

钙钛矿氧化物BaMO₃(M为过渡金属)的晶体结构和物理性质

赵景庚

Crystal Structure and Physica Properties of Perovskite Oxide BaMO₃ (M Being Transition Metal)

ZHAO Jinggeng

引用本文: 赵景庚.钙钛矿氧化物BaMO₃(M为过渡金属)的晶体结构和物理性质[J].高压物理学报, 2024, 38(5):050103. DOI: 10.11858/gywlxb.20240753 ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO₃ (M Being Transition Metal)[J]. Chinese Journal

ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO₃ (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5):050103. DOI: 10.11858/gywlxb.20240753

在线阅读 View online: https://doi.org/10.11858/gywlxb.20240753

您可能感兴趣的其他文章

Articles you may be interested in

A位有序四重钙钛矿氧化物:结构、物性和展望

A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects 高压物理学报. 2024, 38(1): 010101 https://doi.org/10.11858/gywlxb.20230785

Pb系简单钙钛矿氧化物PbMO₃(M=3d过渡族金属)的高温高压制备及物性研究

High Pressure Synthesis and Physical Properties Investigation of Pb–Based Simple Perovskite Oxides $PbMO_3$ (M=3*d* transition metals)

高压物理学报. 2024, 38(1): 010102 https://doi.org/10.11858/gywlxb.20230786

铜基稀土过渡金属钙钛矿 $La_{1x}Nd_{x}CuO_{3}(0 \le x \le 1)$ 的高压合成

High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite $La_{1x}Nd_{x}CuO_{3}$ ($0 \le x \le 1$)

高压物理学报. 2024, 38(1): 010104 https://doi.org/10.11858/gywlxb.20230784

双钙钛矿反铁磁体Mn₂FeOsO₆的合成条件和磁性性质的理论预测

Prediction of Synthesis Condition and Magnetic Property of Screened Metallic Double-Perovskite Antiferromagnet Mn2FeOsO6

高压物理学报. 2024, 38(1): 010105 https://doi.org/10.11858/gywlxb.20230783

高压合成双钙钛矿Y_NilrO6中场冷诱导的巨磁电阻效应

 $Cooling \ Fields \ Induced \ Giant \ Magnetoresistance \ in \ High-Pressure \ Synthesized \ Double \ Perovskite \ Y_2 NiIrO_6$

高压物理学报. 2024, 38(1): 010103 https://doi.org/10.11858/gywlxb.20230781

Pb系简单钙钛矿氧化物PbMO₂(M=3d过渡族金属)的高温高压制备及物性研究

High Pressure Synthesis and Physical Properties Investigation of Pb–Based Simple Perovskite Oxides $PbMO_3$ (M=3*d* transition metals)

高压物理学报. 2024, 38(1): 010102 https://doi.org/10.11858/gywlxb.20230786

DOI: 10.11858/gywlxb.20240753

钙钛矿氧化物 BaMO₃(M 为过渡金属)的 晶体结构和物理性质

赵景庚

(哈尔滨工业大学物理学院,黑龙江哈尔滨 150080)

摘要:钙钛矿氧化物 BaMO₃(M 为过渡族金属)具有复杂的晶体结构和物理性质,本文系统地总结了 BaMO₃的研究进展,重点关注在 M 元素变化过程中晶体结构和物理性质的演化,以及高压调控下的结构相变、电输运性质和磁学性质的变化,讨论了 M 离子半径及合成压力对六方钙钛矿到钙钛矿演化过程的影响,同时对该领域中一些问题做了展望,探讨了这一体系可能出现的新的原子组合和结构,相应材料可能具有的新特性和科学意义。

关键词:高温高压合成;过渡金属氧化物;晶体结构;物理性质;钙钛矿氧化物

中图分类号:O521.2 文献标志码:A

钙钛矿或钙钛矿结构化合物中存在自旋-自旋和自旋-轨道间的相互作用,展示出丰富的物理行为, 引发了大量关注。钙钛矿是一种常见的晶体结构,普遍的表达式为 ABX₃(ABX₃ 型物质不一定都形成 钙钛矿),其中:A 位是半径较大的阳离子,如碱土金属或者稀土元素离子,配位数为 9~12; B 位是半径 较小的阳离子,如过渡族金属离子,配位数为 6; X 位是半径较大的阴离子,如氧、氟离子等。B 和 X 离 子构成 BX₆八面体,相邻八面体之间以顶点的 X 离子连接,形成三维结构。理想情况下,钙钛矿结晶为 立方晶系(空间群: *Pm*3*m*),图 1(a)显示了其晶体结构。

实际材料中,立方钙钛矿可以畸变为其他形式。Goldschmidt^[1]引入容忍因子 t,用于定义晶体结构 偏离立方钙钛矿的畸变程度

$$t = \frac{r_{\rm A} + r_{\rm X}}{\sqrt{2}(r_{\rm B} + r_{\rm X})} \tag{1}$$

式中: r_A 、 r_B 和 r_X 分别为A、B和X离子的半径。对于钙钛矿材料,分为3种情况: (1)当0.9 < $t \le 1.0$ 时,材料为立方结构; (2)当0.8 < $t \le 0.9$ 时,晶格发生扭曲畸变, BX₆八面体绕某一方向旋转,材料为低 对称性结构; (3)当t > 1.0时,材料可能形成六方、 三方或单斜等层状结构。

第1种情况对应的是未发生畸变的立方钙钛 矿,如图1(a)所示。在第2种情况下,全部BX₆八 面体通过顶点的X离子连接,与立方钙钛矿中的 连接方式一致。BX₆八面体具有多种旋转方式^[2], 可以形成不同类型的畸变钙钛矿,如四方、正交 或单斜结构。空间群为*Pnma*的正交钙钛矿是 一种常见的畸变钙钛矿,其晶体结构如图1(b) 所示。

图 1 (a) 立方和 (b) 正交钙钛矿的晶体结构示意图 Fig. 1 Schematic views of the crystallographic forms of (a) cubic and (b) orthorhombic perovskite

 ^{*} 收稿日期: 2024-03-15; 修回日期: 2024-04-21
 基金项目: 国家自然科学基金(12074093)
 作者简介: 赵景庚(1980-), 男, 博士, 副教授, 主要从事高压凝聚态物理研究. E-mail: zhaojg@hit.edu.cn

对于第3种情况,A离子与X离子半径接近,它们在垂直于c轴的平面上以1:3的比例密堆排列, B离子填充在近邻平面所形成的八面体空隙中,部分或全部BX₆八面体以X₃平面连接,形成六方(如 2H、4H、6H)、三方(如3R、9R、12R)或单斜(如9M、5M、6M)等层状结构。这类含有BX₆八面体共面 连接的ABX₃型化合物一般称为六方钙钛矿。晶体结构可采用数字组合字母的方式表示,其中,数字表 示一个晶胞内含有AX₃平面的个数(三方结构采用六方晶胞时,AX₃平面个数是实际的3倍;单斜结构 的数字根据与之相似的六方或三方结构而来),字母表示结构类型(H、R和M分别代表六方、三方和 单斜结构)。当BX₆八面体共面连接时,A的配位数仍为12,但配体X的排列方式与八面体共顶点连接 时的情况不同,如图2所示。对于第1和第2种情况的钙钛矿,立方、四方、正交和单斜等结构均表示 为3C。

图 2 BX₆八面体 (a) 共顶点连接和 (b) 共面连接时 A-X 配位示意图 Fig. 2 Schematic views of A-X coordinations while BX₆ octahedrons are connected by (a) vertex and (b) plane

在高温高压环境下,当A离子半径较大时,ABX3易形成不同类型的六方钙钛矿。六方钙钛矿中多个BX6八面体共面连接可形成B2X9、B3X12、B4X15等多聚体。在多聚体内部,相邻的B离子距离较近, B离子之间的相互作用比钙钛矿更复杂,从而呈现出一些与钙钛矿不同的物理性质。在足够高的合成 压力下或B离子半径增大时,六方钙钛矿可以转变为钙钛矿。下文中ABX3型化合物的多层堆积变体 包括六方钙钛矿和钙钛矿。

Ba²⁺具有较大的半径^[3],可以与 O²⁻形成密堆积。当 B 为过渡金属离子 M 时, BaMO₃ 易形成六方钙 钛矿。当改变合成条件时,它们可以形成不同类型的六方钙钛矿,也可能形成钙钛矿。六方钙钛矿中, 共面连接八面体的存在可能会对这类化合物的电学和磁学性能产生巨大影响,是材料物理学中许多量 子材料定向研究的主题^[4]。因其潜在的低磁矩或轨道占有率排序的几何挫折, BaMO₃ 六方钙钛矿是低 温下量子自旋液体的候选者,在低温下可能存在量子临界点。在 BaMO₃ 中,随着合成压力的增加, 2H→9R→4H→6H→3C 是常见的演化顺序, MO₆ 八面体共顶点连接的比例逐渐增加,由于共顶点连接 的八面体中 M 离子的间距大于多聚体内 M 离子的间距,上述转变被认为是 M 离子在压力下重新分布 以减少静电排斥。此外,对于同一 M, BaMO₃ 钙钛矿可能表现出与六方钙钛矿不同的物理性质, 如 BaRuO₃ 钙钛矿具有与六方钙钛矿不同的巡游铁磁性。因此,本文主要讨论 BaMO₃ 多层堆积变体所展 示的复杂晶体结构和物理性质,并探索结构和物性随 M 离子半径及合成压力变化的演化规律。

1 M为3d过渡金属离子的BaMO,多层堆积变体

1.1 BaTiO₃的晶体结构

常压下合成的 BaTiO₃ 为六方钙钛矿^[5],属于六方晶系,空间群为 P6₃/mmc。由于一个晶胞内沿 c 轴 方向有 6 个 BaO₃ 层,该结构表示为 6H 相,晶体结构见图 3(a)。在 ABX₃ 材料的多层堆积变体中,分别 用 c 和 h 代表立方和六方堆积,其中,c表示上下 2 层 BaO₃ 平面的原子排列方式不同(见图 2(a)),h表示 上下 2 层 BaO₃ 平面的原子排列方式相同(见图 2(b))。在 6H 相中, MO₆ 八面体和 M₂O₉ 二聚体共顶点 连接,沿 c 轴方向交替排列,所以 BaO₃ 层的堆积序列为 (hcc)₂。图 3(b)显示了 BaTiO₃ 的温度-压力(*T-p*) 相图^[6],在不同的条件下,BaTiO₃ 可以形成多种钙钛矿,包括立方、四方、三方、正交相等。例如,在 3.2 GPa 的压力下,BaTiO₃ 在 298 K 即可转变为立方钙钛矿。

图 3 (a) 6H-BaMO₃ 的晶体结构示意图, (b) BaTiO₃ 的温度-压力相图⁶

Fig. 3 (a) Schematic views of crystal structure of 6H-BaMO₃; (b) temperature-pressure phase diagram of $BaTiO_3^{[6]}$

