 $V_{\rm Fe} < V_{\rm Co} < V_{\rm Ni} < V_{\rm Cu} < V_{\rm Mn}$,与 King 等^[23] 给出的 M—S 键长序列 $L_{\rm Fe-S} < L_{\rm Co-S} < L_{\rm Ni-S} < L_{\rm Cu-S} < L_{\rm Mn-S}$ 一致。5 种物质的体积模量中, FeS₂ 的体积模量最大, MnS₂ 的体积模量最小,而 CoS₂、NiS₂ 和 CuS₂ 的体积模量之间相差不大。体积模量大小同样与 M—S 键长关系密切,往往 M—S 键长越长体积 模量越小,则压缩性越强。说明在黄铁矿结构二硫化物 MS₂(M = Mn, Fe, Co, Ni)中, MS₆ 配位八面体 (M—S 键长)主导着晶胞体积大小和晶体压缩性, S—S 键长的影响较小,而 S—S 键对拉曼振动频率影 响更大。根据 CuS₂ 与其他黄铁矿结构二硫化物之间的相似性推测, Cu 与其他二硫化物中过渡金属阳 离子(Mn²⁺, Fe²⁺等)类似, 以+2 价形式存在。

Table 2 Comparison of zero-pressure bulk modulus (K_0) and unit formula volume (V_0) of CuS_2 with that of other pyrite structure transition-metal disulfides								
Compositions	Pressure range/GPa	$V_0/\text{\AA}^3$	K ₀ /GPa	K_0'	Reference			
MnS ₂	0-11.7	225.74(0)	65.9(3)	5.1(2)	Ref.[14]			
FeS_2	0-80	159.00(7)	140.2(15)	5.52(19)	Ref.[41]			
CoS_2	0-20	169.68(1)	94(2)	6.9(5)	Ref.[42]			
NiS_2	0-150	178.32	102.1	4.6	Ref.[43]			
CuS ₂	0-7	194.10(10)	98.8(6)	4(fix)	Ref.[27]			
CuS_2	0-29.6	193.8(5)	99(2)	4(fix)	This study (Exp.)			
CuS ₂	0-30	196.5(2)	85.6(7)	4(fix)	This study (Calc.)			

表 2 黄铁矿结构 CuS,与其他黄铁矿结构过渡金属二硫化物的零压体积模量和晶胞体积对比

ь...**н**. aniaan of dulug(K) and unit forTable 2 Co

Note: All MS₂(M = Mn, Fe, Co, Ni, Cu) are pyrite structure (*Pa3*) in *p*-range. All the V_0 are uniformly transformed to same units for comparison purposes.

3 结 论

利用金刚石压腔在不同温压条件下合成了黄铁矿结构 CuS,, 拓展了已知的 CuS, 热力学稳定区 间。通过显微拉曼光谱和高压同步辐射 X 射线衍射实验并结合第一性原理理论计算,发现了 CuS,在 低于 30.0 GPa 压力范围内保持结构稳定,不发生结构相变,与已知的 Hupen 等[27] 所给结论不同。拉曼 光谱研究表明, CuS, 所有拉曼模均随压力呈连续单调线性变化, 并给出了各个模的线性关系。利用 Birch-Murnaghan 状态方程对同步辐射 X 射线衍射实验和第一性原理计算得到的晶胞体积随压力变化 数据进行拟合得到, V₀(Exp.)=193.8(5) Å³, K₀(Exp.)=99(2) GPa, V₀(Calc.)=196.5(2) Å³, K₀(Calc.)= 85.6(7) GPa, K_0' 均固定为 4, 与 Hupen 等^[27] 研究给出的黄铁矿结构 CuS₂ 状态方程参数基本吻合。通过 和其他黄铁矿结构二硫化物 MS₂(M=Mn, Fe, Co, Ni)对比发现, MS₆ 配位八面体大小(M—S 键长)主导 着晶胞体积大小和晶体压缩性。它们之间的一致性变化规律似乎指示黄铁矿结构 CuS₂中的 Cu为+2价。黄铁矿结构CuS2的高温高压稳定性对于认识Cu在地球深部环境中的价态和赋存形式具 有重要指示意义。

参考文献:

