

C_3N_4 热化学状态方程的研究及应用初探

陈玉兰 裴红波 郭文灿 刘福生 甘云丹 李星翰

Study and Preliminary Application of the Thermochemical Equation of State of C₃N₄

CHEN Yulan, PEI Hongbo, GUO Wencan, LIU Fusheng, GAN Yundan, LI Xinghan

引用本文: 陈玉兰, 裴红波, 郭文灿, 等. C₃N₄热化学状态方程的研究及应用初探[J]. 高压物理学报, 2025, 39(5):052101. DOI: 10.11858/gywlxb.20251006

CHEN Yulan, PEI Hongbo, GUO Wencan, et al. Study and Preliminary Application of the Thermochemical Equation of State of C₃N₄[J]. Chinese Journal of High Pressure Physics, 2025, 39(5):052101. DOI: 10.11858/gywlxb.20251006

在线阅读 View online: https://doi.org/10.11858/gywlxb.20251006

您可能感兴趣的其他文章

Articles you may be interested in

高压下主族金属富氮化合物的结构与含能特性

Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure 高压物理学报. 2024, 38(4): 040101 https://doi.org/10.11858/gywlxb.20230810

C₂H₄/N₂O预混气体的爆轰性能与火焰淬熄特性

Detonation and Quenching Characteristics of Premixed C2H4/N2O

高压物理学报. 2020, 34(4): 045201 https://doi.org/10.11858/gywlxb.20190845

HNS基PBX炸药爆轰驱动平板实验及产物状态方程参数确定

Experimental Investigation of Plate Driven by HNS-Based PBX Explosive and Equation of State Parameters Determination for Explosive Detonation Products

高压物理学报. 2023, 37(6): 061301 https://doi.org/10.11858/gywlxb.20230669

高温高压条件下聚合物的状态方程和相变

Polymers at High Pressures and High Temperatures: Advances in Equation of State and Phase Transition Investigations 高压物理学报. 2025, 39(2): 021301 https://doi.org/10.11858/gywlxb.20240863

K₂N₂中一维氮链的压力诱导聚合

Pressure-Induced Polymerization of One-Dimensional Nitrogen Chains in K2N2

高压物理学报. 2024, 38(4): 040104 https://doi.org/10.11858/gywlxb.20240719

自动校准的多相状态方程建模方法及其在锡中的应用

Automated Calibrated Modeling Method of Multiphase Equations of States: Applied to Tin 高压物理学报. 2023, 37(2): 021301 https://doi.org/10.11858/gywlxb.20220709 DOI: 10.11858/gywlxb.20251006

C_3N_4 热化学状态方程的研究及应用初探

陈玉兰,裴红波2,郭文灿2,刘福生,甘云丹3,李星翰1,2

(1. 西南交通大学物理科学与技术学院, 四川 成都 610031;

中国工程物理研究院流体物理研究所冲击波物理与爆轰物理全国重点实验室,四川 绵阳 621999;
 3. 西安近代化学研究所,陕西西安 710065)

摘要: C₃N₄在超硬材料合成和光催化等领域具有广泛的应用,然而,其在高温高压下的相变 和物理行为尚未完全清楚,研究其热化学状态方程十分必要。利用分解相边界及常温压缩线数 据,提出了一种定量研究 C₃N₄热化学状态方程的高精度、低成本的新方法。对 C₃N₄的石墨相和 正交相建立了三项式热化学状态方程,由此计算的诸多物理量与第一性原理计算结果及实验结 果吻合良好,证明了热化学状态方程的可靠性。利用 C₃N₄热化学状态方程,对特定温度压力下 C₃N₄的争议相进行了初步判断。此外,将 C₃N₄热化学状态方程加入新型富氮炸药 5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)的爆轰参数计算中,显著降低了 TKX-50爆轰参数计算值与实验值 之间的误差,为新型炸药爆轰机理研究提供了新的参考方向。

关键词:C₃N₄;热化学状态方程;相边界;富氮炸药

中图分类号:O521.2 文献标志码:A

C.N. 具有优异的化学稳定性和独特的电子能带结构,在诸多领域有着广泛应用,如作为超硬材料^[1-2]、 光催化材料^[3]以及环境污染物降解的催化剂^[4-5]。另外,新型富氮含能材料 5,5'-联四唑-1,1'-二氧二羟 铵(TKX-50)^[6]的反应产物中可能含有碳氮化合物^[7-9], C₃N₄可能是其中之一。C₃N₄的高温高压物性对 其应用有重要的影响。目前,针对C₃N₄在高温高压下的物性和相变研究较多,但认识仍不够深入,一 些结论存在矛盾。Han 等^[10]在 300 K 下对石墨相 C₃N₄(g-C₃N₄)进行了高压原位电阻测试,发现了 2 个 异常电阻变化,由此认为g-C₃N₄在10GPa以内较为稳定,在10GPa左右转变成为立方相,20GPa时转 变为未知相;李雪飞等[11-12]在300K下通过同步辐射X射线衍射(X-ray diffraction, XRD)和金刚石对顶 砧(diamond anvil cell, DAC)实验发现, g-C₃N₄在 10 GPa 以内不稳定, 在 6.6 GPa 转变为三斜相。Gao 等^[13] 在17.0~62.1 GPa 压力下对含铜和不含铜的 g-C₃N₄ 开展了冲击加载和回收实验,分析认为, g-C₃N₄ 在 22.4 GPa 下转变为未知相。马海云等^[14] 和 Wang 等^[1] 通过分析冲击回收样品,认为在接近 Gao 等^[13] 的 冲击压力下合成了第一性原理计算预测的超硬 β 相 $C_3N_4(\beta-C_3N_4)^{[15-16]}$; 但是, Kojima 等^[17] 通过激光加 热金刚石对顶砧(laser-heated diamond anvil cell, LHDAC)和平顶对顶砧实验,发现 g-C₃N₄在 30 GPa、 1600 K 的条件下转变为正交相 C₄N₄(O-C₄N₄), 且该正交相在高达 125 GPa、3000 K 的压力温度范围内 均稳定,该实验结果与马海云等[14]和 Wang 等[1]的结论不一致。Ming 等[18]在 21~38 GPa、1600~3000 K 的压力温度范围内利用 LHDAC 和同步加速器 XRD 技术,发现 g-C₃N₄ 在压力高于 21 GPa、温度高于 1800 K 的条件下转变为立方相;然而, Fang 等^[19] 开展了多次高温高压卸载实验, 未发现 C₄N₄ 存在任何 高压相。邹广田等^[20]利用六面顶压机对 g-C₃N₄进行了高温高压相变研究,在 5.2 GPa、1073 K 下发现