1.2 BaVO₃的晶体结构和物理性质

在常压下合成的 BaVO₃ 为 5H 结构^[7],属于三 方晶系,空间群为 $P\overline{3}m1_{\circ}$ BaVO₃ 在 15 GPa、1350 °C 的合成条件下形成立方钙钛矿(见图 1(a))^[8]。利 用复杂的化学方法或者高温高压方法(6.0~6.5 GPa、 1200 °C), BaVO₃ 可以形成 14H 相(六方结构,空 间群 $P6_3/mmc$)^[9]。5H 和 14H 相的晶体结构如图 4 所示。在 5H 相中, 1 个 M₃O₁₂ 三聚体与 2 个 MO₆ 八面体共顶点连接,沿 c 轴交替排列;在 14H 相 中, 3 个 M₂O₉ 二聚体共顶点连接,然后与 1 个 MO₆ 八面体共顶点连接,沿 c 轴交替排列。因此, 在 5H 和 14H 相中, BaO₃ 平面的堆积序列分别为 chhcc 和 (hchchcc)₂。

如图 5^[7] 所示, 5H-BaVO₃ 的电阻率-温度(ρ-T) 曲线在 25 K 附近存在转折点,即发生了金属-半导 体转变。5H-BaVO₃ 具有顺磁性,其低温磁化率-温度 (χ-T) 曲线满足

$$\chi = \frac{C}{T - \theta} + \chi_0$$

(2)

式中:C、 θ 和 χ_0 分别为居里常数、外斯温度和与温度无关的顺磁磁化率。通过对 χ -T曲线进行拟合,

050103-3

得到 $\chi_0 = 0$; 顺磁有效磁矩 μ_{eff} 为 0.305 μ_B (μ_B 为波尔磁子), 比 V⁴⁺的理论值 1.73 μ_B 小得多; 外斯温度 θ 为 -6.9 K, 说明 V⁴⁺离子之间的反铁磁相互作用占主导地位。

图 6 表明 3C-BaVO₃ 是顺磁性金属^[8], 电阻率较大。低温时, ρ 与 T 的关系满足

$$\rho = \rho_0 + AT^n \tag{3}$$

式中: ρ_0 为剩余电阻率, *A* 为特征常数, *n* 为电阻指数。由图 6 可得: ρ_0 = 4.07 Ω ·cm, *n* = 2, 说明 3C-BaVO₃ 属于费米液体金属。

Fig. 6 (a) ρ -*T* and (b) χ -*T* curves of the 3C-BaVO₃^[8]

1.3 BaCrO₃的晶体结构和物理性质

图 7显示了 BaCrO₃的压力-温度相图^[10]。在 高温高压合成条件下, BaCrO₃形成了 5H(图 4(a))、 4H、6H(图 3(a))和 3C(图 1(a))等多层堆积变体^[10-12]。 4H 相属于六方晶系,空间群为 *P6₃/mmc*,图 8(a)显 示了它的晶体结构,其中,2个 MO₆八面体共面连 接,形成 M₂O₉ 二聚体,相邻的 M₂O₉ 二聚体共顶点 连接,沿*c*轴方向交替排列,因此, BaO₃ 层的堆积 序列为 (hc)₂。

当压强在 6.0~6.5 GPa 区间, 合成温度在 1200~ 1 300 ℃ 区间时, BaCrO₃ 可形成 14H(图 4(b))、 12R、27R 等多层堆积变体^[13-15]。图 8(b) 和图 8(c) 分别显示了 12R 和 27R 的晶体结构。在 12R 相

(三方结构,空间群为 $R\overline{3}m$)中,1个 $M_{3}O_{12}$ 三聚体与1个 MO_{6} 八面体共顶点连接,沿c轴交替排列;在 27R相(三方结构,空间群为 $R\overline{3}m$)中,4个 $M_{2}O_{9}$ 二聚体共顶点连接,然后与1个 MO_{6} 八面体共顶点连 接,沿c轴交替排列。因此,在12R和27R相中,BaO₃平面的堆积序列分别为(hhcc)₃和(hchchchcc)₃。

Cr 离子的巡游性较差,所以 BaCrO₃ 为电阻率很大的绝缘体,文献 [10] 对 BaCrO₃ 物理性质的研究 主要集中在磁学性质方面。如图 9 所示, 5H-BaCrO_{2.8} 具有反铁磁性,其奈尔温度 T_N 为 250 K^[10], 48 K 下 零场冷(zero field cooling, ZFC)和场冷(field cooling, FC)曲线的分离是由样品中的 BaCr₂O₄ 杂相所致。利用 式 (2) 对 260~300 K 之间的数据进行拟合,得到 μ_{eff} 为 $3.4\mu_B$,介于 Cr⁴⁺的理论值 $2.83\mu_B$ 和 Cr³⁺的理论值 $3.87\mu_B$ 之间; θ 为-684 K,说明 Cr 离子之间的反铁磁自旋相互作用占主导地位。

图 10(a) 显示 6H-BaCrO₃ 具有亚铁磁性,其居里温度 $T_{\rm c}$ 为 192 K^[16],利用式 (2) 对 275~300 K 之间 的数据进行拟合,得到 $\mu_{\rm eff}$ 为 2.51 $\mu_{\rm B}$,接近 Cr⁴⁺的理论值 2.83 $\mu_{\rm B}$; θ 为-316 K,说明 Cr 离子之间的反铁磁相 互作用占主导地位。图 10(b) 中,2 K 下的磁滞回线说明 6H-BaCrO₃ 在低温下的每个 Cr⁴⁺的饱和磁矩为

0.09μ_B,与低温中子衍射结果一致。图 10(c)显示了 6H-BaCrO₃ 在低温下的磁结构, Cr₂O₉ 二聚体中 Cr 离子的磁矩平行排列, CrO₆ 八面体与 Cr₂O₉ 二聚体中的 Cr 离子通过 O 离子连接,其中, Cr 离子的磁矩反 平行排列,所以, 6H-BaCrO₃ 整体上显示出亚铁磁性。

图 8 (a) 4H-BaMO₃、(b) 12R-BaMO₃和 (c) 27R-BaMO₃的晶体结构示意图 Fig. 8 Schematic diagram of crystal structure of (a) 4H-BaMO₃, (b) 12R-BaMO₃, and (c) 27R-BaMO₃

Fig. 10 (a) χ -T curves, (b) magnetic hysteresis loops and (c) magnetic structure of the 6H-BaCrO₃^[16]

1.4 BaMnO₃的晶体结构和物理性质

在常压、1100 ℃ 的合成条件下, BaMnO₃ 形成六方层状结构(2H 相, 空间群为 *P*6₃/*mmc*)^[17-18], 图 11(a) 显示了 2H-BaMnO₃ 的晶体结构, 在 *c* 轴方向上展现了 2 个晶胞, 其中, 八面体全部共面连接, 沿 着 *c* 轴方向呈链状排布。在高温高压合成条件下, BaMnO₃ 形成了 9R、4H(图 8(a))和 6H(图 3(a))等六 方钙钛矿结构^[18-21]。在其他的常压高温合成条件下, BaMnO₃ 形成了 6H'(与 6H 相不同的另外一种六层 结构)、8H、10H、15R、21R、27R'(与 27R 相不同)和 33R 等六方钙钛矿结构^[22-28]。图 11(b)~图 11(g)

图 11 (a) 2H-BaMO₃、(b) 9R-BaMO₃、(c) 6H'-BaMO₃、(d) 8H-BaMO₃、(e) 10H-BaMO₃、 (f) 15R-BaMO₃和(g) 21R-BaMO₃的晶体结构示意图

显示了 9R、6H′、8H、10H、15R 和 21R 相的晶体结构。

在 6H'相(六方结构,空间群为 $P\overline{6}m2$)中,1个 M_2O_9 二聚体与1个 M_4O_{15} 四聚体共顶点连接,沿 c 轴 交替排列;在 8H 相(六方结构,空间群为 $P6_3/mmc$)中,相邻的 M_4O_{15} 四聚体共顶点连接,沿 c 轴交替排列;在 10H 相(六方结构,空间群为 $P6_3/mmc$)中, M_2O_9 二聚体和 M_3O_{12} 三聚体共顶点连接,沿 c 轴交替排列。9R、15R、21R、27R'和 33R 相均为三方结构,所属空间群为 $R\overline{3}m$,结构中分别形成 M_3O_{12} 三聚体、 M_5O_{18} 五聚体、 M_7O_{24} 七聚体、 M_9O_{30} 九聚体和 $M_{11}O_{36}$ 十一聚体,这些多聚体共顶点连接,沿 c 轴交替排列。因此,在 6H'、8H、10H、9R、15R、21R、27R'和 33R 相中,BaO₃ 平面的堆积序列分别为 hchhhc、(hhhc)₂、(hhchc)₂、(hhchc)₃、(hhhhc)₃、(hhhhhhc)₃、(hhhhhhhc)₃和 (hhhhhhhhc)₃。

与 BaCrO₃ 类似, BaMnO₃ 也是电阻率很大的绝缘体。图 12(a) 显示了 2H-BaMnO₃ 的 χ -T 曲线^[17]。 2H-BaMnO₃ 在低温下表现出反铁磁性,每一个链中近邻自旋均为反平行排列,其 $T_N = 59$ K,在 1.7 K 时, 每个 Mn⁴⁺的磁矩为 1.31 μ_B 。图 12(b) 和图 12(c)^[22] 显示,4H-BaMnO₃ 和 6H-BaMnO₃ 在低温下均表现出反 铁磁性, T_N 分别为 263 和 220 K,6H 相在低温下还出现一个反铁磁转变,低温相为倾斜反铁磁有序,对 应的奈尔温度 $T_N = 25$ K。6H 相的 μ_{eff} 为 3.84 μ_B ,接近 Mn⁴⁺的理论值 3.87 μ_B ; θ 为-219 K,说明 Mn 离子之 间的反铁磁相互作用占主导地位。图 12(d) 显示了 15R-BaMnO₃ 的 *M*-T 曲线^[26],其中,奈尔温度 $T_N =$ 230 K。在短程有序温度 $T_s = 330$ K 下,15R-BaMnO₃ 表现出短程磁有序。局域晶格畸变温度 $T_D =$ 280 K 对应于拉曼频率随温度的突变。文献 [26-27] 均未讨论 15R 相在 40 K 下的磁学性质。

1.5 BaFeO,的晶体结构和物理性质

在常压下合成的 BaFeO_{2.5} 中, Fe-O 多面体都以顶点上的 O 离子连接^[29]。BaFeO_{2.5} 经大于 600 ℃ 的 高温氧化处理可得 6H 相(图 3(a))^[30-31]。BaFe[(CN)₅NO]·3H₂O 经氧化热解可得 10H 相(图 11(e))^[32]。 在高温高压合成条件下, BaFeO₃ 可以形成 12 层结构("12R")^[33], 其空间群为 *R3m*, 如图 13(a) 所示。但 最近的研究表明, BaFeO₃ 在高温高压下应形成单斜畸变的 12 层结构(12M)^[34], 属于单斜晶系, 空间群 为 C2/m, 如图 13(b) 所示。图 13(b) 中, 紫色边框 为晶胞边界, 绿色边框为从中划出 12R 结构的"晶 胞边界"。在高温下(570 K), 12M-BaFeO₃ 形成 12R 结构(图 8(b))^[34]。BaFeO₂₅ 在较低温度(200 ℃) 下经氧化处理可得 3C 相(图 1(a))^[35-37]。