- [1] BROSTIGEN G, KJEKSHUS A. Redetermined crystal structure of FeS₂(Pyrite) [J]. Acta Chemica Scandinavica, 1969, 23(6): 2186-2188.
- [2] BITHER T A, BOUCHARD R, CLOUD W, et al. Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties [J]. Inorganic Chemistry, 1968, 7(11): 2208-2220.
- [3] NOWACK E, SCHWARZENBACH D, HAHN T. Charge densities in CoS, and NiS, (pyrite structure) [J]. Acta Crystallographica Section B: Structural Science, 1991, 47(5): 650-659.
- [4] MAKOVICKY E. Crystal structures of sulfides and other chalcogenides [J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 7-125.
- [5] TEMPLETON D H, DAUBEN C H. The crystal structure of sodium superoxide [J]. Journal of the American Chemical Society, 1950, 72(5): 2251-2254.
- [6] KJEKSHUS A, RAKKE T. Preparation and properties of magnesium, copper, zinc and cadmium dichalcogenides [J]. Acta Chemica Scandinavica A, 1979, 33(8): 617-620.
- [7] KUWAYAMA Y, HIROSE K, SATA N, et al. The pyrite-type high-pressure form of silica [J]. Science, 2005, 309(5736): 923-925.
- [8] SHIRAKO Y, WANG X, TSUJIMOTO Y, et al. Synthesis, crystal structure, and electronic properties of high-pressure PdF₂type oxides MO₂(M= Ru, Rh, Os, Ir, Pt) [J]. Inorganic Chemistry, 2014, 53(21): 11616-11625.

- [9] YU R, ZHAN Q, DE JONGHE L C. Crystal structures of and displacive transitions in OsN₂, IrN₂, RuN₂, and RhN₂ [J]. Angewandte Chemie International Edition, 2007, 46(7): 1136–1140.
- [10] HU Q, KIM D Y, YANG W, et al. FeO₂ and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles
 [J]. Nature, 2016, 534(7606): 241–244.
- [11] LIU J, HU Q Y, BI W L, et al. Altered chemistry of oxygen and iron under deep Earth conditions [J]. Nature Communications, 2019, 10(1): 153.
- [12] KLEPPE A K, JEPHCOAT A P. High-pressure Raman spectroscopic studies of FeS₂ pyrite [J]. Mineralogical Magazine, 2004, 68(3): 433–441.
- [13] HARRAN I, CHEN Y Z, WANG H Y, et al. High-pressure induced phase transition of FeS₂: electronic, mechanical and thermoelectric properties [J]. Journal of Alloys and Compounds, 2017, 710: 267–273.
- [14] KIMBER S A J, SALAMAT A, EVANS S R, et al. Giant pressure-induced volume collapse in the pyrite mineral MnS₂ [J].
 Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5106–5110.
- [15] FUJII T, TANAKA K, MARUMO F, et al. Structural behaviour of NiS₂ up to 54 kbar [J]. Mineralogical Journal, 1987, 13(7): 448–454.
- [16] ELGHAZALI M A, NAUMOV P G, MU Q, et al. Pressure-induced metallization, transition to the pyrite-type structure, and superconductivity in palladium disulfide PdS₂ [J]. Physical Review B, 2019, 100(1): 014507.
- [17] HUANG S X, WU X, QIN S. Ultrahigh-pressure phase transitions in FeS₂ and FeO₂: implications for super-earths' deep interior
 [J]. Journal of Geophysical Research, 2018, 123(1): 277–284.
- [18] BITHER T A, PREWITT C T, GILLSON J L, et al. New transition metal dichalcogenides formed at high pressure [J]. Solid State Communications, 1966, 4(10): 533–535.
- [19] MUNSON R A. The synthesis of copper disulfide [J]. Inorganic Chemistry, 1966, 5(7): 1296–1297.
- [20] BAYLISS P. Crystal chemistry and crystallography of some minerals within the pyrite group [J]. American Mineralogist, 1989, 74(9/10): 1168–1176.
- [21] UEDA H, NOHARA M, KITAZAWA K, et al. Copper pyrites CuS₂ and CuSe₂ as anion conductors [J]. Physical Review B, 2002, 65(15): 155104.
- [22] KAKIHANA M, MATSUDA T D, HIGASHINAKA R, et al. Superconducting and fermi surface properties of pyrite-type compounds CuS₂ and CuSe₂ [J]. Journal of the Physical Society of Japan, 2019, 88(1): 014702.
- [23] KING H E, PREWITT C T. Structure and symmetry of CuS₂ (pyrite structure) [J]. American Mineralogist, 1979, 64(11/12): 1265–1271.
- [24] MOSSELMANS J F W, PATTRICK R A D, VAN DER LAAN G, et al. X-ray absorption near-edge spectra of transition metal disulfides FeS₂ (pyrite and marcasite), CoS₂, NiS₂ and CuS₂, and their isomorphs FeAsS and CoAsS [J]. Physics and Chemistry of Minerals, 1995, 22(5): 311–317.
- [25] FOLMER J C W, JELLINEK F, CALIS G H M. The electronic structure of pyrites, particularly CuS₂ and Fe_{1-x}Cu_xSe₂: an XPS and Mössbauer study [J]. Journal of Solid State Chemistry, 1988, 72(1): 137–144.
- [26] TOSSELL J A, VAUGHAN D J, BURDETT J K. Pyrite, marcasite, and arsenopyrite type minerals: crystal chemical and structural principles [J]. Physics and Chemistry of Minerals, 1981, 7(4): 177–184.
- [27] HÜPEN H, WILL G, HÖFFNER C, et al. X-ray diffraction of CuS₂ under high pressure [J]. Materials Science Forum, 1991, 79/80/81/82: 697–702.
- [28] NIWA K, TERABE T, SUZUKI K, et al. High-pressure stability and ambient metastability of marcasite-type rhodium pernitride [J]. Journal of Applied Physics, 2016, 119(6): 065901.
- [29] TSE J S, KLUG D D, UEHARA K, et al. Elastic properties of potential superhard phases of RuO₂ [J]. Physical Review B, 2000, 61(15): 10029–10034.
- [30] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676.
- [31] DATCHI F, LETOULLEC R, LOUBEYRE P. Improved calibration of the SrB₄O₇: Sm²⁺ optical pressure gauge: advantages at very high pressures and high temperatures [J]. Journal of Applied Physics, 1997, 81(8): 3333–3339.
- [32] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248.
- [33] GONZALEZ-PLATAS J, ALVARO M, NESTOLA F, et al. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching [J]. Journal of Applied Crystallography, 2016, 49(4): 1377–1382.
- [34] TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package