^{*} 收稿日期: 2025-01-03; 修回日期: 2025-03-27

基金项目: 国家自然科学基金(11902276);冲击波物理与爆轰物理全国重点实验室基金(2024CXPTGFJJ06408); 四川省自然科学基金(2022NSFSC1802)

作者简介:陈玉兰(1998-),女,硕士研究生,主要从事材料状态方程研究.E-mail: yulanchen0123@163.com 通信作者:李星翰(1992-),男,博士,副教授,主要从事爆轰与冲击波物理研究.E-mail: lixinghan2107@163.com

了稳定的 g-C₃N₄ 结构; Gao 等^[13] 开展了 g-C₃N₄ 的冲击回收实验, 认为 g-C₃N₄ 应该在 17 GPa、1943 K 条 件下存在; 但是, 根据 Kojima 等^[17] 总结的相图, 邹广田等^[20] 和 Gao 等^[13] 的实验区已经越过了 g-C₃N₄ 的 分解边界, 此时 g-C₃N₄ 应该已经分解为氮气和碳。最近, Laniel 等^[21] 通过 LHDAC 在高于 100 GPa 的条 件下合成了新型碳氮化合物 tl14-C₃N₄ 和 hP126-C₃N₄, 这些化合物在常温常压的空气中稳定。

在理论方面,很多学者通过第一性原理研究了 C_3N_4 的物性。Manyali 等^[22] 通过密度泛函理论计算 了石墨型和超硬结构 C_3N_4 的模量和力学特性; Lanzilotto 等^[23] 和 Ugolotti 等^[24] 通过密度泛函理论计算 了 g-C₃N₄ 的结构、电子和光谱特性; Fang 等^[19] 采用第一性原理,研究了压力对 C_3N_4 的结构、电子、光 学、力学、热力学性质的影响规律。热化学状态方程具备描述物质热力学量的能力,可用于深入研究 C_3N_4 的高温高压物性。第一性原理计算一般得到离散的热力学状态点,无法形成热化学状态方程,并 且其计算可靠性还需要实验检验。例如: 阮林伟^[25] 计算的 g-C₃N₄ 的 Grüneisen 系数随压力的升高而增 大, 而实验结果显示, Grüneisen 系数随着压力的升高而减小^[26]; Ruan 等^[27] 计算的 g-C₃N₄ 在 0 K 下的冷 压线与常温下实验压缩线^[11] 的差异高达 65%,根据常见物质的等压膨胀系数范围^[28],可估算常温与 0 K 下的初始密度差异约为 0.3%,无法解释此显著误差。因此, C_3N_4 的热化学状态方程研究不能完全 依赖计算,基于可靠的实验结果建立 C_3N_4 的热化学状态方程具有重要意义。

为定量研究 C₃N₄ 的热化学状态方程,本研究利用已知的相分解边界和等温压缩线,提出一种高精度、低成本的新方法;利用建立的 C₃N₄ 热化学状态方程,对争议点的相态进行初步判断;同时,尝试将 C₃N₄ 热化学状态方程加入新型富氮炸药 TKX-50 的爆轰性能研究中,以期为以 TKX-50 为代表的新型 炸药爆轰参数计算研究提供新的参考方向。

1 计算方法

1.1 热化学状态方程模型

为研究 Helmholtz 能(A), 建立 C₃N₄ 的热化学状态方程

$$A(T,V) = E - TS \tag{1}$$

式中:*T*为温度,*V*为比容,*E*为内能,*S*为熵。利用热力学基本关系,由A求出剩余所有的热力学量,如压强*p*。

根据经典三项式热化学状态方程,内能E和熵S由3部分贡献组成

$$E(V,T) = E_{\rm c}(V,T) + E_{\rm n}(V,T) + E_{\rm e}(V,T)$$
⁽²⁾

$$S(V, T) = S_{c}(V, T) + S_{n}(V, T) + S_{e}(V, T)$$
(3)

式中:下标 c 表示冷压贡献, n 表示晶格热运动贡献, e 表示电子贡献。0 K 时熵很小^[29], 即 S_c取零。由于本研究涉及的温度不高,因此, 忽略电子贡献项。

冷压项采用 Murnahan 方程

$$E_{\rm c}(V) = -\frac{B_0}{B_1} \left[V_{0\rm K} \frac{(V/V_{0\rm K})^{1-B_1} - 1}{1 - B_1} - (V - V_{0\rm K}) \right]$$
(4)