图 14(a) 显示了 6H-BaFeO₃ 的 χ -*T* 曲线^[31]。 6H-BaFeO₃ 在低温下具有反铁磁性,其 T_N 约为 170 K。在高温下, 6H-BaFeO₃ 的 χ -*T* 曲线满足居 里-外斯定律,然而,在 170~230 K 区间, χ^{-1} -*T* 曲 线偏离了线性关系(见图 14(a) 中的插图)。由图 14(a) 中的插图可以得到, μ_{eff} 约为 2.39 μ_B 。如图 14(b) 所示,在升温的过程中,12M-BaFeO₃ 在 280 K 处经 历了从顺磁到反铁磁性的转变^[33]。通过变温中子 衍射数据计算各个位置上 Fe 离子的磁矩后发现, 在 500 K 处,高温下部分 Fe⁴⁺转变为 Fe³⁺和 Fe⁵⁺,即

图 13 (a) "12R"-BaMO₃和 (b) 12M-BaMO₃的 晶体结构示意图 Fig. 13 Schematic diagram of crystal structure of

(a) "12R"-BaMO₃ and (b) 12M-BaMO₃

电荷发生了转移,对应于 12R 相(空间群为 R3m)转变为 12M 相(空间群为 C2/m)。在 280 K 处, Fe 离子 也发生了电荷转移,对应于反铁磁转变。在 50 K 处,发生了不同位置的 Fe³⁺和 Fe⁵⁺之间的转换,对应 *X-T* 曲线在 50 K 下的转变。图 14(c)显示了 12M-BaFeO₃在 280~100 K 区间和 100 K 下的磁结构^[34],其中, Fe 离子的磁矩基本上反平行排列。

图 14 (a) 6H-BaFeO₃^[31]和 (b) 12M-BaFeO₃^[34]的 χ -T 曲线, (c) 12M-BaFeO₃ 的磁结构^[34] Fig. 14 χ -T curves of (a) 6H-BaFeO₃^[31] and (b) 12M-BaFeO₃^[34], (c) magnetic structure of the 12M-BaFeO₃^[34]

如图 15(a) 所示, 3C-BaFeO₃ 多晶体在低温下具有铁磁性^[36], 其 $T_{\rm C}$ 为 110 K, 在此温度下, ZFC 和 FC 曲线发生分离。利用式 (2) 拟合 250~300 K 区间的 χ -T 曲线, 得到 $\mu_{\rm eff}$ 为 5.5 $\mu_{\rm B}$, 介于 Fe³⁺的理论值 5.916 $\mu_{\rm B}$ 和 Fe⁴⁺的理论值 4.899 $\mu_{\rm B}$ 之间。拟合得到的 θ 为 163 K, 说明近邻 Fe 离子的自旋是平行排列的。 图 15(b) 显示了 3C-BaFeO₃ 单晶体的 χ -T 曲线, 外加磁场分别平行于 (110) 面和 (111) 面。与多晶材料相 比, 单晶体的磁性更为复杂^[37], 在 181 K 处, 3C-BaFeO₃ 单晶体经历了自旋玻璃转变, 在低温下经历了 2 个反铁磁性转变, $T_{\rm N}$ 分别为 117 和 97 K。利用式 (2) 拟合 210~300 K 区间的 χ -T 曲线, 得到 $\mu_{\rm eff}$ 为 6.15 $\mu_{\rm B}$, 更接近于 Fe³⁺的理论值。拟合得到的 θ 为 165.5 K, 说明近邻 Fe 离子之间的铁磁相互作用占主导 地位。Liu 等^[37]认为, 正的外斯温度对应于 3C-BaFeO₃ 中旋转的铁磁平面内近邻 Fe 离子之间的相互作 用, 但整个晶体的自旋结构是反铁磁的。

Fig. 15 χ -*T* curves of (a) polycrystalline^[36] and (b) monocrystalline^[37] 3C-BaFeO₃

1.6 BaCoO₃的晶体结构和物理性质

在高氧压环境下合成的 BaCoO₃为 2H 相(图 11(a))^[38-42]。Ba(NO₃)₂和 Co(NO₃)₂·6H₂O 在高温下反应,也可得到 2H-BaCoO₃多晶体^[43]。利用高温高压方法(1200 ℃、6.0 GPa)合成的 BaCoO_{2.37} 基本上也是 2H 结构^[44],但 Ba 离子的位置不同,如图 16(a)所示,Ba 占据 2 个不同位置,占据率分别为 0.802 和 0.099。这一结构可称为 2H'相,其 *c* 轴较短,导致近邻的 Co-Co 距离仅为 2.07 Å,小于 2H 相中的 Co-Co 距离 2.38 Å。将 BaCO₃和 Co₃O₄在 904 ℃ 下烧结可得 12H 结构的 BaCoO_{2.6}^[45],该结构为六方结构,空间群为 *P*6₃/*mmc*。图 16(b)显示了它的晶体结构,其中,M₄O₁₅ 四聚体与 MO₄ 四面体以顶点上的 O 离子连接,但 MO₄ 四面体之间不连接。将 BaCO₃和 Co₃O₄在 1000 ℃ 下烧结可以得到 5H 结构的 BaCoO_{2.74} (图 4(a))^[46]。BaF₂、BaCO₃和 Co₃O₄在氩气流和高温下可得 BaCoO_{2.22} 单晶体^[47],其晶体结构见图 16(c)。BaCoO_{2.22} 单晶体为立方钙钛矿,但与标准结构略有区别,称为 3C'相。Co 离子不在 CoO₆ 八面体的中心位置,Co 离子的占据率为 1/8,Co-O 距离不等,O-Co-O 夹角不等于 180°。将 BaO₂、CoO 和 Co₂O₃ 在高温下烧结,可得 3C'-BaCoO_{2.22} 多晶体,并伴随少量 CoO 杂质^[47]。

Fig. 16 Schematic diagram of crystal structure of (a) 2H'-BaMO₃, (b) 12H-BaMO₃, and (c) 3C'-BaMO₃

第5期

图 17(a) 显示了 2H-BaCoO₃ 的多晶体和单晶体的 ρ -*T* 曲线^[40], 单晶体和多晶体均为半导体, 但其电输运性质有明显差别。图 17(a) 中的插图显示了单晶体在 160 K 以上的电阻率 ρ 随着温度的变化, 拟合得能隙 E_g 为 0.061 eV。图 17(b) 显示了 2H-BaCoO₃ 单晶体在低温下的 χ -*T* 曲线(下标 *c* 和 *ab* 分别代表外磁场 *H* 平行 *c* 轴和 *ab* 平面), 2H-BaCoO₃ 单晶体在低温下具有二维反铁磁性, T_N 为 15 K, 与多晶体的结果^[41-42] 相似。通过拟合 150 K 以上的 χ -*T* 数据, 得到 μ_{eff} 为 1.76 μ_B , 与低自旋态 Co⁴⁺的理论值 1.73 μ_B 基本一致。 θ 为-25 K, 表明近邻的 Co离子之间的反铁磁相互作用占主导地位。

Fig. 17 (a) ρ -*T* and (b) χ -*T* curves of the 2H-BaCoO₃ single crystal^[40]

1.7 其 他

在高氧压环境下合成的 BaNiO₃为 2H 相(图 11(a))^[48]。在低自旋态的 Ni⁴⁺中没有未成对的单电子^[49],因此, 2H-BaNiO₃ 在低温下具有抗磁性。当 M 为 Sc、Cu 和 Zn 时,未形成 BaMO₃ 型化合物。

2 M 为 4d 或 5d 过渡金属离子的 BaMO, 多层堆积变体

2.1 BaRuO,的晶体结构和物理性质

在常压、1100 ℃ 的合成条件下, BaRuO₃ 形成 9R 相^[50-51]; 在高温高压合成条件下, BaRuO₃ 形成 4H、6H 或 3C 相^[52-55]; 在 150 MPa、650 ℃ 的合成条件下, 获得了 BaRuO₃ 的 10H 相单晶^[56]。9R、4H、6H、3C 和 10H 相的晶体结构见图 11(b)、图 8(a)、图 3(a)、图 1(a) 和图 11(e)。

如图 18(a)^[54] 所示, 9R-BaRuO₃ 在较高温度下为金属, 在低温下变为绝缘体, 其金属-绝缘体转变温度 $T_{\rm MI}$ 约为 118 K。4H-BaRuO₃ 和 6H-BaRuO₃ 在实验温度范围内均为金属, 在较高温区, ρ 和 T 均不满足布洛赫线性关系, 说明它们属于坏金属。如图 18(a) 中的插图所示, 4H-BaRuO₃ 在低温下的 ρ -T关系满足式 (3), 其中 n = 2。所以, 4H-BaRuO₃ 属于费米液体金属^[54], ρ_0 = 0.153 mΩ·cm, 剩余电阻比率($r_{\rm RRR}$ = $\rho_{300 \text{ K}}/\rho_{T\to 0}$)等于 8.11。6H-BaRuO₃ 在低温下的 ρ -T关系满足式 (3), 其中 n = 3/2, 表明 6H-BaRuO₃ 在低温下的 $r_{\rm RRR}$ 世 4H 相的小, 说明 6H 相的金属性比 4H 相弱。6H 相中, Ru 与 Ru 之间通过八面体顶点 O 连接的比例更大, Ru₂O₉ 二聚体中 Ru-Ru 之间的距离更长, 这可能是其金属性比 4H 相弱的原因。

图 18(b) 显示了 BaRuO₃ 的 9R、4H 和 6H 相的磁化率随温度的变化关系,由于 ZFC 和 FC 曲线一致,所以图中只显示 ZFC 结果。9R-BaRuO₃ 在高温下具有短程反铁磁性,*T*_N 约为 440 K,在低温下具有顺磁性^[53]。4H-BaRuO₃ 和 6H-BaRuO₃ 为电子交换增强的泡利顺磁体,这是由于晶胞中 RuO₆ 八面体共顶点连接比例增加,导致温度敏感性降低,但磁化率却大大提高^[53-54]。它们的低温*X*-*T* 曲线满足

$$\chi = \frac{C}{T - \theta} + \chi_0 (1 - AT^2) \tag{4}$$

式中: $A = (\pi^2 k_B^2/6)[(N'(E_F)/N(E_F))^2 - (N''(E_F)/N(E_F))], N(E_F)$ 为费米面 E_F 处每个原子的态密度, $N'(E_F)$ 和

 $N''(E_F)$ 分别为 $N(E_F)$ 对能量的一级和二级导数。4H-BaRuO₃和 6H-BaRuO₃的 θ 分别为-6.7和-17.5K, μ_{eff} 分别为 0.157 μ_B 和 0.259 μ_B ,均比 Ru⁴⁺的理论值 2.83 μ_B 小得多,说明 Ru 离子缺失了部分局域磁矩,可 能与 Ru₂O₉二聚体中 Ru-Ru 的直接相互作用以及强自旋-轨道耦合作用有关。10H-BaRuO₃属于顺磁性 半导体^[56],其_X-T 曲线与 4H-BaRuO₃ 的相似,拟合实验数据得到的居里常数很小,说明 10H-BaRuO₃ 的顺磁有效磁矩很小,与 4H-BaRuO₃和 6H-BaRuO₃的结果相近。

