基于膨胀效应的超临界 CO_2 类沸腾临界点模型^{*}

张海松1)† 卢茂聪1)2) 李志刚1)2)

(中国科学院工程热物理研究所,先进能源动力重点实验室,北京 100190)
 2)(中国科学院大学,北京 100049)

(2024年2月26日收到; 2024年8月20日收到修改稿)

传热恶化是超临界流体 (supercutical fluid, SCF) 传热研究重要问题之一,但由于 SCF 在跨过拟临界点时, 流体存在非平衡过程,类气和类液之间的转变对传热的影响尚没有统一认识.本文假设 SCF 在宏观上存在类 似于亚临界流动沸腾现象,通过类比亚临界沸腾传热,认为超临界 CO₂ 传热恶化原因之一是由于流体膨胀导 致热量不能被及时从壁面被带走,并提出一个类沸腾临界点模型.结果表明:类沸腾引起的传热恶化发生在大 温度梯度下,较大的温度梯度使类过热液层覆盖在壁面,并使类气和类液呈现不同的分布形式,从而表现出不 同的传热特性;当内壁温高于拟临界温度时,覆盖在壁面的过热类液焓值超过一定值会发生传热恶化,提出 的理论模型能够较好地解释实验结果,此外考虑类沸腾的传热关联式,预测精度大大提高.本文从理论上建 立超临界和亚临界传热之间的联系,为 SCF 传热恶化研究提供了新思路,丰富了超临界压力下的传热理论.

关键词: 超临界 CO₂, 膨胀, 类沸腾, 传热恶化, 理论模型 PACS: 44.05.+e, 44.15.+a, 44.27.+g

DOI: 10.7498/aps.73.20240293

1 引 言

对于超临界流体 (supercutical fluid, SCF), 拟临界点处的非平衡过程使其流动传热研究十分复杂.目前, 对 SCF 非平衡过程的处理方法大致可以分为两种, 一种是将流体在跨过拟临界点时类比为两相流, 可以用类气-类液共存的类沸腾来描述; 另一种观点忽略拟临界点的特殊性的, 将其视为物性剧烈变化的单相流体.揭示超临界流体非平衡过程及其对流动与换热的影响规律, 可以为超临界流体先进动力系统的设计与优化提供理论支撑, 具有重要的实际应用价值.

长期以来,学者们基于单相流体假设并强调浮 升力和流动加速效应处理 SCF 传热恶化^[1],但 SCF 传热恶化并没有统一的认识^[2],尤其是基于传统方 法发展的关联式,不能很好预测传热恶化[3-5],这 对 SCF 相关动力循环的传热设计不利⁶. 近年来, SCF 类沸腾传热再次引起研究者们关注,研究发 现 SCF 类气和类液之间的转变不仅存在分子水平 上,而且发生在宏观尺度上¹⁷,这个过程和亚临界 沸腾类似^{8]}. 但也有学者认为 SCF 类气和类液之 间的转变不会出现在宏观尺度上⁹,关于 SCF 是 否存在类沸腾现象引起了较大争议. 20世纪 60年 代类沸腾概念被提出,用于定性解释 SCF 传热现 象,认为由于类气膜覆盖在壁面,较大的热阻使传 热变差,从而导致传热恶化¹⁰.近年来,徐进良团 队[11-13] 放弃超临界单相流体假设, 认为类沸腾是 否发生可用近壁面类气膜膨胀的蒸发动量力和主 流流体惯性推力相对大小来判断,并提出了超临界 类相变理论框架. Tripathi 和 Basu^[14] 使用两相流 流体体积 (volume of fluid, VOF) 模型对超临界压

* 中国科学院稳定支持基础研究领域青年团队计划 (批准号: YSBR-043) 和国家自然科学基金 (批准号: 52076206) 资助的课题.

