${ m VS}_2$ 作为锂离子电池负极材料的第一性原理研究 *

周斌 肖事成 王一楠 张晓毓 钟雪 马丹 戴赢 范志强 唐贵平[†]

(长沙理工大学物理与电子科学学院,长沙 410114)

(2023年10月22日收到; 2024年3月28日收到修改稿)

随着对锂离子电池 (LIBs) 性能要求的提高, 研究开发锂离子电池的新型电极尤显重要. 本文采用第一性 原理计算研究二硫化钒 (VS₂) 作为锂离子电池负极材料的可能性. 计算结果表明: VS₂ 具有金属性, 费米能级 附近的态密度主要来源于钒的 3d 轨道及硫的 3p 轨道; Li 在 VS₂ 单层中优先吸附钒 (V) 的顶位, Li 在 VS₂ 表 面具有非常好的扩散性, 扩散势垒仅为 0.20 eV, 低于石墨烯, 表明 Li 能够较快地迁移, 有利于 LIB 快速充电-放电过程; VS₂ 机械性能良好, 杨氏模量为 96.82 N/m, 且吸附 Li 后的杨氏模量与泊松比都未减小, 表明 VS₂ 在吸附 Li 以及 Li 离子扩散迁移过程中, 刚性并不会降低; 并且计算得到 VS₂ 的电池容量 (466 mAh/g) 比石 墨烯更高. 研究表明 VS₂ 具有出色的导电性能和优异的机械刚性及较高的理论容量, 是一种非常有前景的锂 离子电池负极材料.

关键词: 锂离子电池, 吸附能, 第一性原理 PACS: 31.15.A-, 68.65.-k, 73.20.Hb

DOI: 10.7498/aps.73.20231681

1 引 言

锂离子电池是目前最重要的可充电储能设备 之一. 在经济和可持续电化学储能设备需求的推动 下, 人们对具有更好规格容量、循环稳定性、高倍 率能力和安全性的锂离子电池 (LIBs) 的需求日益 迫切, 这也进一步刺激了电极材料研究的发展^[1].

二维 (2D) 纳米材料的范围不仅限于石墨烯, 还包括诸如 BN, MoS₂ 等多种非碳单层材料, 这些 材料已经通过实验得到验证, 并在诸如电子学、能 源存储等领域展示了潜在应用^[2]. 在这些二维材料 中, 二硫化钼 (MoS₂) 作为一种潜在的锂离子电池 电极材料备受关注. 经过实验验证, MoS₂ 作为锂 离子电池负极可表现出良好的性能, 尤其是在比容 量方面显示出相对较高的水平^[3]. 理论研究指出, 具有低扩散势垒的 MoS₂ 单层能够稳定地吸附锂 离子^[4]. 然而, MoS₂ 单层本身是一种半导体材料, 其带隙相当大, 约为 1.80 eV^[5], 这种特性限制了其 导电性, 从而使其在电化学方面的性能受到了限 制. 尽管理论上已经证明, 通过将二维 MoS₂ 纳米 带切割成锯齿状结构可以将其转变为金属^[6], 从而 显著增强了与锂离子的相互作用, 且不会牺牲锂离 子的迁移性能^[4]. 然而, 目前 MoS₂ 纳米带的大规 模生产仍面临着巨大的挑战.

二硫化钒 (VS₂) 是一种层状过渡金属二硫族 化物 (LTMDs) 材料, 其晶体结构类似于 MoS₂. 其 由钒 (V) 和硫 (S) 原子组成, 其中 V 原子形成一 个八面体配位的结构, 而 S 原子则形成二维的硫 层. 该材料的电荷密度波 (CDW) 特性和电子结构 的多样性使其在 20 世纪 70 年代被发现. 由于大部 分层状过渡金属二硫族化物的电子传递效率较差, 使得其电化学性能较差. 为提高电化学性能, 寻找

* 国家自然科学基金面上项目 (批准号: 12074046) 和柔性电子材料基因工程湖南省重点实验室资助的课题.

[†] 通信作者. E-mail: guipingtang@163.com

^{© 2024} 中国物理学会 Chinese Physical Society

具有金属性质的 LTMDs 已成为一种解决方案. 具有金属性的二硫化钒 (VS₂) 是典型的 LTMDs 家族成员之一,可望在离子电池中作为负极增强循环过程的电子传输^[7]. 大块的 VS₂ 由多个单层 VS₂相互堆叠形成,而单层 VS₂ 由一层钒原子夹在两层硫原子中间组成. 层间距离较大,有利于离子在插入和脱插入过程中的扩散.