图 18 9R-BaRuO₃、4H-BaRuO₃和 6H-BaRuO₃的 (a) ρ -T 曲线和 (b) χ -T 曲线((b) 中的黑实线是利用式 (4) 拟合的结果)^[54] Fig. 18 (a) ρ -T and (b) χ -T curves of the 9R-BaRuO₃, 4H-BaRuO₃, and 6H-BaRuO₃ (The solid lines in (b) are the fit to data using Eq. (4).)^[54]

图 19 显示了 3C-BaRuO₃ 的 ρ -*T* 曲线和 χ -*T* 曲线。3C-BaRuO₃ 属于弱的巡游铁磁性金属, T_c 约为 60 K^[55]。电阻率随温度变化曲线具有一个明显的转折点, 对应居里温度。低温下, 3C 相的 ρ 与 *T* 的关系满足式 (3), 其中 *n*≈2, 说明它属于费米液体金属。3C 相的 ρ_0 = 48.1 mΩ·cm, r_{RRR} = 2.82, 与正交相的 SrRuO₃、CaRuO₃ 相比, 3C-BaRuO₃ 的金属性较弱, 这是由于 3C-BaRuO₃ 中 Ru-O 距离(2.003 Å)较长, 导致近邻 Ru 离子之间的电子波函数交叠较少。利用居里-外斯定律对顺磁区间的 χ -*T* 曲线进行拟合, 得到 μ_{eff} = 2.509 μ_B , 与 Ru⁴⁺的理论值 2.83 μ_B 接近; θ = 64 K, 略高于 T_{Co} 尽管 3C-BaRuO₃ 中 Ru-O-Ru 夹角为 180°, 但较大的 Ru-O 距离使 Ru⁴⁺的巡游性比正交相 SrRuO₃ 的巡游性更弱。

测量 3C-BaRuO₃ 在不同压力下的 ρ -*T*曲线,通过计算 $d\rho/dT$ 得到 T_c 随压力的变化^[57]。如图 20 所示, 3C-BaRuO₃ 的 T_c 随压力的增加而降低,从常压下的约 60 K 降低到 4 GPa 下的约 40 K。当压力超过 4 GPa, T_c 随压力增加基本不变,对应于铁磁性坍塌^[57]。 $\partial T_c/\partial p$ 约为 7.0 K/GPa^[55, 57]。对于 3C-SrRuO₃ (常压下的 T_c 约为 165 K),利用低温电性和磁性数据得到的 $\partial T_c/\partial p$ 分别为-6.2 和-5.7 K/GPa^[58], $\partial \ln T_c/\partial p = -3.5\%$ GPa⁻¹,与 BaRuO₃ 的结果接近, $\partial \ln T_c/\partial p$ 的值说明 3C-SrRuO₃和 3C-BaRuO₃属于弱的巡游铁磁体。对于 3C-BaRuO₃,利用式 (3) 拟合低温下的 ρ -*T*曲线,指数 *n* 随压力的增加而减小,从常压下

的 1.85 降低到铁磁性坍塌压力下的 1.40, 说明压 力导致 3C-BaRuO₃ 从费米液体相转变为非费米液 体相^[57]。

2.2 BalrO₃的晶体结构和物理性质

在常压、1100 ℃ 的合成条件下, BalrO₃ 形成 畸变的单斜结构(空间群为 C2/m)^[59], 一个晶胞包 括 12 个 BalrO₃ 化学式, 沿 c 轴方向有 6 个 BaO₃ 层。由于离子的空间排列与 9R 结构类似, 这个结 构称为 9M 相。在高温高压合成条件下, BalrO₃ 形 成另外 2 种畸变的单斜结构, 称为 5M 和 6M 相, 所属空间群分别为 C2/m 和 C2/c, 每个晶胞内分别

Fig. 20 Relations of $T_{\rm C}$ and *n* versus pressure of 3C-BaRuO₃^[57]

包含 10 和 12 个 BaIrO₃ 化学式, 合成压力分别为 3.3 和 5.0 GPa^[60-62]。6M 相中离子的空间排列与 6H 相 的类似, 但 5M 相中离子的空间排列与 5H 相的并不类似。从离子的空间排列方面看, 5M 相介于 4H 与 6H 相之间。在 25.0 GPa 的合成压力下, BaIrO₃ 形成四方钙钛矿(3C, 空间群为 *I4/mcm*)^[63], 离子的空间 排列非常接近立方钙钛矿, IrO₆ 八面体均共顶点连接。图 21 显示了 BaIrO₃ 各相的晶体结构。5M 相 中, 2 个 M₂O₉ 二聚体共顶点连接, 再与 1 个 MO₆ 八面体共顶点连接, 二聚体与八面体沿 *c* 轴交替排列, BaO₃ 平面的堆积序列为 hchcc。

图 21 (a) 9M-BaMO₃、(b) 5M-BaMO₃、(c) 6M-BaMO₃和 (d) 四方钙钛矿 BaMO₃的晶体结构示意图 Fig. 21 Schematic views of the crystal structure of (a) 9M-BaMO₃, (b) 5M-BaMO₃, (c) 6M-BaMO₃, and (d) tetragonal perovskite BaMO₃

如图 22(a)^[64]所示, 9M-BaIrO₃具有绝缘体性质, ρ -T 曲线在 $T_{\rm C}$ 附近有一个明显的转折点, 在小于 $T_{\rm C}$ 的区间, 电阻率随温度的降低而迅速增加, 说明其绝缘体特性随温度的降低更加显著。5M-BaIrO₃

和 6M-BaIrO₃ 在实验温度范围内均为金属, 在较高的温度下 ρ 与 *T*之间不是线性关系。5M-BaIrO₃ 和 6M-BaIrO₃ 在低温下的 ρ -*T*曲线满足式 (3), 分别拟合 50 和 63 K 之下的 ρ -*T*曲线, 得到它们的 ρ_0 分别为 3.218 和 1.588 mΩ·cm, r_{RR} 分别为 2.147 和 2.519, 说明 6M 相的导电性略好一些。5M-BaIrO₃ 和 6M-BaIrO₃ 的 *n* 分别为 2 和 5/3(图 23(a) 中插图), 表明 5M 相是费米液体金属, 而 6M 相在低温下具有非费米液体 行为, 可能处于量子临界点^[63]。

图 22 9M-BaIrO₃、5M-BaIrO₃和 6M-BaIrO₃的 (a) ρ -T 曲线、(b) χ -T 曲线和 (c) 磁滞回线^[64] Fig. 22 (a) ρ -T curves, (b) χ -T curves and (c) magnetic hysteresis loops of 9M-BaIrO₃, 5M-BaIrO₃, and 6M-BaIrO₃^[64]

如图 22(b) 所示, 9M-BaIrO₃ 表现出较弱的铁磁性, $T_{\rm C}$ 约为 180 K, 该磁现象是由 Ir 离子的自旋极化 造成的^[65], 在小于 $T_{\rm C}$ 的区间, ZFC 和 FC 曲线的分离与快速零场冷却有关^[66]。如图 22(c) 所示, 9M-BaIrO₃ 在 5 K 时具有较大的磁滞回线(图 22(c) 中回线向上进行了平移)。5M-BaIrO₃ 具有弱铁磁性, $T_{\rm C}$ 约为 50 K, 它在 5 K 时具有磁滞回线, 但磁化强度很小并且很难达到饱和。6M-BaIrO₃ 具有顺磁性, 磁化率 在 100~300 K 范围内表现出微弱的温度依赖性, 在较低温度下表现出轻微的增强, 在 5 K 时无磁滞回 线, 磁化强度很小, 但磁化强度与磁场之间并不是线性关系。9M-BaIrO₃、5M-BaIrO₃ 和 6M-BaIrO₃ 的 $\mu_{\rm eff}$ 分别为 0.186 $\mu_{\rm B}$ 、0.346 $\mu_{\rm B}$ 和 0.364 $\mu_{\rm B}$, 均比 Ir⁴⁺的理论值 1.73 $\mu_{\rm B}$ 小得多, 这说明 Ir 离子缺失了部分局域 磁矩, 可能与 Ir₃O₁₂ 三聚体或 Ir₂O₉ 二聚体中 Ir-Ir 的直接相互作用以及强的自旋-轨道耦合作用有关。 9M-BaIrO₃、5M-BaIrO₃ 和 6M-BaIrO₃ 的 θ 分别为 162.9、-22.3 和-64.9 K^[64]。

图 23 显示了 9M-BaIrO₃ 在不同压力下的 ρ-T 曲线^[67] 和 χ-T 曲线^[68], 在实验温度范围内, 其电阻率 随压力的增加而增大, 磁化率随压力的增加而减小。图 23(a) 和图 23(b) 中的插图分别显示了通过 ρ-T 曲线和 χ-T 曲线得到的 T_c 随压力的变化关系。随着压力增加, 9M-BaIrO₃ 的 T_c 逐渐减小, 在实验压 力范围内, T_c 与 p 基本为线性关系。利用低温电性和磁性数据得到的 dT_c/dp 分别为-6.1 和-17 K/GPa, 两者存在较大的差别, 可能与不同的实验条件、T_c 的定义等因素有关。

图 24 显示了 3C-BaIrO₃ 的 *ρ*-*T* 曲线和 *χ*-*T* 曲线^[63]。3C-BaIrO₃ 在低温时 *ρ*-*T* 关系满足式 (3), *ρ*₀ = 58.37 mΩ·cm, *r*_{RR} 约为 1.147; *n* = 2, 表明它是费米液体金属。3C-BaIrO₃ 在较高温度下表现出与温度几 乎无关的泡利顺磁性, *χ*-*T* 曲线在 85 K 时出现最小值, 这一温度对应于*ρ*-*T* 曲线中斜率的变化。

Fig. 24 (a) ρ -T and (b) χ -T curves of 3C-BaIrO₃^[63]

2.3 BaRhO₃的晶体结构和物理性质

在常压下合成的 BaRh_{0.92}O₃ 为 9M 结构(图 21(a))^[69]。BaO₂ 和 RhO₂ 混合物在 6.0~6.5 GPa、1175 ℃ 条件下形成了 4H 结构(图 8(a))的 BaRhO₃^[70]。在 14.0~22.0 GPa 的合成条件下, BaRhO₃ 形成 6M 结构 (图 21(c))^[71]。

如图 25(a) 所示, 4H-BaRhO, 和 6M-BaRhO, 在低温下均具有交换增强的泡利顺磁性[71], 其 x-T 曲线

Fig. 25 (a) χ -T and (b) ρ -T curves of the 4H-BaRhO₃ and 6M-BaRhO₃^[71]