式中: *V*_{0K}为0K下的比容, *B*₀和*B*₁分别为零压下的体弹模量及其对压力的一阶导数。晶格振动贡献由 德拜模型描述

$$E_{\rm n} = k_{\rm B} n T \left[\frac{9}{8} \frac{\Theta}{T} + 3\zeta \left(\frac{\Theta}{T} \right) \right] + E_{\rm ref}$$
⁽⁵⁾

$$S_{\rm n} = k_{\rm B} n \left[4\zeta \left(\frac{\Theta}{T}\right) - 3\ln\left(1 - e^{-\frac{\Theta}{T}}\right) \right] + S_{\rm ref}$$
(6)

式中: n 为体系中的原子数目; $k_{\rm B}$ 为玻尔兹曼常数; $E_{\rm ref}$ 和 $S_{\rm ref}$ 为常数修正项; Θ 为德拜温度, 是比容的函数; ζ 为德拜函数。

$$\zeta(y) = \frac{3}{y^3} \int_0^y \frac{x^3}{e^x - 1} dx$$
(7)

德拜温度 @ 是定量计算晶格贡献的关键因素,目前关于 @ 的计算模型较多^[30-31],本研究采用 Xian 等^[32]的模型

$$\Theta(V) = \frac{\hbar}{k_{\rm B}} \left(6\pi^2 \frac{n}{V} \right)^{\frac{1}{3}} v_{\rm eff}(V) \tag{8}$$

式中: h为约化普朗克常量; v_{eff}为有效声速, 是德拜温度的核心控制因素。Xian 等^[32]、Luo 等^[33]的研究 表明, 声速与体积具有良好的线性关系。本研究采用 Luo 等^[33] 的假设

$$v_{\rm eff} = c_1 + c_2 \left(\frac{V}{V_{0\,\rm K}}\right) \tag{9}$$

式中: c₁和 c₂为常数。尽管声速与体积的线性关系假设的普遍性还需要更多研究验证,但是该假设对于 C₃N₄的可靠性可由以下计算结果与实验结果的良好吻合来证明。

由于实验无法达到0K,直接用室温实验结果代替0K实验结果会导致一定的误差,因此,本研究 考虑了温度变化导致的比容变化,由此修正此误差

$$V_{0\mathrm{K}} = V_0 - \alpha T_0 \tag{10}$$

式中: V_0 为室温下的比容, α 为常压下的体积膨胀系数, T_0 为室温。因此, 只要标定 V_{0K} 、 B_0 、 B_1 、 c_1 、 c_2 、 E_{ref} 、 S_{ref} 、 α 这 8 个量, 就可以完全确定热化学状态方程。

1.2 计算数据

为了构造物质在高温高压下的热化学状态方程,理论上需要通过实验获得若干 (*p*, *T*, *V*) 点以标定 热化学状态方程的 8 个参数,从而确定热化学状态方程。然而,基于实验结果标定热化学状态方程普 遍存在数据缺乏问题,因为一般的实验方法难以同时得到 *p*、*T*、*V*数据,而利用 LHDAC 和同步加速器 XRD 技术获取 (*p*, *T*, *V*) 数据的成本十分高昂。已发表的常见数据是通过常温压缩实验获得的 (*p*, *V*, *T*₀) 点以及高温高压实验获得的相边界 (*p*, *T*) 点。常温压缩线可以很好地反映冷压项的贡献,但相边界数 据由于缺乏体积信息一般难以支撑关于热贡献的定量计算,除非相分解的产物状态信息已知。

利用已知的C₃N₄分解产物的热化学状态方 程, 计算了 C₃N₄ 相边界上的 (p, T, G) 数据(G 为 Gibbs 能),结合已发表的常温压缩实验数据 (p, V, T_0) , 可高精度、低成本地定量研究C₃N₄的热化学状态 方程。Kojima 等^[17] 通过实验得到的 g-C₃N₄ 高压 相图(见图1)被广泛接受,他们发现,g-C₃N₄在 20 GPa 左右转变为正交相 O-C₃N₄, 而 O-C₃N₄ 直 到150 GPa都非常稳定;他们还研究了高温下 g-C₃N₄和O-C₃N₄的分解线,发现g-C₃N₄在高温下 主要分解为石墨和 N₂, 而 O-C₃N₄ 主要分解为金刚 石和 N,。目前,人们对石墨、金刚石和 N,的高温 高压状态的认识比较深刻,已经获得了可靠的热 化学状态方程。因此,利用石墨、金刚石和 N,的 热化学状态方程,可以计算出 C₃N₄ 相边界上的 (p, T, G)数据。由于相边界上具有 Gibbs 能相等 的特征,因此,计算出的(p,T,G)数据同样适合 C₄N₄,可以支撑关于热贡献的定量计算。李雪飞等[11] 和 Kojima 等^[17] 实验研究了 g-C₃N₄ 和 O-C₃N₄ 的常 温压缩线,可以支撑关于冷压项的定量计算。

Fig. 1 Phase diagram of $C_3N_4^{[17]}$ (Circles, squares, diamonds and triangles denote graphite, $O-C_3N_4$, diamond and $g-C_3N_4$, respectively. Thick solid line represents the boundary between graphite and diamond, and the dashed line indicates the decomposed phase boundary of C_3N_4 .)