然而,尽管其具有独特的物理和化学性质,但 在过去的十年中,二硫化钒并没有得到太多的关 注,主要是因为其制备过程相对困难[®].通常采用 气相转移法或物理气相沉积法等方法来制备二硫 化钒单晶,这些方法需要很高的温度、真空度和反 应气氛,并且制备出来的样品通常很小[®].

尽管如此, 近些年来, 随着实验技术的不断发展, 关于二硫化钒的研究又逐渐得到了重视. 研究人员们利用先进的材料合成和表征手段, 通过改变制备条件来获得更好的纯度和晶体质量, 从而使其性能得到更好的展现. 这些研究为二硫化钒的应用提供了更多可能性, 例如在能源存储、光催化、传感器等领域^[10,11].

在一项 2011 年的研究中, 研究人员在实验中 成功地将大块 VS₂ 剥离成单层数少于 5 个的超薄 纳米片^[12]. 值得注意的是, 单层 VS₂ 存在两种主要 的结构, 分别是基于 V和 S原子不同配位构型的 六角形单层 VS₂(记为 H相) 和三角形单层 VS₂ (记 为 T相). 理论分析表明, H相单层 VS₂ 的能级相 较于 T相低 43 meV, 这表明 H相结构为基态^[13,14]. 因此, 我们重点研究用作 LIB 负极材料的 H 相单 层 VS₂ 的结构和电子性能.

电池在充放电过程中,由于锂化/脱锂过程会 产生电池体积膨胀和收缩的情况,可能导致负极断 裂或负极形貌变化,最终导致大量容量损失和循环 不良.Yu等^[15]通过单层 VS₂的电学性能进行分 析,计算出锂离子电池的理论容量,但对于 VS₂的 机械性能没有做详细说明.在实际情况中,以 VS₂ 作为电极材料时,往往是多层 VS₂ 堆叠在一起,只 计算单层的 VS₂ 与实际情况有较大的差别.通过 计算 VS₂ 的杨氏模量,分析 VS₂ 的机械性能,构建 了双层 VS₂,确定最大能够吸附锂离子数量,分析 其电池容量和体积变化.

为研究 VS₂ 作为离子电池电极的导电性能和 结构稳定性,本文采用第一性原理密度泛函理论方 法进行理论研究,计算研究 VS₂ 几何结构的稳定 性、结构刚度、吸附能、离子迁移势能、电池容量.

2 计算方法与模型

2.1 计算方法

本文计算使用基于密度泛函理论 (DFT)^[16,17] 第一性原理方法的 Quantum ATK 软件包, 研究 了 Li 原子在 VS₂ 结构表面吸附性质、态密度、电 子性质及迁移路径、杨氏模量及理论容量. 计算时 选取投影缀加波赝势 (PAW) 和局域密度近似 (LDA) 分别计算电子、离子相互作用情况和电子 交换相关情况. 布里渊区采用 3 × 3 × 1 点进行采 样,能量的收敛精度为 10⁻⁵ eV, 力的收敛标准为 0.01 eV/Å, 为减小层间的相互作用, 真空层取为 20 Å.

本文分别计算 Li 原子在 VS₂ 表面硫 (S) 的空 位 (H) 与桥位 (B)、及钒 (V) 的顶位 (T) 吸附后的 吸附能,吸附能由下面公式得到:

$$E_{\rm ad} = \frac{E_{\rm VS_2+Li} - E_{\rm VS_2} - nE_{\rm Li}}{n},\tag{1}$$

式中 E_{VS_2+Li} 是吸附 Li 原子后 VS_2 总能量, E_{VS_2} 是吸附前 VS_2 总能量, E_{Li} 是 Li 原子的总能量, n 是 Li 原子的个数.

采用受激弹性带 (nudged elastic band, NEB) 方法计算 Li 原子在 VS₂表面空位 (H)、桥位 (B) 两个位点间的迁移路径, 在初始和最终态之间创建 一系列中间态 (插值态), 来构建整个反应路径. 在 计算中, 插值态上的原子受激并相互影响, 从而在 能量最小化的同时确定反应过程的势垒和最低能 垒路径. 通过计算每个插值态上的原子位置和能 量, 得到整个反应路径的势垒和反应坐标.