[†] 通信作者. E-mail: zhanghaisong@iet.cn

^{© 2024} 中国物理学会 Chinese Physical Society

力水传热恶化进行了研究,结果表明 VOF 模型能 够合理预测壁温峰值,密度变化是引起传热恶化的 主要原因,该过程类似于亚临界膜态沸腾. Wang 等[15] 分别通过两相流和单相流方法对超临界压力 水传热恶化进行数值模拟,他们观察到类似于亚临 界稳定膜态沸腾和亚临界偏离核态沸腾过程,前者 的壁温峰值与气膜峰值对应,后者通常发生在靠近 入口处,研究结果表明两相流方法预测传热恶化 更准确.此外,超临界类冷凝也被提出,Peeters^[16] 分析了类冷凝对换热器设计的影响,结果表明类冷 凝使换热器局部效率降低,不可逆损失增大.Fan 等[17]将超临界冷却和亚临界冷凝进行类比,通过 类冷凝解释了强化换热消失的原因,并提出了新的 传热关联式.由此可见,超临界类两相流传热逐渐 引起关注,虽然类沸腾理论从定性发展到能够定量 解释 SCF 传热, 但仍缺少足够的理论研究.

本文将超临界类沸腾和亚临界沸腾类比,考虑 超临界流体跨过拟临界点时的膨胀效应,建立一个 理论模型描述 SCF 类沸腾传热过程,提出了一个 超临界流体流动类沸腾传热临界点模型,阐释了类 沸腾导致 SCF 传热恶化机制,通过实验数据检验 了类沸腾传热假设的合理性,验证了超临界压力流 体的膨胀效应不能忽略猜想,为 SCF 流动传热研 究提供了新思路.

2 超临界流体类沸腾

2.1 超临界热力学特性

2015年, Banuti^[18] 通过类沸腾解释了 SCF 跨 越 Widom 线 (Widom line, WL) 从类液到类气转 变过程, 如图 1 所示, 考虑定压比热 c_P 在拟临界温 度 T_{PB} 附近的变化, 当温度从 T^- 变化到 T^+ 时, SCF 吸收的热量 Δi_{PB} 表示为

$$\Delta i_{\rm PB} = \int_{T^-}^{T^+} c_{\rm P} \left(T \right) \mathrm{d}T = i \left(T^+ \right) - i \left(T^- \right).$$
 (1)

其中, T⁻和T⁺分别为 SCF 具有纯液体和纯气体 属性所对应的渐近温度, 吸收的热量 Δ_{iPB} 可分解 为用于升高温度的显热部分和用于克服分子间作 用势能的相变传热部分.理论证明了 SCF 类气和 类液转变与亚临界气液相变相似. 2019 年, Maxim 等^[7]利用中子成像技术在宏观上监测到超临界水 类液和类气转变, 通过实验证实了类沸腾存在. 2021 年, Maxim 等^[8]又通过分子动力学 (molecular dynamics, MD) 进一步证实了这个过程和亚临界 沸腾类似.最近, 何孝天等^[19] 通过光纤探针可连续 测量流体密度, 并利用多尺度熵成功识别类沸腾传 热模式和流型, 认为超临界流体传热应充分考虑类 两相流型对传热模式的影响.

184402-2

将超临界类沸腾和亚临界沸腾相边界描绘到 相图中,如图 1 所示,给出了不同压力 P下的 CO_2 相分布, c 为临界点 (临界压力 $P_c = 7.38$ MPa),图 中的 SL (saturation line) 为亚临界压力下的 CO_2 饱和线, i_{fg} 为汽化潜热,其中 Banuti^[18] 类沸腾理 论确定的 $T^- \pi T^+$ 分别作为纯类液温度 T_{LL} 和纯 类气温度 T_{GL} ,对应亚临界的饱和液温度 T_1 和饱 和气温度 T_g ,拟临界温度 T_{PB} 对应饱和温度 T_s . 将不同压力下的 T_{LL} 和 T_{GL} 描绘成曲线 (图 1 上 半部分的蓝色和红色短划线),所有物性数据均调 用美国国家标准与技术研究院的数据库 (National Institute of Standards and Technology, NIST), 二者在相图上的分布相似.与亚临界等温相变不同

图 2 亚临界和超临界 CO₂ 热力学特性 (a) 密度; (b) 潜 热; (c) 饱和密度

Fig. 2. Thermodynamic characteristics of subcritical and supercritical CO_2 : (a) Density; (b) latent heat; (c) saturated density.