N₂在高温高压下的热化学状态方程^[34]基于 MCR(molecular crystalline renormalization^[35]理论计算。 MCR 理论以分子相互作用势(ϕ)为基础

$$\Phi(r) = \varepsilon \left\{ \frac{6}{\alpha - 6} \exp\left[\alpha \left(1 - \frac{r}{r^*}\right)\right] - \frac{\alpha}{\alpha - 6} \left(\frac{r^*}{r}\right)^6 \right\}$$
(11)

式中:r为分子间的距离;ε、r*、α为势参数,取值分别为 293、0.389 和 11.5^[36]。

Fried 等[37] 提出的碳(C)的四相(石墨、金刚石和2个流体相)热化学状态方程被证明可靠性较高[38]。 本课题组编写了 DLCHEQ 热化学程序^[39-40],其中包含 N,和 C 的热化学状态方程,可以通过 p、T 方便地 推导出 C+N,的 Gibbs 能。

1.3 标 定

基于多个数据点标定热化学状态方程的8个参数,本质上是多参数求极值问题。人工求多参数极 值问题费时费力且难以保证计算效果。为此,研究人员常用遗传算法[41]开展标定工作,本研究采用粒 子群算法。粒子群算法[42] 是一种智能优化的随机搜索算法,能以较大的概率收敛于全局最优解,适合 在动态、多目标优化环境中寻优,与传统优化算法相比,其更新优化参数位置的速度更快,拥有更好的 全局搜索能力。采用粒子群算法标定热化学状态方程的流程如图2所示,其标定误差随迭代次数的变 化如图 3 所示。由图 3 可知, 8 参数的极值求解在 50 次迭代后基本收敛, 效率较高。标定的常温压缩 线的平均相对误差不超过 1.85%, Gibbs 能的平均相对误差不超过 0.50%。平均相对误差 δ_{ave} 的公式为

$$\delta_{\text{ave}} = \frac{1}{N} \sum_{i=1}^{N} \frac{x_{\text{fit},i} - x_{\exp,i}}{x_{\exp,i}}$$
(12)

式中:N为数据点个数, x_{fti}和 x_{expi}分别为标定点和实验点数据。

Fig. 2 Schematic diagram of the particle swarm optimization algorithm

计算结果 2

Material

 B_0/GPa

 B_1

本研究标定的g-C₃N₄和O-C₃N₄的热化学状态方程参数如表1所示。g-C₃N₄和O-C₃N₄的热化学状 态方程的可靠性可以通过对比各物理量的第一性原理计算值或实验值得到。

首先,标定的g-C₃N₄的V_{0K}为0.449 cm³/g,第一性原理计算结果为0.433 cm³/g^[25],相对误差为 3.56%,在可接受范围内。

其次,热化学状态方程计算的g-C₃N₄和O-C₃N₄的常温压缩线与实验数据的吻合度较高,如图4所 示,平均相对误差约为1.85%。根据比定容热容(c_v)的定义,计算了 O-C₃N₄ 的 c_v ,与 Cang 等^[43] 的第一 性原理计算结果具有较高的一致性(平均相对误差为2.27%),如图5所示。

$g-C_3N_4$	163.62	5.40	0.449	89.86	3.40×10^{-2}	1.39	-1.07	4.41×10 ⁻⁶
$O-C_3N_4$	244.12	4.08	0.401	111.85	8.76×10^{-2}	1.15	-0.47	4.19×10 ⁻⁶
60 50 - 40 - 80 30 - 20 - 10 -			● g-C ▲ 0-(g-C 0-($C_{3}N_{4}$, exp. ^[11] $C_{3}N_{4}$, exp. ^[17] $C_{3}N_{4}$, calc. $C_{3}N_{4}$, calc.	$ \begin{array}{c} 180\\ 160\\ -\\ 140\\ -\\ (\underline{1}20\\ -\\ \underline{1}20\\ -\\ 100\\ -\\ 80\\ -\\ 60\\ -\\ 40\\ -\\ 20\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	a second se	•••••	Calc.
0	0.85	0.90	0.95 V/V ₀	• 1.00	0	200 400	600 80 <i>T</i> /K	0 1 000 1 200
图 4 标定的常温压缩线与实验结果的对比 Fig. 4 Comparison of calculated compression lines with				图 5 $O-C_3N_4$ 的比定容热容 Fig. 5 Specific heat capacity at constant				
e:	xperimenta	l results u	inder room tem	perature	1 18.	volume	e of O-C ₃ N ₄	Constant

表 1 g-C₃N₄和 O-C₃N₄的热化学状态方程参数

 $c_2/(\text{mm}\cdot\text{s}^{-1})$

 $\alpha/(cm^3 \cdot g^{-1} \cdot K^{-1})$

Tal	ble 1	Thermoch	nemical equation	of state parameters	of g-C ₃ N ₄ and	O-C ₃ N ₄
B_1	$V_{0 \text{ K}}$	$/(cm^{3} \cdot g^{-1})$	$E_{\rm ref}/(\rm kJ\cdot mol^{-1})$	$S_{\rm ref}/({\rm kJ}\cdot{\rm mol}^{-1}\cdot{\rm K}^{-1})$	$c_1/(\text{mm} \cdot \text{s}^{-1})$	$c_2/(mn$

最后,通过相边界上 Gibbs 能相等的特点,计 算 g-C₃N₄和 O-C₃N₄的相边界,结果如图 6 所示。 考虑到热化学状态方程标定时 Gibbs 能的平均相 对误差不超过 0.50%,因此,计算的相边界误差棒 对应的 Gibbs 能上下限误差为 0.50%。本研究计 算的 g-C₃N₄和 O-C₃N₄相边界压强范围接近 40 GPa, 其中 26 GPa 以下的部分与 Kojima 等^[17]由实验得 到的相边界吻合得很好,相同压强下温度的最大 误差仅为 1.44%。