根据广义近似的 DFT 方法,可以通过应变-应 力近似线性区域的计算来获得材料的各弹性常数. 在这种方法中,应力和应变张量都是对称的 3×3 矩阵,因此我们可以使用 Voigt 符号将其更紧凑地 表示为 6 维向量:

应力向量:

$$\boldsymbol{\sigma} = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{yz}, \sigma_{xz}, \sigma_{xy}),$$

应变向量:

 $\boldsymbol{\varepsilon} = (\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, 2\varepsilon_{yz}, 2\varepsilon_{xz}, 2\varepsilon_{xy}).$

材料的应力向量对于给定应变向量的线性响应可 以表示为

$$\boldsymbol{\sigma} = \boldsymbol{C} \cdot \boldsymbol{\varepsilon}, \tag{2}$$

其中 C是一个对称的 6×6 矩阵, 包含了弹性常数. 根据晶体对称性, 我们可以进一步减少独立弹性常数的数量.

弹性常数矩阵 C的具体形式如下:

1	$\langle \sigma_1 \rangle$		(C_{11}	C_{12}	C_{12}	0	0	0	
	σ_2			C_{12}	C_{11}	C_{12}	0	0	0	
	σ_3	_		C_{12}	C_{12}	C_{11}	0	0	0	
	σ_4	_		0	0	0	C_{44}	0	0	
	σ_5			0	0	0	0	C_{44}	0	
	σ_6			0	0	0	0	0	C_{44})
			× (ε_1	ε_2	$\varepsilon_3 \varepsilon_4$	ε_5	$(\varepsilon_6)^{\uparrow}$	Г _.	

要获取弹性常数,需要应用小变形原理,即沿着选定的应变向量对模拟单元进行扰动,并计算得 到结果应力向量.线性应力贡献可以通过拟合每 个 Voigt 应力分量和相应的应变曲线来得到.然 后,通过解一个最小二乘线性方程组,结合晶体对 称性,可以得到独立的弹性常数.

2.2 结构模型

与其他过渡金属二硫化物 (TMD) 类似, VS₂ 单层呈现三明治状结构, V层夹在两个 S 层之间. 一般来说, VS₂有两种多晶型,包括三角 (*T*) 相和 六方 (*H*) 相,这两种多晶型都对温度的变化和 VS₂ 层数的变化敏感.在室温下, VS₂ 单层更倾 向于以 *H* 相结晶^[14].因此,本研究基于 *H* 相结构, 在 *H*构型 VS₂ 单层的优化结构中 (图 1(a)),一个 晶胞包含一个 V 原子和两个 S 原子,晶格参数为 a = b = 3.16 Å.

图 1 (a) *H*-VS₂ 的 3×3×1 结构俯视图; (b) *H*-VS₂ 的 3×3×1 结构侧视图

Fig. 1. (a) Top view of $3 \times 3 \times 1$ structure of H-VS₂; (b) side view of $3 \times 3 \times 1$ structure of H-VS₂.

V—S 键长统一为 2.36 Å, V—S—V 键角为 84.25°, 与文献 [18, 19] 非常一致. 并且本文对 VS₂ 自旋极化态与非极化态进行了计算, 计算结果表明 VS₂ 单层具有自旋极化基态, 其能量比非极化态的 低 29 meV.

3 计算结果与讨论

3.1 Li 原子吸附位置

VS₂中有钒(V)和硫(S)两种原子,对VS₂单 层上S-T位、S-H位、S-B位、V-T位、V-H位、V-B位做Li原子吸附的优化后,发现多个吸附位点 中只留下3种吸附情况,图2(a)S-H位、图2(c)S-B位、图2(e)V-T位,其中最稳定存在的只有两个 吸附位点,即六边形中心上方的硫(S)原子空位(H) 和钒(V)原子正上方顶位(T).而考察V-H位和 S-T位吸附位点,通过不断精确优化后,Li原子都 将会吸附到S-H位或V-T位,即这两个位点上的 锂原子在完全弛豫后移动到邻近的S-H或V-T位 点,因此这两个位点可能并不是锂离子吸附的局部 最小位点,并且吸附非常不稳定.