时,在一个狭窄的温度区间 Δ*T* 内,所有物性参数 剧烈非线性变化,这个过程是连续的.

如图 2(a) 所示, 对于亚临界两相流, 给定一个 压力下的饱和温度下, CO₂ 密度发生不连续转变. 当跨过临界压力 P_c 时, 气液界面消失, 超临界 CO₂ (supercritical CO₂, sCO₂) 在 WL 处密度连续转 变, 但密度畸变和亚临界密度变化程度相似, 尤其 是当温度梯度较大时. 在相图上的超临界和亚临界 相分布类似, 如图 2(b), (c) 所示, 类两相流汽化潜 热和物性参数 (如饱和密度 ρ_s) 均有明确的定义, 可直接得到简单有量纲参数和无量纲数组. 当 SCF 温度梯度较大时, 在空间上看起来与两相流 相分布类似, 对温度区间 ΔT 的流体温度有

$$\lim_{\Delta x \to 0} \frac{\Delta T}{\Delta x} = \frac{T_{\rm GL} - T_{\rm LL}}{\Delta x},\tag{2}$$

式中 T 为温度, 下标 LL 和 GL 分别代表类液层和 类气层, Δx 为类气层厚度变化量.

因此,本文按照温度对超临界流体的相态进行 定义.当流体温度满足 $T^- < T_b$ 时,流体视为类液; 当流体温度满足 $T^+ > T_b$ 时,流体视为类气;当流 体温度分别为 $T_b = T$ 和 $T_b = T$ ⁺时,流体分别 视为类饱和液和类饱和气;当流体温度处于 $T^- < T_b < T^+$ 时,由于流体的温度大于类饱和液温度, 但尚未达到类饱和气温度,因此这里将流体视为类 过热液.

2.2 超临界压力流体类沸腾换热

对于亚临界压力下的管内强制流动沸腾换热 过程,随着两相流混合物中蒸汽份额升高,两相流 流速增大,液相与汽相之间的转换对流场和流型会 产生影响,沸腾使工质流动发生变化,而反过来又 影响工质沸腾. 假设沿管长均匀加热, 管道进口工 质具有一定的过冷度,出口为蒸汽.那么,沿管长 方向换热模式可以分为单相液体对流换热区、沸腾 换热区以及单相蒸汽对流换热区. 在沸腾换热区, 流动与沸腾两种不同物理过程相互影响使传热特 性变得异常复杂,一个重要的问题就是沸腾危机现 象. 当液态流体直接触壁面, 如果热流密度较高, 引起了壁面上强烈沸腾, 使汽泡底部干涸带扩大或 产生大量汽泡,这些汽泡聚集在壁面附近.由于主 流速度较高,使主流液体与近壁面液体高度不平 衡,因而使汽膜覆盖在部分或全部壁面,导致壁温 突然升高,发生沸腾危机^[20].

由于 SCF 的微观和宏观行为尚不清晰,尤其 是类气和类液转变对传热的影响,这导致对 SCF 流动传热现象的认识仍不充分.在超临界压力下, 也会发生类似于亚临界压力下的传热危机——传 热恶化^[12],对这种现象并没有很好的认识.为了更 好地处理 SCF 复杂的流动传热,这里引入无量纲温 度,其中 *T*_h和 *T*_{wi}分别为主流温度和内壁面温度:

$$T^+ = \frac{T_{\rm PB} - T_{\rm b}}{T_{\rm wi} - T_{\rm b}}.$$
(3)