3 讨 论

本研究尝试通过新建立的 g-C₃N₄ 和 O-C₃N₄ 相边界, 对争议温度压力区域的 C₃N₄ 相态进行初 步鉴别。如图 6 所示, 绿色点表示 Gao 等^[13] 通过 g-C₃N₄ 冲击回收实验得到的未知相, 紫色点表示 Wang 等^[1] 通过冲击回收实验得到的超硬预测相

β-C₃N₄。根据本研究计算的相边界可知,绿色点和紫色点都位于 O-C₃N₄ 范围内,如果 Gao 等^[13] 和 Wang 等^[1] 发现的相为非亚稳相,那么它们应该是 O-C₃N₄。

2012年, Fischer 等^[44]设计并合成了 TKX-50 炸药, 理论预测其具有高爆轰的 Chapman-Jouguet(CJ) 爆轰参数^[45],实验研究发现,其撞击感度、摩擦感度、静电感度较低,因此,TKX-50作为一种综合性能 优异的炸药备受关注。后续的计算模型都表明, TKX-50 具有较高的 CJ 爆轰参数, 但是与实验结果相 比存在系统性偏大。造成该差异的原因目前还不明确,因而阻碍了富氮炸药的爆轰机理研究。一些研 究表明, TKX-50 的产物中可能存在 CN 组分^[7-9]。据此, 本研究认为, 经典方法的计算误差可能源于未 考虑 TKX-50 的富氮特性,导致产物中可能存在 CN 凝聚态组分,如 C₃N₄。为了验证此假设,将 g-C₃N₄和 O-C₁N₄的热化学状态方程加入热化学程序 DLCHEQ^[40] 中,建立了 TKX-50 炸药产物的热力学模型。 DLCHEQ 程序根据系统 Gibbs 能最小来确定产物组分,由此计算 TKX-50 产物的 Hugoniot 线和 CJ 爆轰 参数^[46-47]。研究发现,直接用g-C₃N₄和O-C₃N₄的热化学状态方程计算时,在炸药常见的爆轰压力范围 (42~26 GPa)内, C₃N₄ 主要以 O-C₃N₄ 相存在, 但含量较少。若 TKX-50 产物中存在 C₃N₄, 那么它可能经 历从小到大的生长过程,从而拥有团簇生长和表面悬挂键等特征,致使其能量、体积等性质与块体材料 存在差异。为了模拟 TKX-50 产物中 C₃N₄ 的性质, 改变 O-C₃N₄ 的V_{0K}, 设置V_{0K}(36.9 cm³/mol)、 95.3% V_{0K}(35.2 cm³/mol)、94.8% V_{0K}(35.0 cm³/mol)3 种梯度,反映 TKX-50 产物组分的3 种典型状态。计 算得到的 D-p 形式的 Hugoniot 线如图 7 所示,其中,D 为爆轰波爆速。由图 7(a) 可知,改变Vox 对于 TKX-50 产物的 Hugoniot 状态具有显著影响, Hugoniot 线总是随着 V_{0K} 的下降而下降。 V_{0K} 条件下, 产物 Hugoniot 状态中的凝聚态组分以石墨为主。在 95.3% V_{0K} 条件下, Hugoniot 线在 36 GPa 以下显著下降, 并且在 36~34 GPa 和 29~27 GPa 区间存在 2 个显著的转折, 如图 7(b) 所示, 此时生成了大量 O-C₃N₄, 即

$$3C+2N_2 \rightarrow C_3N_4 \tag{13}$$

在 94.8% V_{0K}条件下,整个 Hugoniot 状态中都不存在石墨,凝聚态组分一直以 O-C₃N₄ 为主。生成 C₃N₄ 是一个吸热且总体积减小的反应,因此,TKX-50 产物中的 C₃N₄ 含量越大,则系统内能和气体含量 越少,导致爆轰性能下降。本研究对 V_{0K}的体积修正不超过 5.2%,与体积标定的相对误差接近;由于 O-C₃N₄ 的体积占 TKX-50 产物体积不超过 10%,因此,V_{0K}修正对总体积的影响最大约为 2%。综上,可 以认为,修正 V_{0K}后的 O-C₃N₄ 热化学状态方程仍具有物理意义,计算得到的 C₃N₄ 在 TKX-50 产物中可 能存在的结论具有合理性。

图 7 TKX-50 产物的 Hugoniot 线: (a) *D-p* 曲线, (b) 1 mol TKX-50 炸药产物中 C₃N₄ 的物质的量的变化 Fig. 7 Hugoniot lines of TKX-50 detonation products: (a) *D-p* curves; (b) change of the molar amount of C₃N₄ in the products of 1 mol TKX-50 explosive