图 2 (a) 吸附 *H*-VS₂ 中 S-H 位俯视图; (b) 吸附 *H*-VS₂ 中 S-H 位侧视图; (c) 吸附 *H*-VS₂ 中 S-B 位俯视图; (d) 吸附 *H*-VS₂ 中 S-B 位侧视图; (e) 吸附 *H*-VS₂ 中 V-T 位俯视图; (f) 吸附 *H*-VS₂ 中 V-T 位侧视图

Fig. 2. (a) Top view of S-H sites in adsorbed H-VS_2 ; (b) side view of S-H sites in adsorbed $H\text{-VS}_2$; (c) top view of the S-B site in the adsorbed $H\text{-VS}_2$; (d) side view of the S-B site in the adsorbed $H\text{-VS}_2$; (e) top view of V-T site in adsorbed $H\text{-VS}_2$; (f) side view of V-T site in adsorbed $H\text{-VS}_2$.

3.2 吸附能计算

为从理论数据上探讨最优的吸附位点,对钒

(V)、硫 (S) 吸附位置做完优化, 计算吸附前后系统 总能量, 在本论文中, 为简化研究计算, 采用单个 Li 原子吸附模型. 根据吸附能公式得: *E*_{ad} = *E*_{VS2+Li}-*E*_{VS2} - *E*_{Li}, 计算得到几个位置的吸附能及 Li 吸附 键长如表 1 所列.

表 1 VS₂的总能量 *E*_{VS2}、Li 在其表面吸附后总 能量 *E*_{VS2+Li}、吸附能 *E*_{ad}、Li 与 VS₂ 成键后的平 均键长 *d*

Table 1. The total energy $E_{\rm VS_2}$ of VS₂, the total energy $E_{\rm VS_2+Li}$ after Li is adsorbed on its surface, the adsorption energy $E_{\rm ad}$, and the average bond length d of the bond between Li and VS₂.

吸附位置	$E_{\rm VS_2}/{\rm eV}$	$E_{\rm VS_2+Li}/{\rm eV}$	$E_{\rm ad}/{\rm eV}$	$d/{ m \AA}$
S-H	-23500.985	-23698.790	-2.303	2.38
S-B	-23500.985	-23698.681	-2.194	2.31
V-T	-23500.985	-23698.892	-2.405	2.37

计算结果表明, 吸附后总能小于吸附前的总 能, 吸附能为负值, 因此总的吸附过程是放热过程. 吸附后比未吸附的 VS₂ 具有更低的能量, 说明吸 附后整个系统更加稳定, 并且 Li 的吸附更容易发生. 其中, 硫的桥位 (S-B) 的吸附能最大, 为-2.19 eV; 其次是硫的空位 (S-H) 的吸附能, 比硫的桥位 (S-B) 的吸附能小 0.11 eV 左右; 钒 (V) 顶位的吸附 能最小, 为-2.40 eV, 说明 Li 在 V 上的吸附更加稳 定, 与 Tang 等^[20,21] 研究结果一致.

为了进一步评估吸附前后的热稳定性,在正则 系统中对 *H*-VS₂ 模型 (图 3(a))吸附钒的 T 后模 型进行温度 300 K、时间步长 1 fs 的第一性原理分 子动力学 (FPMD) 模拟,总时长为 5000 fs,其中 图 3(c) 纵坐标中 $\Delta E = E - 23500$ eV,图 3(e) 纵 坐标中 $\Delta E = E - 23697.8$ eV.

图 3 分子动力学模拟后 (a) *H*-VS₂俯视图; (b)吸附 V-T 俯视图; (c), (d) 300 K, 步长 1 fs 下总时间 5 ps 内 *H*-VS₂模型 FPMD 期间的能量与温度波动; (e), (f) 300 K, 步长 1 fs 下总时间 5 ps 内吸附 V-T 模型 FPMD 期间的能量与温度波动

Fig. 3. After molecular dynamics simulation: (a) H-VS₂ top view; (b) adsorbed V-T top view; (c), (d) energy and temperature fluctuations during FPMD of H-VS₂ model within a total time of 5 ps at 300 K, step size 1 fs; (e), (f) energy and temperature fluctuations during FPMD of adsorbed V-T model within a total time of 5 ps at 300 K and step size 1 fs.

大约 500 fs 后, 系统总能和温度总涨落的量级 达到稳态, 可以观察到, FPMD 期间的吸附前后能 量 (图 3(c), (e)) 在-0.5—0.5 之间振荡. 由于原子 与晶格里的其他邻近原子相互作用, 分子的初始动 能将会部分地转换成势能, 从而导致一开始时体系 的温度降低, 可以观察到 FPMD 期间的温度迅速 下降 (图 3(d), (f)), 降至 150 K 以下后以一个较快 速度上升至 300 K, 并之后在 300 K 附近进行振 荡, 说明在常温下吸附前后结构都能够稳定存在.