符合式 (4)。通过拟合实验数据,得到它们的 θ 分别为-13.5和-4.3K, μ_{eff} 分别为 0.271 μ_{B} 和 0.229 μ_{B} ,均比 Rh⁴⁺的理论值 1.73 μ_{B} 小很多,说明 Rh 离子缺失了部分局域磁矩。图 25(b)显示了 4H-BaRhO₃和 6M-BaRhO₃ 在低温下的 ρ -T曲线^[71], 4H 相具有金属性,而 6H 相属于半导体。

2.4 其 他

在常压下合成的 BaZrO₃、BaNbO₃、BaMoO₃和 BaHfO₃均为立方钙钛矿^[72-76], BaNbO₃和 BaMoO₃为 顺磁性金属^[73-75], BaNbO₃的 μ_{eff} 为 0.12 μ_{B} , θ 为-2 K。在常压下合成的 BaTcO₃形成 6H 相(图 3(a))^[77]。 在常压合成条件下, BaOsO₃形成 KSbO₃型体心立方结构(bcc)^[78]; 在约 6 GPa 的合成压力下, BaOsO₃形 成 6H 相^[79-80](未给出具体的原子位置信息)。在 17 GPa、1600 ℃ 下, BaOsO₃形成立方钙钛矿^[80], 为顺 磁性材料,利用式 (2) 拟合 χ -T 曲线,得到 μ_{eff} = 0.403 μ_{B} , θ = 0 K。3C-BaOsO₃在 60 K 经历了金属-半导体 转变,利用式 (3) 拟合金属区域的 ρ -T 曲线,得到 n = 2, $\rho_0 = 17.43$ mΩ·cm。在高氧压合成条件下, BaPtO₃形成 12 层堆垛结构^[81](未给出具体的原子位置信息)。在有催化剂的条件下, BaPtO₃能形成立 方钙钛矿^[82]。当 M 为其他 4d 或 5d 过渡金属时,未形成 BaMO₃ 型化合物。

3 讨 论

3.1 BaMO₃形成的多层堆积变体概述

图 26 总结了 BaMO₃(M 为过渡金属离子)所形成的多层堆积变体情况,其中红色为可以利用高温 高压方法合成的材料,小括号显示了过渡金属离子六配位、+4 价的离子半径^[3]。在图 26 的灰色梯形区 域,BaMO₃ 易于形成六方钙钛矿。3*d* 过渡金属离子半径较小,一般具有较多的价态,当 M 离子的平均 价态小于+4 时,造成 O 离子的含量少于 3,可能形成 BaMO₃₋₆。图 26 中的中括号表示所形成化合物的 *δ*> 0.2。M 以 3*d*→4*d*→5*d* 过渡金属离子顺序改变时,BaMO₃形成六方钙钛矿时,M 的数目逐渐减少,这 是由于 M 离子的半径逐渐增大,容忍因子 *t* 发生变化。BaMO₃ 能否形成六方钙钛矿或钙钛矿与 M 位 离子的半径和价态密切相关。Ba²⁺(十二配位)和 O²⁻(六配位)的离子半径分别为 1.61 和 1.40 Å。依据 式 (1),当 M 离子的半径小于 0.729 Å时,BaMO₃ 的 *t* 大于 1,可以形成六方钙钛矿。当 M 离子的半径大 于 0.579 Å时,M 和 O 离子能够形成 MO₆ 八面体。第 I、II 和 III 副族元素的离子半径较大、价态较小,

图 26 BaMO₃(M 为过渡金属离子)的多层堆积变体

Fig. 26 Multi-layer stacked variants of BaMO₃ (M is a transition metal)

所以未形成 BaMO₃ 型化合物。一些 4d 和 5d 过渡金属四价离子的半径介于 0.579 与 0.729 Å之间, 但其 BaMO₃ 未形成六方钙钛矿结构, 可能还与其他因素(合成条件、杂质含量等)有关。

3.2 合成压力对 BaMO, 多层堆积变体的影响

在不同的合成压力范围内, BaMO₃ 可以形成不同的多层堆积变体。图 27 总结了 BaMO₃(M = V, Cr, Mn, Ru, Os, Rh, Ir)多层堆积变体的合成压力范围, 合成温度约在 850~1350 ℃ 区间, 所标注的合成 压力为近似值。BaVO₃ 在 0~15 GPa 的合成压力范围内除 5H 相外没有形成其他结构, 而 BaCrO₃ 在转 变为钙钛矿之前可以形成 4H 相和 6H 相。当在 O 位掺入 H 时, BaVO_{3-x}H_x (0.3 ≤ x ≤ 0.8)在高温高压条 件下(1000 ℃, 3 和 7 GPa)形成 6H 相, BaVO_{2.1}H_{0.9} 在高温高压下形成了立方钙钛矿^[83]。由图 7 可知, 当 合成温度超过 1000 ℃ 时, BaCrO₃ 在高温高压下不形成 4H 相。因此, BaVO₃ 和 BaCrO₃ 主要的高压合 成序列为 5H→6H→3C。目前的实验结果表明, BaMnO₃ 的高压合成序列为 2H→9R→4H→6H, BaRuO₃ 的高压合成序列为 9R→4H→6H→3C, 考虑两者在结构上的相似性, 它们的高压合成序列可归 并为 2H→9R→4H→6H→3C。因此, 当合成压力足够高时, BaMnO₃ 也可以形成 3C 相。在较低的合成 压力下, BaOsO₃ 的结构比较复杂, BaOsO₃ 在更高的合成压力下形成 6H 相和 3C 相。BaMO₃(M = Rh, Ir) 的高压相变序列与 BaRuO₃类似, 其高压相中包含畸变的六方钙钛矿, BaRhO₃ 在足够高的合成压力下 也可能形成与 BaIrO₃类似的 3C 相。

图 27 BaMO₃(M = V, Cr, Mn, Ru, Os, Rh, Ir)在不同合成压力范围内的多层堆积变体 Fig. 27 Multi-layer stacked variants of BaMO₃ (M = V, Cr, Mn, Ru, Os, Rh, Ir) in different synthetic pressures

根据前述结果,图 28 总结了 BaMO₃中 MO₆八面体的连接情况随合成压力的演化,其中:箭头代表 合成压力增加的方向,底部的数字代表 MO₆八面体共顶点连接所占的比例。在这类材料中,最典型的 高压合成序列是 2H→9R→4H→6H→3C。2H、9R、4H、6H 和 3C 相为最简单的多层堆积变体: 2H 相中 MO₆八面体均为共面连接, 9R 相中 M₃O₁₂ 三聚体共顶点连接, 4H 相中 M₂O₉ 二聚体共顶点连接, 6H 相 中 M₂O₉ 二聚体和 MO₆八面体共顶点连接, 3C 相中 MO₆八面体均为共顶点连接。随着合成压力的增 加, MO₆八面体共顶点连接的比例逐渐增加。9R 与 9M 相中离子的空间排列相近, MO₆八面体共顶点 连接的比例相同。因此,从离子的空间排列上,本文将 9R 相和 9M 相近似看成一种结构,同样将 6H 和 6M 相近似看成一种结构。MO₆八面体共顶点连接的比例在 4H、5H 和 5M 相中分别为 50%、60% 和 60%,介于 9R/9M 相的 33.3% 与 6H/6M 相的 66.7% 之间。一些钙钛矿材料,如在常压下合成的 3C-BaTiO₃、3C-BaFeO₃等,相比于它们的六方钙钛矿,其 MO₆八面体均为共顶点连接,相当于共顶点连接 的比例更大(100%)。由于合成压力增加和 MO₆八面体共顶点连接比例增大均可使 BaMO₃ 趋于形成类 似的晶体结构,为了便于讨论问题,下文中对于同一 M,将两者统称为合成压力增加。

Fig. 28 Evolution of MO₆ octahedron's connectivity in BaMO₃ with synthetic pressure

3.3 BaMO,的晶体结构参数随M离子半径及合成压力的变化

图 29(a) 总结了 BaMO₃ 的单位晶胞体积 V/Z,其中: Z 为一个晶胞内包含的 BaMO₃ 化学式个数, 9M、5M 和 6M 相的 Z 分别为 12、10 和 12; 粗实线是按立方钙钛矿计算的理想值 V/Z = [2(r_{M⁴⁺} + r_{O²⁻})]³, r_{O²⁻} = 1.40 Å,六方钙钛矿的 V/Z 基本上均比理想值大。除 BaCrO₃ 外, 3C 相的实验 V/Z 均比理想值小。 3C-BaCrO₃ 中 O 离子可能存在空位^[10], Cr 离子价态降低,晶胞体积比无空位时大,造成实验 V/Z 比理想 值大^[10]。对于同一结构, V/Z 基本上随 M 离子半径的增加而增大。对于同一 M, V/Z 基本上随合成压力 的增加而减小,说明合成压力的增加导致晶体结构中的空隙减小。

在 2 个近邻的 M-O 多聚体之间, M 离子与 M 离子之间通过 O 离子相连。对于 9M、5M 和 6M 相, M-O-M 夹角在 160°~170°之间; 对于其他结构, M-O-M 夹角基本上等于 180°。图 29(b) 总结了 BaMO₃ 中近邻多聚体间 M-M 的距离 *d*_{M-M}, 其中, 粗实线是按立方钙钛矿计算获得的理想值 *d*_{M-M} = 2(*r*_{M⁴⁺} + *r*_{0²⁻})。对于同一结构, *d*_{M-M} 基本上随 M 离子半径的增加而增大。对于同一 M, *d*_{M-M} 基本 上随合成压力的增加而增大。

对于六方或三方晶系,轴比率 c/a 是一个重要的结构参数。为了便于比较,图 29(c) 总结了 BaMO₃ 六方钙钛矿的轴比率 (c/a)/N,其中,N 为晶胞内 c 轴方向 BaO₃ 层的个数。图中粗实线是基于 2 个正八面体共面连接计算的理想值 $(c/a)/N = 1/\sqrt{6} = 0.4082$ 。如图 29(c) 中的插图所示,9M、5M 和 6M 相为畸变的单斜结构(紫色边框),可以在其中划出一个类似六方结构的晶胞(绿色边框)。本文中 将它们的晶胞参数用 $a_{\rm H} = b_{\rm H} = \sqrt{a_{\rm M}^2 + b_{\rm M}^2}/2 \ln c_{\rm H} = c_{\rm M} \sin \beta_{\rm M}$ (其中, $a_{\rm M}$ 、 $b_{\rm M}$ 、 $c_{\rm M}$ 和 $\beta_{\rm M}$ 为单斜结构的晶胞参数)代替,9M、5M 和 6M 相的 N 分别为 6、5 和 6。6H 相的 (c/a)/N 接近于理想值,其他相的 (c/a)/N基本 上均比理想值大。对于同一 M,(c/a)/N基本上随着合成压力的增加而减小,说明合成压力的增加使 BaMO₃逐渐转变为钙钛矿。