根据 CJ 理论模型^[45], Hugoniot 线中 D 最小值对应的点为 CJ 爆轰点,由此得到 CJ 爆轰参数。本研 究总结了不同实验和计算得到的 TKX-50 炸药的 CJ 爆轰参数^[44, 46, 48-51],如表 2 所示,其中: D_{CI} 、 p_{CI} 、 T_{CI} 分别为 CJ 爆速、CJ 爆压和 CJ 温度。由表 2 可知,对于经典的计算方法,无论是著名的热化学程序 Explo 5、CHEETAH,还是经验公式,在 TKX-50 炸药的理论密度(1.877 g/cm³)下预测的 CJ 爆速(9.650~ 9.735 km/s)和 CJ 爆压(42 GPa 左右)都比现有炸药更具优势,这也是研究人员一直认为 TKX-50 炸药拥 有较高潜力的原因。实验上,Gottfried 等^[45]发现,理论密度下 TKX-50 炸药的 CJ 爆速(9.432 km/s)稍小 于计算值。刘佳辉等^[49]和 Tan 等^[50]通过实验发现,当 TKX-50 炸药的密度稍低于理论密度时,其 CJ 爆 速和 CJ 爆压远小于计算值。由于实验上钝感炸药的 CJ 点并不明显,因此,测试的 TKX-50 炸药的 CJ 压力差异较大。本研究的计算结果表明: TKX-50 炸药爆轰产物中 O-C₃N₄ 的含量越多,计算的 CJ 爆 速和 CJ 爆压越接近实验值;当取 94.8% V_{0K} 时,计算的 CJ 爆速、CJ 爆压与 Tan 等^[50]获得的实验值的相 对误差分别为 5.24% 和 7.20%,远低于经典模型。由表 2 可知,随着 V_{0K} 的下降, TKX-50 炸药的 CJ 爆速 下降约 3%, CJ 爆压下降约 16%, CJ 温度下降约 7%。这说明 TKX-50 炸药的 CJ 爆压和 CJ 温度对凝聚 态产物组分变化非常敏感,而 CJ 爆速则不太敏感,该结论对于 TKX-50 炸药的爆轰性能研究具有重要 价值。本研究的计算结果表明, C₃N₄ 可能存在于 TKX-50 炸药的爆轰产物中,计算值与实验值的差异 说明 TKX-50 炸药爆轰产物中可能还存在其他凝聚态组分。

Method	$ ho_0/(\mathrm{g}\cdot\mathrm{cm}^{-3})$	$D_{\rm CJ}/({\rm km}\cdot{\rm s}^{-1})$	$p_{\rm CJ}$ /GPa	$T_{\rm CJ}/{ m K}$
Exp. (detonation test) ^[48]	1.877	9.432		
Exp. (damage test) ^[49]	1.86	9.037	26.40	
Exp. (DRZ test) ^[50]	1.85	9.050	35.04	
Calc. (V_{0K})	1.85	9.783	38.20	3161.9
Calc. $(95.3\%V_{0K})$	1.85	9.735	33.30	3 0 3 0.9
Calc. $(94.8\%V_{0K})$	1.85	9.525	32.50	2953.9
Calc. (Explo 5.05) ^[44]	1.877	9.698	42.40	3954
Calc. (CHEETAH 8.0) ^[48]	1.877	9.735	42.40	2845
Calc. (empirical code) ^[51]	1.877	9.650	41.90	3 724

表 2 实验和计算得到 TKX-50 炸药的 CJ 爆轰参数 Table 2 CJ parameters of TKX-50 explosives obtained by experiments and calculations

4 结 论

利用实验测试的分解相边界及常温压缩线,提出了一种新的高精度、低成本的热化学状态方程研究方法。根据新方法,对g-C₃N₄和O-C₃N₄建立了经典的三项式热化学状态方程,计算了初始比容、体弹模量等物理量,与实验值及第一性原理计算值的对比结果表明,由热化学状态方程得到的初始比容、冷压线、比定容热容和相边界均与第一性原理计算值及实验值吻合良好,相对误差分别为3.50%、1.85%、2.27%和1.44%,证明了利用新方法研究热化学状态方程的可靠性和准确性。

采用热化学状态方程计算了 g-C₃N₄ 和 O-C₃N₄ 的相边界, 判断研究人员在 50~70 GPa 压力下通过 冲击实验发现的未知相为 O-C₃N₄。将 C₃N₄ 热化学状态方程应用在 TKX-50 炸药的爆轰参数计算研究 中, 发现 O-C₃N₄ 有可能存在于 TKX-50 炸药的爆轰产物中, 并且 O-C₃N₄ 的存在大幅降低了 CJ 参数计算 值与实验值的误差, 为以 TKX-50 炸药为代表的新型富氮炸药的爆轰参数计算研究提供了新的理论依 据和研究方向。

参考文献:

- WANG Y G, LIU F S, LIU Q J, et al. Recover of C₃N₄ nanoparticles under high-pressure by shock wave loading [J]. Ceramics International, 2018, 44(16): 19290–19294.
- [2] LANIEL D, TRYBEL F, ZHOU W J, et al. High-pressure synthesis of oP28-C₃N₄ recoverable to ambient conditions [J]. Advanced Functional Materials, 2025, 35(11): 2416892.
- [3] SONG X L, CHEN L, GAO L J, et al. Engineering g-C₃N₄ based materials for advanced photocatalysis: recent advances [J]. Green Energy & Environment, 2024, 9(2): 166–197.
- [4] MUHMOOD T, AHMAD I, HAIDER Z, et al. Graphene-like graphitic carbon nitride (g-C₃N₄) as a semiconductor photocatalyst: properties, classification, and defects engineering approaches [J]. Materials Today Sustainability, 2024, 25: 100633.
- [5] YU X N, NG S F, PUTRI L K, et al. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C₃N₄) photocatalysts toward artificial photosynthesis [J]. Small, 2021, 17(48): 2006851.
- [6] KLAPÖTKE T M. TKX-50: a highly promising secondary explosive [M]//TRACHE D, BENALIOUCHE F, MEKKI A. Materials Research and Applications: Select Papers from JCH8–2019. Singapore: Springer, 2021: 1–91.
- [7] WANG X H, HAO G Z, XIAO L, et al. Review on the thermal decomposition of dihydroxylammonium 5, 5'-bistetrazole-1, 1'diolate (TKX-50) [J]. Thermochimica Acta, 2023, 719: 179393.
- [8] ZHAO C D, CHI Y, PENG Q, et al. A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products [J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6600–6605.
- [9] REN X, HE R N, WANG X H, et al. A comprehensive experimental and theoretical study of thermal response mechanisms of TKX-50 and HMX [J]. Fuel, 2024, 375: 132623.
- [10] HAN Y H, LUO J F, GAO C X, et al. Phase transition of graphitic-C₃N₄ under high pressure by *in situ* resistance measurement in a diamond anvil cell [J]. Chinese Physics Letters, 2005, 22(6): 1347–1349.
- [11] 李雪飞, 张剑, 刘伟, 等. 氮化碳的高压同步辐射研究 [J]. 高压物理学报, 2009, 23(1): 71–74.
 LI X F, ZHANG J, LIU W, et al. Synchrotron radiation X-ray diffraction of carbon nitride under high pressure [J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 71–74.
- [12] 李雪飞, 马艳梅, 沈龙海, 等. 石墨相 C₃N₄ 压致结构相变研究 [J]. 高压物理学报, 2010, 24(1): 67–70.
 LI X F, MA Y M, SHEN L H, et al. Study on the pressure-induced phase transition of g-C₃N₄ [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 67–70.
- [13] GAO X, YIN H, CHEN P W, et al. Shock-induced phase transition of g-C₃N₄ to a new C₃N₄ phase [J]. Journal of Applied Physics, 2019, 126(15): 155901.
- [14] 马海云, 刘福生, 李永宏, 等. 强冲击压缩条件下 g-C₃N₄ 向 β-C₃N₄ 直接转化 [J]. 高压物理学报, 2012, 26(3): 319–324.
 MA H Y, LIU F S, LI Y H, et al. Strong shock-compression of g-C₃N₄ precursor for direct synthesis of β-C₃N₄ [J]. Chinese

Journal of High Pressure Physics, 2012, 26(3): 319-324.

- [15] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53–55.
- [16] LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989, 245(4920): 841-842.
- [17] KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K [J]. Diamond and Related Materials, 2013, 39: 1–7.
- [18] MING L C, ZININ P, MENG Y, et al. A cubic phase of C₃N₄ synthesized in the diamond-anvil cell [J]. Journal of Applied Physics, 2006, 99(3): 033520.
- [19] FANG L M, OHFUJI H, SHINMEI T, et al. Experimental study on the stability of graphitic C₃N₄ under high pressure and high temperature [J]. Diamond and Related Materials, 2011, 20(5/6): 819–825.
- [20] 邹广田, 李雪飞, 杨大鹏, 等. 石墨相 C₃N₄ 的高温高压研究 [J]. 原子与分子物理学报, 2009, 26(4): 705–707.
 ZOU G T, LI X F, YANG D P, et al. Study on the pressure-induced phase transition of g-C₃N₄ [J]. Journal of Atomic and Molecular Physics, 2009, 26(4): 705–707.
- [21] LANIEL D, TRYBEL F, ASLANDUKOV A, et al. Synthesis of ultra-incompressible and recoverable carbon nitrides featuring CN₄ tetrahedra [J]. Advanced Materials, 2024, 36(3): 2308030.
- [22] MANYALI G S, WARMBIER R, QUANDT A, et al. *Ab initio* study of elastic properties of super hard and graphitic structures of C₃N₄ [J]. Computational Materials Science, 2013, 69: 299–303.
- [23] LANZILOTTO V, SILVA J L, ZHANG T, et al. Spectroscopic fingerprints of intermolecular H-bonding interactions in carbon nitride model compounds [J]. Chemistry–A European Journal, 2018, 24(53): 14198–14206.
- [24] UGOLOTTI A, DI VALENTIN C. Ab-initio spectroscopic characterization of melem-based graphitic carbon nitride polymorphs [J]. Nanomaterials, 2021, 11(7): 1863.
- [25] 阮林伟. g-C₃N₄ 光催化材料的第一性原理研究 [D]. 合肥: 安徽大学, 2015: 42–56.
 RUAN L W. First-principles study of g-C₃N₄ photocatalytic materials [D]. Hefei: Anhui University, 2015: 42–56.
- [26] ZHAO Y R, ZHANG H R, ZHANG G T, et al. First-principles investigation on elastic and thermodynamic properties of *Pnnm*-CN under high pressure [J]. AIP Advances, 2016, 6(12): 125040.
- [27] RUAN L W, ZHU Y J, QIU L G, et al. First principles calculations of the pressure affection to g-C₃N₄ [J]. Computational Materials Science, 2014, 91: 258–265.
- [28] PRIBYLOV A A, POSTNIKOV E B. Thermodynamic curvature and the thermal expansion isolines [J]. Journal of Molecular Liquids, 2021, 335: 115994.
- [29] RIBEIRO M, HENRIQUES T, CASTRO L, et al. The entropy universe [J]. Entropy, 2021, 23(2): 222.
- [30] BLANCO M A, FRANCISCO E, LUAÑA V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57–72.
- [31] LUO Y F, LI M K, YUAN H M, et al. Predicting lattice thermal conductivity via machine learning: a mini review [J]. NPJ Computational Materials, 2023, 9(1): 4.
- [32] XIAN Y T, XIANG S K, LIU L, et al. Accurate equation of state of rhenium as pressure scale up to 130 GPa and 3200 K [J]. AIP Advances, 2022, 12(5): 055313.
- [33] LUO Y, XIANG S K, LI J, et al. Equation of state of MgO up to 345 GPa and 8500 K [J]. Physical Review B, 2023, 107(13): 134116.
- [34] KRUKOWSKI S, STRĄK P. Equation of state of nitrogen (N₂) at high pressures and high temperatures: molecular dynamics simulation [J]. The Journal of Chemical Physics, 2006, 124(13): 134501.
- [35] 杨金文, 施尚春, 李巧燕, 等. 高温高密度液氮冲击压缩特性理论研究 [J]. 爆炸与冲击, 2007, 27(6): 557–561. YANG J W, SHI S C, LI Q Y, et al. Theoretical research on shock compression properties of liquid helium at high temperature and density [J]. Explosion and Shock Waves, 2007, 27(6): 557–561.
- [36] 赵艳红. 基于统计物理和化学平衡的爆轰产物物态方程 [D]. 绵阳: 中国工程物理研究院, 2015: 21–46.
 ZHAO Y H. The equation of state of detonation products based on statistical physics and chemical equilibrium [D]. Mianyang: China Academy of Engineering Physics, 2015: 21–46.
- [37] FRIED L E, HOWARD W M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram [J]. Physical Review B, 2000, 61(13): 8734–8743.
- [38] JAWORSKI Z, ZAKRZEWSKA B, PIANKO-OPRYCH P. On thermodynamic equilibrium of carbon deposition from gaseous