总体来看,总能量与温度分别在一个小范围内 振荡,并且没有发现漂移现象,总体波动较小,这 表明 Li 在常温环境下具有很好的结构稳定性.

3.3 VS₂ 吸附 Li 前后能带图态密度分析

为检验 VS₂ 的导电性能, 计算 VS₂ 的能带图、 态密度和分态密度. 从能带图 (图 4(a))上可以看 出, VS₂ 的价带和导带穿过费米能级, 说明 VS₂ 具 有金属性, 意味着 VS₂ 具有优异的导电性能. 观察 吸附后的能带图 (图 4(b)), 可以看出 Li 原子的吸 附对 VS₂ 的能带几乎没有影响.

观察 VS₂ 的总的态密度图 (图 4(c)),费米能级 附近有态密度的存在,这也就对应着能带图中 VS₂ 的价带和导带穿过费米能级.同时,观察 p 电子态和 d 电子态的态密度图 (图 4(d)),可以看出费米能级 附近态密度几乎由 p 态和 d 态的电子提供.对比两

图 4 (a) VS₂能带图; (b) 吸附 Li 原子后 VS₂能带图; (c) VS₂ 总态密度图; (d) VS₂ 的 p 和 d 电子态密度图; (e) VS₂ 分态密度图; (f) 吸附 Li 原子后分态密度图

Fig. 4. (a) VS₂ energy band diagram; (b) VS₂ energy band diagram after adsorption of Li atoms; (c) VS₂ total state density diagram; (d) VS₂-p and VS₂-d electronic state density diagram; (e) VS₂ partial density of state diagram; (f) partial density of state diagram after adsorption of Li atoms.

种原子分态密度可以看出费米能级附近态密度大部分由钒 (V) 原子提供.结合态密度图可以分析出,在 VS₂费米能级附近的能带由 V 的 3d 态和 S 的 3p 态电子贡献.也就表明, VS₂ 的导电性能在很大程度上受 V 的 3d 态和 S 的 3p 态电子的影响.

由于 Li 原子吸附在 V 的顶位更稳定, 因此计 算吸附 V 顶位的能带图和态密度图. 对比吸附前 后的能带图, 分态密度图可以看出, Li 的吸附对于 VS₂ 的导电性几乎没有影响. 表明在不考虑其他因 素下, VS₂ 在吸附后也能保持优异的导电性能.

3.4 Li 原子在 VS₂ 表面的迁移行为

为研究 Li 原子在 *H* 相的 VS₂ 表面扩散, 进行 Li 单原子从 V-T₁—S-H₁—V-T₂—S-T₂ 的研究, 用 NEB 方法寻找最优扩散路径.由计算结果 (图 5) 发现 Li 从 V-T₂ 扩散到 S-H₂, 扩散势全为 0.20 eV, 与其他研究的扩散势全基本一致 ^[22].而 *T* 相 VS₂ 的扩散势全为 0.23 eV^[22], Li 在 *H* 相的 VS₂ 表 面具有更小的扩散势全, 意味着 Li 在 *H* 相 VS₂ 具 有更快的扩散速率, 即导电性能更优异.

Li 在石墨烯的表面的扩散势垒在 0.30 eV, 而 同样为二硫族化合物材料中 MoS_2 的扩散势垒为 0.25 $eV^{[22]}$, Li 在 VS_2 表面的扩散势垒具有更小值.

同时, VS₂ 是二维材料, 其层间距离较宽, 可 以有利于 Li 离子在层间迁移, 使得 Li 离子能够快 速传输, 这意味着 Li 离子在 VS_2 表面的传输速率 可能非常优异.

3.5 Li 原子在 VS₂ 表面吸附前后刚性的 研究

前面提到, VS₂ 吸附 Li 原子的整个过程为发 热过程, 这意味着锂的吸附是一个自发的过程, 但 锂离子的嵌入与脱出将会导致 VS₂ 体积发生变化, 电极也将发生膨胀和收缩. 众所周知, 结构变形甚 至电极粉碎会导致容量快速衰减, 并带来较差的循 环能力. 对于高效负极材料来说, 优异的机械性能 对于承受循环过程中锂化引起的体积膨胀至关重 要. 因此, 我们计算了 VS₂ 的机械性能.