在六方钙钛矿的 M-O 多聚体中, M 离子与 M 离子之间的距离较近。图 29(d) 总结了 BaMO₃ 六方 钙钛矿多聚体内的 M-M 之间的距离 d'_{M-M}, 其中, 粗实线是基于 2 个正八面体共面连接且 M 占据八面体 中心计算的理想值 d'_{M-M} = 2(r_{M⁺⁺} + r_{O²})/√3。对于 BaMO₃ 六方钙钛矿, 多聚体内的 d'_{M-M}均大于理想值。 一方面, 它们的 (c/a)/N 基本上比理想值大, 说明 c 轴相对更长; 另一方面, 在多聚体内, M 离子与 M 离 子之间存在库仑排斥作用,导致d_{M-M}更大。对于同一 M, d_{M-M}基本上随着合成压力的增加而增大,说明 M 离子和 M 离子之间的库仑排斥作用增强。

图 29(e) 和图 29(f) 显示了 BaMO₃ 中 Ba-O 之间的平均距离 \bar{d}_{Ba-O} 和 M-O 之间的平均距离 \bar{d}_{M-O} , 粗实 线分别为理想值 $\bar{d}_{Ba-O} = r_{Ba^{2+}} + r_{O^{2-}}$ 和 $\bar{d}_{M-O} = r_{M^{4+}} + r_{O^{2-}}$ 。对于同一结构,实验得到的 \bar{d}_{Ba-O} 和 \bar{d}_{M-O} 基本上随 M 离子半径的增加而增大。对于同一 M, \bar{d}_{Ba-O} 基本上随合成压力的增加而减小,而 \bar{d}_{M-O} 基本上随合成压力的增加而增大。

图 29 BaMO₃ 的 (a) 每个化学式的晶胞体积 *V/Z*、(b) 近邻多聚体之间的 M-M 距离 *d*_{M-M}、(c) 轴比率 (*c/a)/*N、(d) 多聚体内 M-M 之间的距离 *d'*_{M-M}, (e) Ba-O 之间的平均距离 *ā*_{Ba-O} 和 (f) M-O 之间的平均距离 *ā*_{M-O} 随 M 离子半径的变化关系 Fig. 29 Relations of (a) volume per chemical formula *V/Z*, (b) M-M distance between neighbour polymers *d*_{M-M}, (c) axis ratio (*c/a)/*N, (d) M-M distance in one polymer *d'*_{M-M}; (e) average distance of Ba-O *ā*_{Ba-O}; (f) average distance of M-O *ā*_{M-O} versus M ion radius of BaMO₃

3.4 BaMO,的结构演化与容忍因子的关系

从图 26 中可以看出,在常压下利用固态反应方法合成的 BaMO₃ 多层堆积变体的结构与 M 离子 (六配位、+4 价)的半径密切相关:对于 3d 过渡金属, BaMO₃ 多层堆积变体的相序列为 2H 相(M = Ni,

Co, Mn; r_M 为 0.48~0.53 Å)→5H 相(M = V, Cr; r_M 为 0.48~0.53 Å)→6H 相(M = Fe, Ti; r_M 为 0.585~0.605 Å); 对于 4d 和 5d 过渡金属, 随着 M 离子半径的增加, BaMO₃ 多层堆积变体的相序列为 9R/9M 相(M = Rh, Ru, Ir; r_M 为 0.6~0.625 Å)→6H 相(M = Tc; r_M 为 0.645 Å)→3C 相(M = Mo, Nb, Hf, Zr; r_M 为 0.65~0.72 Å)。因此, 当 M 离子半径增大时, 常压下合成的 BaMO₃ 趋于高压高温相。

依据式 (1), B 位离子半径增大导致容忍因子 t 减小。如前所述, 合成压力增大导致六方钙钛矿转 变为钙钛矿, 六方钙钛矿的 t > 1, 钙钛矿的 t ≈ 1, 即合成压力增大导致 t 减小。所以, 从 t 的变化趋势上 看, M 离子半径增加与合成压力增大的作用相似。这与图 27 的结果相似, M 离子半径增加与合成压力 增大使 BaMO₃ 趋于形成类似的结构。当 B 为主族元素时, 也有类似的情况, 例如: BaSiO₃ 在较高的合 成压力下可以形成 9R、6H 和 3C 相, 合成压力分别为 27.9、48.5 和 141 GPa^[84-85]; BaGeO₃ 在较低的合成 压力下便可以形成 9R、4H 和 6H 相, 合成压力分别为 9.5、12 和 17.4 GPa^[86]; BaSnO₃ 在常压条件下形成 3C 相^[87]。当合成压力相同, 如 20 GPa, 随着 B 离子半径增大(B 为六配位时, Si⁴⁺、Ge⁴⁺和 Sn⁴⁺的半径分 别为 0.40、0.53 和 0.69 Å), BaSiO₃、BaGeO₃ 和 BaSnO₃ 分别形成 9R、6H 和 3C 相。对于 ABX₃ 多层堆积 变体, A 离子半径减小导致 t 减小, 与合成压力增大的作用相似, 例如: 对于 Ba_{1-x}Sr_xRuO₃, 当 Sr 含量增多 (Sr 为十二配位时, Sr²⁺半径为 1.44 Å)或合成压力增大,都从六方钙钛矿转变为钙钛矿^[88]。所以, A 离子 半径减小与 B 离子半径增大所起到的作用类似, 均使 ABX₃转变为合成压力增加时的晶体结构。

对于同一 M, 在不同的合成条件下, BaMO₃ 可形成不同的晶体结构, 如果只按离子半径计算容忍因子 *t* 则无法反映出这些相之间的差异。因此, 采用实验的晶体结构数据得到的 *d*_{Ba-0} 和 *d*_{M-0} (图 29(e)和图 29(f))计算了 BaMO₃ 各相的"容忍因子", 即

$$t' = \frac{\bar{d}_{\text{Ba-O}}}{\sqrt{2}\bar{d}_{\text{M-O}}} \tag{5}$$

图 30显示了 t[']随 M 离子半径的变化关系,其中,粗实线为根据式(1)和离子半径计算获得的 t。对于 BaMO₃ 六方钙钛矿,实验得到的 t[']基本上都小于 t,并且都大于 1。对于同一结构,随着 M 离子半径的增大, t[']基本上逐渐减小。对于同一 M,随着合成压力增加, t[']基本上逐渐减小。因此,对于 t['], M 离子 半径增大与合成压力增加起到了类似的作用。

图 30 BaMO₃的"容忍因子"*t*^{*}随 M 离子半径的变化关系 Fig. 30 Relationship of "tolerance factor" *t'* versus M ion radius of BaMO₃

3.5 BaMO₃ 的电输运性质

当 M 为 3*d* 过渡金属离子时,除 BaVO₃ 外, BaMO₃ 多为半导体或绝缘体,这是由于 3*d* 电子的局域 性较强,导致 BaMO₃ 的导电性较差。当 M 为 4d 或 5d 过渡金属离子时,电子的巡游性较强,BaMO₃ 多 为金属;当材料中存在 M₃O₁₂ 三聚体时,BaMO₃ 的导电性较差,如 9R-BaRuO₃、10H-BaRuO₃、9M-BaIrO₃ 等。图 31 总结了 BaMO₃(M = V, Rh, Ru, Ir, Os)的剩余电阻率 ρ_0 和剩余电阻比率 r_{RR} 。对于同一 M,随 着合成压力增加, ρ_0 基本上逐渐增大,而 r_{RR} 基本上逐渐减小,说明含有 M₂O₉ 二聚体的六方钙钛矿的 低温电阻率比钙钛矿的小,即前者的导电性比后者的好。而且, M₂O₉ 二聚体中 M-M 之间的距离 (图 29(d))比相应金属单质中的更小。因此, 对于 4*d* 或 5*d* 过渡金属离子, M₂O₉ 二聚体中 M 离子与 M 离子间的直接相互作用更有利于电输运。

Fig. 31 (a) Residual resistivity ρ_0 and (b) residual resistivity ratio $r_{\rm RRR}$ of BaMO₃

3.6 BaMO₃的磁学性质

对于 BaMO₃钙钛矿, M 离子之间通过八面体顶点的 O 离子产生交换作用, M—O—M 夹角基本上 等于 180°。除 3C-BaRuO₃和 3C-BaFeO₃外, BaMO₃钙钛矿均具有弱磁性。在六方钙钛矿中, M 离子之 间有 2 种连接方式: (1) 近邻多聚体中 M 离子通过八面体顶点的 O 离子相连, M—O—M 夹角基本等于 180°(六方和三方结构)或 160°~170°(单斜结构); (2) 多聚体内 M 离子之间距离较近, M—O—M 夹角 小于 90°。多聚体内 M 离子的自旋为平行或反平行排列, 而多聚体间的 M 离子自旋一般反平行排列, 所以材料在低温下多为反铁磁性或弱铁磁性。图 32(a) 总结了 BaMO₃ 的磁有序温度,包括奈尔温度 *T*_N 和居里温度 *T*_C。对于同一结构,磁有序温度基本上随着 M 离子半径的增加而减小。对于同一 M,除了 2H 相外,磁有序温度基本上随着合成压力的增加而减小。因此,对于改变磁有序温度, M 离子半径增 大与合成压力增加起到了类似的作用。由前面的结果可知,这类材料的磁有序温度随压力的增加而减 小,如 3C-BaRuO₃、3C-SrRuO₃、9M-BaIrO₃等^[57–58,67–68]。

图 32(b) 总结了 BaMO₃ 的顺磁有效磁矩 μ_{eff} ,其中粗实线是理论值 $\mu_{eff} = 2\sqrt{S(S+1)}(S$ 为总自旋量 子数)。Fe⁴⁺离子处于高自旋态。当 M 为 3d 过渡金属离子,实验得到的 μ_{eff} 与理论值基本接近 (图 32(b) 中左上部阴影区),仅 5H-BaVO₃ 的 μ_{eff} 比理论值小得多。当 M 为 4d 和 5d 过渡金属离子,实验 得到的 μ_{eff} 比理论值小得多(图 32(b) 中右下部阴影区),仅 3C-BaRuO₃ 的 μ_{eff} 与理论值基本接近,原因可 能是 M 离子内的自旋-轨道耦合和多聚体中 M 离子之间的反铁磁交换作用导致电子巡游性增强。类 似的现象存在于 3C-SrIrO₃ 和 Ruddlesden-Popper 结构的 Sr₂IrO₄、Sr₃Ir₂O₇等材料中, 其 μ_{eff} 分别为 1.17 μ_{B} 、0.05 μ_{B} 和 0.69 $\mu_{B}^{[88-90]}$ 。电子的巡游性增强可以提高材料的电输运性质, 所以这些 μ_{eff} 比较小的材料的导电性(见图 31)较好。

综合前述 BaMO₃ 晶体结构参数的演化情况, 对于同一 M, 当合成压力增加时, 单位晶胞体积 V/Z逐渐减小, 说明结构中的空隙逐渐减少; Ba-O 之间的平均距离 ā_{Ba-O}逐渐减小, M-O 之间的平均距离 ā_{M-O}逐渐增大, 说明原子的空间位置分布发生了改变。如果 BaMO₃ 中 MO₆ 八面体都是正八面体且 M 离子位于八面体中心, 则同一 M 的多层堆积变体应具有相同的 V/Z、ā_{Ba-O}和ā_{M-O}, 但六方钙钛矿为畸 变的 MO₆ 八面体, M-O 多聚体中 M 离子之间的库仑排斥作用使 M 离子偏离八面体中心, 导致 M 离子 之间出现较大空隙。高压导致六方钙钛矿中的畸变程度降低、空隙减小, 六方钙钛矿逐渐转变为立方 钙钛矿。对于同一结构, "容忍因子"*t*和磁有序温度(T_N、T_C)随 M 离子半径的增加而减小, 可以看出, M 离子半径的增加与合成压力的增大产生了相似的效果。