C-H-O mixtures: updating for nanotubes [J]. Reviews in Chemical Engineering, 2017, 33(3): 217–235.

- [39] 王中友, 李星翰, 甘云丹, 等. 爆热弹中产物组分演化的计算研究 [J]. 火炸药学报, 2022, 45(2): 229–242.
 WANG Z Y, LI X H, GAN Y D, et al. Study on thermodynamic evolution of detonation products in the detonation bomb test [J].
 Chinese Journal of Explosives & Propellants, 2022, 45(2): 229–242.
- [40] LI X H, YI Z C, LIU Q J, et al. Research of detonation products of RDX/Al from the perspective of composition [J]. Defence Technology, 2023, 24: 31–45.
- [41] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future [J]. Multimedia Tools and Applications, 2021, 80(5): 8091–8126.
- [42] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview [J]. Soft Computing, 2018, 22(2): 387-408.
- [43] CANG Y P, LIAN S B, YANG H M, et al. Predicting physical properties of tetragonal, monoclinic and orthorhombic M₃N₄ (M= C, Si, Sn) polymorphs via first-principles calculations [J]. Chinese Physics Letters, 2016, 33(6): 066301.
- [44] FISCHER N, FISCHER D, KLAPÖTKE T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418–20422.
- [45] SUCESKA M, TUMARA B S, DOBRILOVIC M, et al. Estimation of detonation front curvature radius by empirical equations [J]. Journal of Energetic Materials, 2024, 42(2): 169–186.
- [46] SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2771–2779.
- [47] 杨舒棋, 张旭, 彭文杨, 等. 钝感炸药冲击起爆反应过程的 PDV 技术 [J]. 高压物理学报, 2020, 34(2): 023402.
 YANG S Q, ZHANG X, PENG W Y, et al. PDV technology of shock initiation reaction process of insensitive explosive [J].
 Chinese Journal of High Pressure Physics, 2020, 34(2): 023402.
- [48] GOTTFRIED J L, KLAPÖTKE T M, WITKOWSKI T G. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353–359.
- [49] 刘佳辉, 范桂娟, 卢校军, 等. TKX-50 基混合炸药的爆轰及安全性能 [J]. 含能材料, 2019, 27(11): 902–907.
 LIU J H, FAN G J, LU X J, et al. Detonation and safety performance of TKX-50 based PBX [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 902–907.
- [50] TAN K Y, HAN Y, LIU J H, et al. Detonation reaction zone and acceleration ability of a TKX-50 based polymer bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202100367.
- [51] KESHAVARZ M, ABADI Y H, ESMAEILPOUR K, et al. Novel high-nitrogen content energetic compounds with high detonation and combustion performance for use in plastic bonded explosives (PBXs) and composite solid propellants [J]. Central European Journal of Energetic Materials, 2018, 15(2): 364–375.

Study and Preliminary Application of the Thermochemical Equation of State of C₃N₄

CHEN Yulan¹, PEI Hongbo², GUO Wencan², LIU Fusheng¹, GAN Yundan³, LI Xinghan^{1,2}

(1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;

2. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics,

China Academy of Engineering Physics, Mianyang 621999, Sichuan, China;

3. Xi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi, China)

Abstract: C_3N_4 has a wide range of applications in the synthesis of superhard materials and photocatalysis materials, but its phase transitions and physical behaviors under high pressure and high temperature conditions are not fully understood. Therefore, it is necessary to study its thermochemical equation of state. In this paper, we propose a novel, high-precision and low-cost method for quantitatively determining the

equation of state of C_3N_4 , based on decomposition phase boundary and compression line at room temperature. We constructs the equation of state for two phases of C_3N_4 , and the corresponding physical quantities match well with first-principles calculations and experimental values, proving the reliability of the equation of state. Based on the equation of state of C_3N_4 , we make a preliminary judgment on the phase state of the controversial points. Furthermore, this study attempts to incorporate the equation of state of C_3N_4 into the research on the detonation mechanism of novel nitrogen-rich explosives. It significantly reduces the longstanding errors between the calculated values and experimental values of the detonation parameters of the explosives, and provides a new reference direction for the research on the detonation parameter calculations of new explosives.

Keywords: C₃N₄; thermochemical equation of state; phase boundary; nitrogen-rich explosive