利用 Quantum ATK 的弹性常数计算模块, 可以直接算出各个弹性常数. 根据弹性对称矩阵系 数矩阵, $C_{11} = C_{22}$, $C_{12} = C_{21}$, 其中 C_{11} 和 C_{22} 表 示材料分别沿着 x 和 y 方向对单轴拉伸应变的刚 度响应, 弹性常数 C_{12} 描述了材料抵抗平面双轴拉 伸应变的能力. 在 Quantum ATK 的弹性常数计 算模块中, 采用的是体积, 而 VS₂ 为二维材料, 只 需处理面积. 本论文中, 真空层采用的是 20 Å, 通 过转换为国际单位, 可以得到杨氏模量 (Y) 和泊松 比 (v) 公式:

$$Y = (C_{11} \cdot C_{11} - C_{12} \cdot C_{12})/C_{11} \times 2, \qquad (3)$$

图 5 Li 在 VS₂表面从 V-T₁—S-H₁—V-T₂—S-H₂ 扩散路径 (a) 俯视图; (b) 侧视图; (c) Li 在 VS₂表面的扩散势垒; (d) 扩散势 垒对比图

Fig. 5. Li diffusion path of V-T₁—S-H₁—V-T₂—S-H₂ on the VS₂ surface: (a) Top view; (b) side view; (c) Li diffusion barrier on the VS₂ surface; (d) comparative chart of diffusion barriers.

Table 2. Elastic constants and Young's modulus of VS_2 , VS_2 and graphene after adsorption of V-T and S-H.						
System	C ₁₁	C ₂₂	C_{12}	$Y/(N \cdot m^{-1})$	v	
VS_2	53.49	53.49	16.48	96.82	0.31	
VS ₂ 吸附V-T	55.05	55.05	16.13	100.64	0.29	
VS ₂ 吸附S-H	55.03	55.03	16.12	100.62	0.29	
石墨烯	176.08	176.08	38.06	335.70	0.22	

图 6 4×4×1 超胞刚性对比 (a) 杨氏模量对比图; (b) 泊松比对比图

Fig. 6. Rigidity comparison of 4×4×1 supercell: (a) Young's modulus comparison; (b) Poisson's ratio comparison.

$$v = C_{12}/C_{11}.$$
 (4)

VS₂吸附前后及石墨烯的弹性常数和杨氏模量如表 2 所列.杨氏模量是描述固体材料抵抗形变能力的物理量,是衡量材料产生弹性变形难易程度的指标,其值越大,即材料刚度越大,在一定应力作用下,发生弹性变形越小.计算 3×3×1 的 VS₂超胞,得到其杨氏模量为 96.82 N/m,表明其刚性较好,与其他研究结果基本一致^[23].比较吸附 Li前后的杨氏模量,发现系统吸附后的杨氏模量有所提升,但总体的杨氏模量变化较小.这表明 VS₂在作为电极材料时其刚性并不会由于 Li 的吸附而降低.VS₂ 吸附前后与石墨烯的杨氏模量和泊松比对比如图 6 所示.

3.6 锂离子电池容量与体积变化率的研究

最后,我们探讨了基于 VS₂ 负极材料的锂离 子电池的理论容量和嵌锂前后的层间距与体积变 化率.构建一个 $3 \times 3 \times 1$ 的双层 VS₂ 模型,得到最 稳定双层 VS₂ 层间距为 3.67 Å.在双层 VS₂ 层间 吸附锂离子,在层间最高能够吸附锂离子个数 n =18 时, VS₂ 的层间距变为 6.24 Å, VS₂ 体积膨胀 率为 30.6%.因为实际电池负极是由多层 VS₂ 堆叠 而成,为考虑最接近实际的电池容量,在双层中只 计算其中一层 VS₂ 的摩尔质量,法拉第常数 F = 26800 mAh/mol, 根据

$$Q = \frac{nF}{M_{\rm (H-VS_2)}} \tag{5}$$

计算得到理论容量为 466 mAh/g. 相比于石墨烯的理论容量 (372 mAh/g)^[24], VS₂ 的理论容量更高, 说明了 VS₂ 作为锂离子电池负极材料具有巨大潜力.