4 结 论

本文对钙钛矿氧化物 BaMO₃(M 为过渡金属离子)的高压合成、晶体结构和物理性质方面的研究 工作进行了系统的总结,对相应的实验结果展开了详细讨论。对于钙钛矿和简单结构的六方钙钛矿, 通过已有的实验数据计算了它们的晶胞参数和原子间距,获得了晶体结构和物理性质随 M 离子半径或 合成压力的演化规律。基于实验获得的平均原子间距计算了"容忍因子"t',给出了 t^{*}随合成压力增加的 大致变化情况,探讨了六方钙钛矿变为钙钛矿的可能过程。最后,总结了 BaMO₃ 的物性参数(包括剩 余电阻率、剩余电阻比率、磁有序温度、顺磁有效磁矩等),得到了它们随 M 离子半径或合成压力的演 化情况。

目前,尚未通过实验得到 BaMO₃(M = Pd, Ta, W, Re)的钙钛矿结构,可以通过改变实验条件(温度、 压力等)获取这些材料并研究其物理性质。BaMnO₃、BaTcO₃和 BaRhO₃具有六方钙钛矿结构,但目前 尚未获得它们的钙钛矿相,根据实验规律,可以推测出它们大致的合成压力、晶体结构参数和磁有序温 度。此外,人们研究了 6H-BaOsO₃和 12H-BaPtO₃,但还未获得其具体的结构信息和物理性质,需要开展 进一步的实验工作。M 为 4*d*和 5*d*过渡金属离子时,BaMO₃的顺磁有效磁矩比理论值小得多,对该现 象尚未给出合理的物理机制。未来,对上述内容的研究可以完善这一体系的实验结果,支撑和发展本 文所获得的结构和物性演化规律,为继续拓展钙钛矿氧化物的相关研究提供有效的实验数据。

参考文献:

- [1] GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485.
- [2] GLAZER A M. The classification of tilted octahedra in perovskites [J]. Acta Crystallographica Section B, 1972, 28(11): 3384–3392.
- [3] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751–767.
- [4] NGUYEN L T, CAVA R J. Hexagonal perovskites as quantum materials [J]. Chemical Reviews, 2021, 121(5): 2935–2965.
- [5] AKIMOTO J, GOTOH Y, OSAWA Y. Refinement of hexagonal BaTiO₃ [J]. Acta Crystallographica Section C, 1994, 50(2): 160–161.
- [6] HAYWARD S A, REDFERN S A T, STONE H J, et al. Phase transitions in BaTiO₃: a high-pressure neutron diffraction study [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(8): 735–739.
- [7] LIU G, GREEDAN J E. Syntheses, structures, and characterization of 5-layer $BaVO_{3-x}$ (x = 0.2, 0.1, 0.0) [J]. Journal of Solid State Chemistry, 1994, 110(2): 274–289.
- [8] NISHIMURA K, YAMADA I, OKA K, et al. High-pressure synthesis of BaVO₃: a new cubic perovskite [J]. Journal of Physics and Chemistry of Solids, 2014, 75(6): 710–712.

- [9] CHAMBERLAND B L, DANIELSON P S. Alkaline-earth vanadium (IV) oxides having the AVO₃ composition [J]. Journal of Solid State Chemistry, 1971, 3(2): 243–247.
- [10] ARÉVALO-LÓPEZ A M, ATTFIELD J P. High-pressure BaCrO₃ polytypes and the 5H-BaCrO_{2.8} phase [J]. Journal of Solid State Chemistry, 2015, 232: 236–240.
- [11] CHAMBERLAND B L. Crystal structure of the 4H BaCrO₃ polytype [J]. Journal of Solid State Chemistry, 1982, 43(3): 309–313.
- [12] CHAMBERLAND B L. Crystal structure of the 6H BaCrO₃ polytype [J]. Journal of Solid State Chemistry, 1983, 48(3): 318–322.
- [13] CHAMBERLAND B L. Preparation and crystallographic properties of barium chromate (IV) polytypes [J]. Inorganic Chemistry, 1969, 8(2): 286–290.
- [14] CHAMBERLAND B L, KATZ L. The structure of the fourteen-layer polytype of barium chromium trioxide, BaCrO₃ [J]. Acta Crystallographica Section B, 1982, 38(1): 54–57.
- [15] HARADEM P S, CHAMBERLAND B L, KATZ L. The structure of the 27-layer polytype of BaCrO₃ [J]. Journal of Solid State Chemistry, 1980, 34(1): 59–64.
- [16] ARÉVALO-LÓPEZ A M, REEVES S J, ATTFIELD J P. Ferrimagnetism in the high pressure 6H-perovskite BaCrO₃ [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2014, 640(14): 2727–2729.
- [17] CUSSEN E J, BATTLE P D. Crystal and magnetic structures of 2H BaMnO₃ [J]. Chemistry of Materials, 2000, 12(3): 831–838.
- [18] SYONO Y, AKIMOTO S I, KOHN K. Structure relations of hexagonal perovskite-like compounds ABX₃ at high pressure [J]. Journal of the Physical Society of Japan, 1969, 26(4): 993–999.
- [19] CHRISTENSEN A N, OLLIVIER G. Hydrothermal and high-pressure preparation of some BaMnO₃ modifications and lowtemperature magnetic properties of BaMnO₃(2H) [J]. Journal of Solid State Chemistry, 1972, 4(1): 131–137.
- [20] BOULLAY P, HERVIEU M, LABBÉ P, et al. Single crystal and HREM study of the "Bi-Sr" stabilized BaMnO₃ 9R polytype [J]. Materials Research Bulletin, 1997, 32(1): 35–42.
- [21] HARDY A. Structures cristallines de deux variétés allotropiques de manganite de baryum. Nouvelle structure ABO₃ [J]. Acta Crystallographica, 1962, 15(3): 179–181.
- [22] QIN S J, CHIN Y Y, ZHOU B W, et al. High-pressure synthesis and magnetism of the 4H-BaMnO₃ single crystal and its 6Htype polymorph [J]. Inorganic Chemistry, 2021, 60(21): 16308–16315.
- [23] ADKIN J J, HAYWARD M A. BaMnO_{3-x} revisited: a structural and magnetic study [J]. Chemistry of Materials, 2007, 19(4): 755–762.
- [24] POTOFF A D, CHAMBERLAND B L, KATZ L. A single crystal study of eight-layer barium managanese oxide, BaMnO₃ [J]. Journal of Solid State Chemistry, 1973, 8(3): 234–237.
- [25] PARRAS M, GONZÁLEZ-CALBET J M, ALONSO J, et al. Microstructural characterization of BaMnO_{3-y} ($0.08 \le y \le 0.12$): evidence for a new polytype (21R) [J]. Journal of Solid State Chemistry, 1994, 113(1): 78–87.
- [26] POOJITHA B, RATHORE A, KUMAR A, et al. Signatures of magnetostriction and spin-phonon coupling in magnetoelectric hexagonal 15R-BaMnO₃ [J]. Physical Review B, 2020, 102(13): 134436.
- [27] KORNETA O B, QI T F, GE M, et al. Correlated giant dielectric peaks and antiferromagnetic transitions near room temperature in pure and alkali-doped BaMnO_{3.8} [J]. Journal of Physics: Condensed Matter, 2011, 23(43): 435901.
- [28] GONZÁLEZ-CALBET J M, PARRAS M, ALONSO J, et al. Prediction of novel BaMnO_{3-y} (0 < y < 0.1) perovskite related phases [J]. Journal of Solid State Chemistry, 1994, 111(1): 202–207.
- [29] PARRAS M, VALLET-REGI M, GONZALEZ-CALBET J M, et al. A reassessment of Ba₂Fe₂O₅ [J]. Materials Research Bulletin, 1987, 22(10): 1413–1419.
- [30] MORI K, KAMIYAMA T, KOBAYASHI H, et al. Structural evidence for the charge disproportionation of Fe⁴⁺ in BaFeO₃₋₆ [J]. Journal of the Physical Society of Japan, 2003, 72(8): 2024–2028.
- [31] MORI K, KAMIYAMA T, KOBAYASHI H, et al. Mixed magnetic phase in 6H-type $BaFeO_{3-\delta}$ [J]. Journal of Applied Crystallography, 2007, 40(Suppl 1): s501–s505.
- [32] GÓMEZ M I, LUCOTTI G, DE MORÁN J A, et al. *Ab initio* structure solution of $BaFeO_{2.8-\delta}$, a new polytype in the system $BaFeO_y$ (2.5 $\leq y \leq$ 3.0) prepared from the oxidative thermal decomposition of $BaFe[(CN)_5NO] \cdot 3H_2O$ [J]. Journal of Solid State Chemistry, 2001, 160(1): 17–24.