[J]. Journal of Applied Crystallography, 2013, 46(2): 544–549.

- [35] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868.
- [36] ECKERT B, SCHUMACHER R, JODL H J, et al. Pressure and photo-induced phase transitions in sulphur investigated by Raman spectroscopy [J]. High Pressure Research, 2000, 17(2): 113–146.
- [37] PEIRIS S M, SWEENEY J S, CAMPBELL A J, et al. Pressure-induced amorphization of covellite, CuS [J]. The Journal of Chemical Physics, 1996, 104(1): 11–16.
- [38] ANASTASSAKIS E, PERRY C H. Light scattering and ir measurements in XS₂ pryite-type compounds [J]. The Journal of Chemical Physics, 1976, 64(9): 3604–3609.
- [39] VOGT H, CHATTOPADHYAY T, STOLZ H J. Complete first-order Raman spectra of the pyrite structure compounds FeS₂, MnS₂ and SiP₂ [J]. Journal of Physics and Chemistry of Solids, 1983, 44(9): 869–873.
- [40] SOURISSEAU C, CAVAGNAT R, FOUASSIER M. The vibrational properties and valence force fields of FeS₂, RuS₂ pyrites and FeS₂ marcasite [J]. Journal of Physics and Chemistry of Solids, 1991, 52(3): 537–544.
- [41] THOMPSON E C, CHIDESTER B A, FISCHER R A, et al. Equation of state of pyrite to 80 GPa and 2 400 K [J]. American Mineralogist, 2016, 101(5): 1046–1051.
- [42] BRAZHKIN V V, DZHAVADOV L N, EL'KIN F S. Study of the compressibility of FeSi, MnSi, and CoS₂ transition-metal compounds at high pressures [J]. JETP Letters, 2016, 104(2): 99–104.
- [43] YUY G, ROSS N L. Prediction of high-pressure polymorphism in NiS₂ at megabar pressures [J]. Journal of Physics: Condensed Matter, 2010, 22(23): 235401.

High Pressure Raman Spectroscopy and X-ray Diffraction of CuS₂

JIANG Feng^{1,2,3}, ZHAO Huifang^{1,2,3}, XIE Yafei^{1,2,3}, JIANG Changguo^{1,2,3}, TAN Dayong^{1,2}, XIAO Wansheng^{1,2}

(1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;

2. Key Lab of Guangdong Province for Mineral Physics and Materials, Guangzhou 510640, Guangdong, China;

3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Pyrite structure CuS_2 was synthesized in diamond anvil cell at high pressures and high temperatures. Using Raman spectroscopy and synchrotron X-ray diffraction, the pyrite-type CuS_2 was found to be stable in 0 - 30 GPa without any phase transition. Raman spectroscopy show that all observed Raman frequencies increasemonotonously with increasing pressures. Fitting experimental pressure and volume data of X-ray diffraction with Birch-Murnaghan equation of state, gives $V_0 = 193.8(5)$ Å³, $K_0 = 99(2)$ GPa and $K_0' = 4$ (fix). The dependencies of Raman frequencies and unit-cell volumes with pressures are coincident with the results of first-principles calculation. The results of calculation properly depict that of experiments. Compared with other pyrite structure transition-metal disulfides $MS_2(M = Mn, Fe, Co, Ni)$, the length of M—S dominates the unit-cell volume and compressibility of MS₂, and the Cu cation tends to be +2 valance in the CuS₂. This study makes up for the lack of high-pressure Raman and XRD research of CuS₂, and confirms structural stability of pyrite-type CuS₂ at high pressures and high temperatures. The results are important for comprehending the physical and chemical properties of CuS₂ and realizing the unified law of pyrite structure materials. It's also meaningful in discussion of the valance and distribution of copper in deep Earth.

Keywords: pyrite structure; CuS₂; Raman spectroscopy; X-ray diffraction; high pressure