4 结 论

本文通过 DFT 计算探索使用 VS₂ 单层作为 锂离子电池负极材料的可能性.系统地研究了 VS₂ 单层的单个 Li 原子结合能、扩散势垒以及杨氏模 量.通过对比观察能带图和态密度图,可发现 VS₂ 单层是金属性的,具有优异的导电性,并且其导 电性能与钒的 3d 态和硫的 3p 态电子相关.同时, Li 在 VS₂表面的扩散势垒只有 0.20 eV,比 MoS₂ 和石墨烯具有更小的 Li 的扩散势垒,表明 Li 能够 较快的迁移,有利于 LIB 快速充电-放电过程. VS₂ 作为电极材料的储存容量能够达到 466 mAh/g, 并且完全锂化后 VS₂ 材料还具有较低的开路电压^[25]. 多层 VS₂ 的制备已经在实验上实现突破,相信随 着不断的研究,在不久的将来可以实现具有优异电 化学性能的二维 VS₂ 负极材料.

参考文献

- [1] Tarascon J M, Armand M 2001 Nature 414 359
- [2] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766
- [3] Liu H, Su D, Zhou R, Sun B, Wang G, Qiao S Z 2012 Adv. Energy Mater. 2 970.
- [4] Li Y F, Wu D H, Zhou Z, Cabrera C R, Chen Z F 2012 J. Phys. Chem. Lett. 3 2221
- [5] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
- [6] Wang Z Y, Li H, Liu Z, Shi Z J, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z N, Zhou J, Gao Z X, Li G P, Sanvito S, Wang E G, Iijima S 2010 J. Am. Chem. Soc. 132 13840
- [7] He Q Q 2019 M. S. Thesis (Guangzhou: Jinan University) (in Chinese) [贺巧巧 2019 硕士学位论文 (广州: 暨南大学)]
- [8] Jiang H T 2022 M. S. Thesis (Changchun: Northeast Normal University) (in Chinese) [蒋晗涛 2022 硕士学位论文 (长春: 东 北师范大学)]
- [9] Li C B 2022 M. S. Thesis (Zhengzhou: North China University of Water Resources and Electric Power) (in Chinese) [李传斌 2022 硕士学位论文 (郑州: 华北水利水电大学)]
- [10] Wang Y C J 2022 M. S. Thesis (Xi'an: Shaanxi University of Science & Technology) (in Chinese) [王羽偲嘉 2022 硕士学位 论文 (西安: 陝西科技大学)]
- [11] Wang Z G 2021 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [王振国 2021 博士学位论文

(上海: 华东师范大学)]

- [12] Feng J, Peng Wu L C , Sun X , Hu S , Lin C, Dai J, Yang J L, Xie Y 2012 Adv. Mater. 15 1969
- [13] Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Inter. 8 18754
- [14] Zhang H, Liu L M, Lau W M 2013 J. Mater. Chem. A 1 10821
- [15] Yu J, Zhou Z, Cabrera C R, Chen Z F 2013 J. Phys. Chem. C 117 25409
- [16] Kresse G, Hafner J 1993 *Phys. Rev. B* 47 558
- [17] Kresse G, Hafner J 1994 Phys-Condens Mat. 6 8245
- [18] Feng J, Sun X, Wu C Z, Peng L L, Lin C W, Hu S L, Yang J L, Xie Y 2011 J. Am. Chem. Soc. 133 17832
- [19] Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B 2012 ACS Nano 6 1695
- [20] Tang C M, Zhang M Z, Zhang K X, Gong J F 2021 Appl. Surf. Sci. 564 150468
- [21] Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J. Mater. Chem. A 5 21370
- [22] Mikhaleva N S, Visotin M A, Kuzubov A A, Popov Z I 2017 J. Phys. Chem. C 121 24179
- [23] Liu B, Gao T, Liao P, Wen Y F, Yao M J, Shi S Q, Zhang W Q 2021 Phys. Chem. Chem. Phys. 23 18784
- [24] Liu Y, Artyukhov V I, Liu M, Harutyunyan A R, Yakobson B I 2013 J. Phys. Chem. Lett. 4 1737
- [25] Liu J Z, Guo P F 2015 J. Inorg. Mater. 30 1339

First-principles study of VS_2 as anode material for Li-ion batteries^{*}

Zhou Bin Xiao Shi-Cheng Wang Yi-Nan Zhang Xiao-Yu Zhong Xue Ma Dan Dai Ying Fan Zhi-Qiang Tang Gui-Ping[†]

(School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China)

(Received 22 October 2023; revised manuscript received 28 March 2024)