- [33] PARRAS M, VALLETREGI M, GONZALEZCALBET J M, et al. A structural study of 12H-BaFeO_{2.93} [J]. European Journal of Solid State and Inorganic Chemistry, 1989, 26(3): 299–312.
- [34] TAN Z H, ROMERO F D, SAITO T, et al. Charge disproportionation and interchange transitions in twelve-layer BaFeO₃ [J]. Physical Review B, 2020, 102(5): 054404.
- [35] HAYASHI N, YAMAMOTO T, KAGEYAMA H, et al. BaFeO₃: a ferromagnetic iron oxide [J]. Angewandte Chemie International Edition, 2011, 50(52): 12547–12550.
- [36] MIZUMAKI M, YOSHII K, HAYASHI N, et al. Magnetocaloric effect of field-induced ferromagnet BaFeO₃ [J]. Journal of Applied Physics, 2013, 114(7): 073901.
- [37] LIU Y X, LIU Z H, LI Z, et al. Multiple magnetic transitions and electrical transport transformation of a BaFeO₃ cubic perovskite single crystal [J]. Physical Review B, 2020, 101(14): 144421.
- [38] STRAUSS S W, FANKUCHEN I, WARD R. Barium cobalt oxide of the perowskite type [J]. Journal of the American Chemical Society, 1951, 73(11): 5084–5086.
- [39] TAGUCHI H, TAKEDA Y, KANAMARU F, et al. Cobalt trioxide [J]. Acta Crystallographica Section B, 1977, 33(4): 1298–1299.
- [40] WANG H D, YANG J H, DONG C H, et al. Crystal growth and characterization of the quasi-one-dimensional compound BaCoO₃ [J]. Journal of Crystal Growth, 2015, 430: 52–54.
- [41] SUGIYAMA J, NOZAKI H, BREWER J H, et al. Appearance of a two-dimensional antiferromagnetic order in quasi-onedimensional cobalt oxides [J]. Physical Review B, 2005, 72(6): 064418.
- [42] NOZAKI H, JANOSCHEK M, ROESSLI B, et al. Neutron diffraction and μSR study on the antiferromagnet BaCoO₃ [J]. Physical Review B, 2007, 76(1): 014402.
- [43] BOTTA P M, PARDO V, BALDOMIR D, et al. Dynamic magnetic behavior of BaCoO₃ quasi-one-dimensional perovskite [J]. Physical Review B, 2006, 74(21): 214415.
- [44] WANG H Z, XU X H, NI D R, et al. Impersonating a superconductor: high-pressure BaCoO₃, an insulating ferromagnet [J]. Journal of the American Chemical Society, 2023, 145(39): 21203-21206.
- [45] JACOBSON A J, HUTCHISON J L. An investigation of the structure of 12H BaCoO_{2.6} by electron microscopy and powder neutron diffraction [J]. Journal of Solid State Chemistry, 1980, 35(3): 334–340.
- [46] PARRAS M, VARELA A, SEEHOFER H, et al. HREM study of the BaCoO_{3-y} system: evidence for a new 5H phase [J]. Journal of Solid State Chemistry, 1995, 120(2): 327–331.
- [47] MENTRÉ O, IORGULESCU M, HUVÉ M, et al. BaCoO_{2.22}: the most oxygen-deficient certified cubic perovskite [J]. Dalton Transactions, 2015, 44(23): 10728–10737.
- [48] LANDER J J. The crystal structures of NiO·BaO₃, NiO·BaO, BaNiO₃ and intermediate phases with composition near Ba₂Ni₂O₅, with a note on NiO [J]. Acta Crystallographica, 1951, 4(2): 148–156.
- [49] TAKEDA Y, SHIMADA M, KANAMARU F, et al. Preparation and magnetic property of BaNiO₃ single crystals [J]. Chemistry Letters, 1974, 3(2): 107–108.
- [50] DONOHUE P C, KATZ L, WARD R. The crystal structure of barium ruthenium oxide and related compounds [J]. Inorganic Chemistry, 1965, 4(3): 306–310.
- [51] RAO M V R, SATHE V G, SORNADURAI D, et al. Electronic structure of ARuO₃ (A = Ca, Sr and Ba) compounds [J]. Journal of Physics and Chemistry of Solids, 2001, 62(4): 797–806.
- [52] HONG S T, SLEIGHT A W. Crystal structure of 4H BaRuO₃: high pressure phase prepared at ambient pressure [J]. Journal of Solid State Chemistry, 1997, 128(2): 251–255.
- [53] RIJSSENBEEK J T, JIN R, ZADOROZHNY Y, et al. Electrical and magnetic properties of the two crystallographic forms of BaRuO₃ [J]. Physical Review B, 1999, 59(7): 4561–4564.
- [54] ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6H BaRuO₃ polymorph synthesized under high pressure [J]. Journal of Solid State Chemistry, 2007, 180(10): 2816–2823.
- [55] JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of the cubic perovskite BaRuO₃ and evolution of ferromagnetism in ARuO₃ (A = Ca, Sr, Ba) ruthenates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7115–7119.
- [56] OGAWA T, SATO H. New ternary barium ruthenates: 10H-type BaRuO₃ and Ba₂Ru₇O₁₈ [J]. Journal of Alloys and Compounds,

2004, 383(1/2): 313–318.

- [57] ZHOU J S, MATSUBAYASHI K, UWATOKO Y, et al. Critical behavior of the ferromagnetic perovskite BaRuO₃ [J]. Physical Review Letters, 2008, 101(7): 077206.
- [58] NEUMEIER J J, CORNELIUS A L, SCHILLING J S. Influence of pressure on the ferromagnetic transition temperature of SrRuO₃ [J]. Physica B: Condensed Matter, 1994, 198(4): 324–328.
- [59] SIEGRIST T, CHAMBERLAND B L. The crystal structure of BaIrO₃ [J]. Journal of the Less Common Metals, 1991, 170(1): 93–99.
- [60] CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO₃ [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469.
- [61] ZHAO J G, YANG L X, YU Y, et al. Physical properties of the 5M BaIrO₃: a new weak ferromagnetic iridate synthesized under high pressure [J]. Solid State Communications, 2010, 150(1): 36–39.
- [62] ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6M BaIrO₃: a new metallic iridate synthesized under high pressure [J]. Inorganic Chemistry, 2009, 48(10): 4290–4294.
- [63] CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO₃ perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114.
- [64] CHENG J G, ZHOU J S, ALONSO J A, et al. Transition from a weak ferromagnetic insulator to an exchange-enhanced paramagnetic metal in the BaIrO₃ polytypes [J]. Physical Review B, 2009, 80(10): 104430.
- [65] CAO G, CROW J E, GUERTIN R P, et al. Charge density wave formation accompanying ferromagnetic ordering in quasi-onedimensional BaIrO₃ [J]. Solid State Communications, 2000, 113(11): 657–662.
- [66] POWELL A V, BATTLE P D. The electronic properties of non-stoichiometric barium iridate, BaIrO_{3- δ} [J]. Journal of Alloys and Compounds, 1993, 191(2): 313–318.
- [67] ZHAO J G, YANG L X, MYDEEN K, et al. Effects of pressure on electrical property of BaIrO₃ [J]. Solid State Communications, 2008, 148(9/10): 361–364.
- [68] KIDA T, SENDA A, YOSHII S, et al. Pressure effect on magnetic properties of a weak ferromagnet BaIrO₃ [J]. Journal of Physics: Conference Series, 2010, 200(1): 012084.
- [69] SIEGRIST T, LARSON E M, CHAMBERLAND B L. Structural studies of high-pressure Ba-Rh-O phases [J]. Journal of Alloys and Compounds, 1994, 210(1/2): 13–17.
- [70] CHAMBERLAND B L, ANDERSON J B. The preparation and crystal structure of a BaRhO₃ polytype [J]. Journal of Solid State Chemistry, 1981, 39(1): 114–119.
- [71] INJAC S D A, XU Y H, ROMERO F D, et al. Pauli-paramagnetic and metallic properties of high pressure polymorphs of BaRhO₃ oxides containing Rh₂O₉ dimers [J]. Dalton Transactions, 2021, 50(13): 4673–4679.
- [72] MEGAW H D. Crystal structure of double oxides of the perovskite type [J]. Proceedings of the Physical Society, 1946, 58(2): 133–152.
- [73] KOPNIN E M, ISTOMIN S Y, D'YACHENKO O G, et al. Synthesis, structure, and resistivity properties of $K_{1-x}Ba_xNbO_3$ ($0.2 \le x \le 0.5$) and $K_{0.5}Sr_{0.5}NbO_3$ [J]. Materials Research Bulletin, 1995, 30(11): 1379–1386.
- [74] CASAIS M T, ALONSO J A, RASINES I, et al. Preparation, neutron structural study and characterization of BaNbO₃: a Paulilike metallic perovskite [J]. Materials Research Bulletin, 1995, 30(2): 201–208.
- [75] BRIXNER L H. X-ray study and electrical properties of system Ba_xSr_{1-x}MoO₃ [J]. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3/4): 225–230.
- [76] SCHOLDER R, RÄDE D, SCHWARZ H. Über zirkonate, hafnate und thorate von barium, strontium, lithium und natrium [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1968, 362(3/4): 149–168.
- [77] MULLER O, WHITE W B, ROY R. Crystal chemistry of some technetium-containing oxides [J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(12): 2075–2086.
- [78] SARKOZY R F, CHAMBERLAND B L. The preparation of several new ternary oxides of osmium [J]. Materials Research Bulletin, 1973, 8(12): 1351–1359.
- [79] CHAMBERLAND B L. Solid state preparations and reactions of ternary alkaline-earth osmium oxides [J]. Materials Research Bulletin, 1978, 13(12): 1273–1280.
- [80] SHI Y G, GUO Y F, SHIRAKO Y, et al. High-pressure synthesis of 5d cubic perovskite BaOsO3 at 17 GPa: ferromagnetic

evolution over 3d to 5d series [J]. Journal of the American Chemical Society, 2013, 135(44): 16507-16516.

- [81] GALLAGHER P K, JOHNSON JR D W, VOGEL E M, et al. Synthesis and structure of BaPtO₃ [J]. Journal of Solid State Chemistry, 1977, 21(4): 277–282.
- [82] CASAPU M, GRUNWALDT J D, MACIEJEWSKI M, et al. Enhancement of activity and self-reactivation of NSR-catalysts by temporary formation of BaPtO₃-perovskite [J]. Catalysis Letters, 2008, 120(1/2): 1–7.
- [83] YAMAMOTO T, SHITARA K, KITAGAWA S, et al. Selective hydride occupation in $BaVO_{3-x}H_x$ (0.3 $\leq x \leq 0.8$) with face and corner-shared octahedra [J]. Chemistry of Materials, 2018, 30(5): 1566–1574.
- [84] YUSA H, SATA N, OHISHI Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure [J]. American Mineralogist, 2007, 92(4): 648–654.
- [85] HIRAMATSU H, YUSA H, IGARASHI R, et al. An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO₃ [J]. Inorganic Chemistry, 2017, 56(17): 10535–10542.
- [86] 谢亚飞, 姜昌国, 罗兴丽, 等. 6H 型六方钙钛矿相 BaGeO₃ 的高温高压合成 [J]. 高压物理学报, 2021, 35(5): 051201.
 XIE Y F, JIANG C G, LUO X L, et al. Synthesis of 6H-type hexagonal perovskite phase of BaGeO₃ at high temperature and high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201.
- [87] LONGO J M, KAFALAS J A. Pressure-induced structural changes in the system Ba_{1-x}Sr_xRuO₃ [J]. Materials Research Bulletin, 1968, 3(8): 687–692.
- [88] ZHAO J G, YANG L X, YU Y, et al. High-pressure synthesis of orthorhombic SrIrO₃ perovskite and its positive magnetoresistance [J]. Journal of Applied Physics, 2008, 103(10): 103706.
- [89] CAO G, BOLIVAR J, MCCALL S, et al. Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr₂IrO₄ [J]. Physical Review B, 1998, 57(18): R11039–R11042.
- [90] CAO G, XIN Y, ALEXANDER C S, et al. Anomalous magnetic and transport behavior in the magnetic insulator Sr₃Ir₂O₇ [J]. Physical Review B, 2002, 66(21): 214412.

Crystal Structure and Physica Properties of Perovskite Oxide BaMO₃ (M Being Transition Metal)

ZHAO Jinggeng

(Science of Physics, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

Abstract: The perovskite oxide $BaMO_3$ (M being transition metal) has a complex crystal structure and physical properties. This article systematically summarizes the research progress, focusing on the evolution of crystal structure and physical properties during the M element change process, as well as the structural phase transition, electrical transport properties, and magnetic properties regulation under high-pressure. The influence of M ion radius and synthesis pressure on the evolution process from hexagonal perovskite to perovskite is discussed, and some issues in this field are also discussed. The possible new atomic combinations and structures in this system, as well as the new characteristics and scientific significance of these corresponding materials, are discussed.

Keywords: high temperature and high pressure synthesis; transition metal oxides; crystal structure; physical properties; perovskite oxide