Abstract

With the increase of performance requirements for lithium-ion batteries (LIBs), it is particularly important to study and develop new electrodes for lithium-ion batteries. In this work, a $3 \times 3 \times 1$ supercell of VS₂ is constructed, and the possibility of using it as an anode material for lithium-ion batteries is study by the firstprinciples method based on density functional theory. Through the analysis of the energy band diagram, it is found that VS_2 has metallic properties. Combining the density of states diagram, the analysis shows that the energy band near the Fermi level of VS₂ is contributed by the 3d state of V and the 3p state electrons of S, which means that the conductive properties of VS_2 are largely affected by the 3d state of V and the 3p state electrons of S. Of the vacancies, bridge sites, and top sites of lithium adsorbing vanadium (V), the top site has the lowest adsorption energy, indicating that lithium will preferentially adsorb the top site of vanadium (V). Through first-principles molecular dynamics simulations of the top position of adsorbed vanadium (V), it is found that at a temperature of 300 K, the total energy of the system and the magnitude of the total temperature fluctuation can reach a steady state, indicating that lithium can exist at the top position of stably adsorbed vanadium (V). Moreover, the interlayer spacing of the double-layer VS₂ reaches 3.67 Å, which is larger than the interlayer spacing of graphene. From the top position to the vacancy, its diffusion barrier is only 0.20 eV. Its interlayer spacing is larger than the double-layer graphene's, and its diffusion barrier is lower than graphene's, indicating that lithium has very good diffusivity on the VS_2 surface, and lithium can migrate quickly on the VS_2 surface, which is conducive to the rapid charge-discharge process of LIB. In addition to excellent electrical conductivity, VS_2 has good mechanical properties. The calculated Young's modulus is 96.82 N/m, and the Young's modulus and Poisson's ratio do not decrease after adsorbing lithium, indicating that the rigidity of VS_2 will not be reduced in the diffusion and migration process of lithium. On the other hand, it has excellent deformation resistance. In order to be more accurate and closer to the actual situation, a double-layer VS_2 model is constructed, with a maximum number of lithium atoms adsorbed between layers being 18. The calculated theoretical capacity of VS_2 (466 mAh/g) is higher than the theoretical capacity of graphene (372 mAh/g). Our results indicate that VS₂ has excellent electrical conductivity and mechanical stiffness, making it a promising cathode material for lithium-ion batteries.

Keywords: lithium-ion battery, energy of adsorption, first-principle

PACS: 31.15.A-, 68.65.-k, 73.20.Hb

DOI: 10.7498/aps.73.20231681

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 12074046) and the Key Laboratory of Flexible Electronic Materials Genome Engineering of Hunan Province, China.

[†] Corresponding author. E-mail: guipingtang@163.com

Institute of Physics, CAS

VS。作为锂离子电池负极材料的第一性原理研究

周斌 肖事成 王一楠 张晓毓 钟雪 马丹 戴赢 范志强 唐贵平

First-principles study of VS2 as anode material for Li-ion batteries

Zhou Bin Xiao Shi-Cheng Wang Yi-Nan Zhang Xiao-Yu Zhong Xue Ma Dan Dai Ying Fan Zhi-Qiang Tang Gui-Ping

引用信息 Citation: Acta Physica Sinica, 73, 113101 (2024) DOI: 10.7498/aps.73.20231681 在线阅读 View online: https://doi.org/10.7498/aps.73.20231681 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

锂离子电池电化学降阶模型性能对比

Comparative study of reduced-order electrochemical models of the lithium-ion battery 物理学报. 2021, 70(13): 138801 https://doi.org/10.7498/aps.70.20201894

一种求解锂离子电池单粒子模型液相扩散方程的新方法

A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries 物理学报. 2022, 71(4): 048201 https://doi.org/10.7498/aps.71.20211619

基于电化学--应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化

Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model

物理学报. 2021, 70(17): 178201 https://doi.org/10.7498/aps.70.20210455

稀土掺杂对LiFePO₄性能影响的第一性原理研究

First-principles study of properties of rare-earth-doped LiFePO₄

物理学报. 2021, 70(15): 158203 https://doi.org/10.7498/aps.70.20210227

基于电化学老化衰退模型的锂离子动力电池外特性

External characteristics of lithium-ion power battery based on electrochemical aging decay model 物理学报. 2022, 71(3): 038803 https://doi.org/10.7498/aps.71.20211401

锂离子电池富锂锰基三元材料中氧空位簇的形成:第一原理计算

Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations 物理学报. 2023, 72(7): 078201 https://doi.org/10.7498/aps.72.20222300