如图 3 所示, 类比亚临界沸腾传热, 假设沿管 长均匀加热,管道进口工质为类液,出口为类气, 那么,沿管长方向换热模式可以同样分为3个区 域:当1<T*时,为单相类液对流换热区;当 $0 \leq T^* \leq 1$ 时,为类沸腾换热区;当 $T^* < 0$ 时,为 单相类气对流换热区. 图中的 q 为重力加速度. 假 设 SCF 会发生类似亚临界沸腾现象,提出以下科 学假说. 图 3(a) 给出了 R22 (二氟一氯甲烷) 在管 径 d = 4.4 mm、压力 P = 5.5 MPa、质量流速 G =400 kg/m²s、热流密度 $q_{\rm w} = 14.9$ kW/m²条件下 的传热壁温, 随焓值 病分布. 可以看出, 对于正常 传热 (normal heat transfer, NHT), 类两相区的类 气层均匀生长,类气层不会覆盖在壁面,故壁温没 有出现明显的峰值. 图 3(b) 给出了 R134a(四氟乙 烷) 在管径 d = 7.6 mm、压力 P = 4.3 MPa、质量 流速 $G = 600 \text{ kg/m}^2 \text{s}$ 、热流密度 $q_w = 39.93 \text{ kW/m}^2$ 条件下的传热壁温分布, 随焓值 病分布. 可以看出, 对于传热恶化 (heat transfer deterioration, HTD), 较大的温度梯度变化使类两相区的类气层不均匀 生长,较大的温度梯度使过热类液层覆盖在壁面, 而通过过热类液层的热流密度越大,处于拟临界温 度附近的流体在近壁面膨胀越充分,阻碍了热量从 壁面被核心区的流体带走,最终导致了传热恶化.

3 超临界压力下类沸腾换热临界点 膨胀层模型

为了描述超临界类沸腾临界工况,类比亚临界 沸腾临界工况分析方法.对亚临界低干度过冷沸腾临 界工况,文献 [20] 提出了一个汽泡层模型,如图 4(a) 所示,汽泡层将液体主流与近壁面的过热液层隔 开,过热液层液体的过热度和通过液层的热流密 度 qw 决定了壁温的高低.如果热流密度 qw 较高, 壁面上可能形成过热点而导致局部烧毁,从而产生 过冷沸腾临界工况.如作以下假设:过热液层的物 性参数沿径向无变化,且比热与饱和液体比热近似 相等;过热液层的厚度δ、平均速度 σ₁以及对流换 热系数 h 近似不变;汽泡层下侧的液温为饱和温 度.对过热液层应用能量平衡分析有

$$\frac{\mathrm{d}\left(i-i_{\mathrm{l},\mathrm{s}}\right)}{\mathrm{d}z} + c\left(i-i_{\mathrm{l},\mathrm{s}}\right) = c\frac{c_{\mathrm{p},\mathrm{l}}q_{\mathrm{w}}}{h},\tag{4}$$

式中, *i* 和 *i*_{l,s} 分别为液层的平均比焓和饱和液体比 焓; *c*_{p,l} 为液层的比热;

$$c = \frac{h}{\rho_{\rm l} v_{\rm l} c_{\rm p,l} \delta},\tag{5}$$

图 3 (a) 正常传热工况下的 R22 (二氟一氯甲烷) 壁温分布及流型; (b) 传热恶化工况下的 R134a (四氟乙烷) 壁温分布及流型 Fig. 3. (a) R22 (CHCLF₂) wall temperature distribution and flow pattern under NHT; (b) R134a (CH₂FCF₃) wall temperature distribution and flow pattern under HTD.

其中, ρ_1 为液层的密度.对于给定均匀的热流密度, 以 z = 0, $i(0) = i_0$ 为边界条件, 对 (1) 式求解, 可得

$$i(z) - i_{l,s} = \frac{c_{p,l}q_w}{h} \left(1 - e^{-cz}\right).$$
 (6)

图 4 (a) 亚临界压力下的汽泡层模型; (b) 超临界压力下的膨胀层模型

Fig. 4. (a) Bubble layer model under subcritical pressure;(b) expansion layer model under supercritical pressure.

对于亚临界低干度过冷沸腾临界工况, 汽泡层 阻碍了核心区冷液流体回流到壁面, 在局部壁面处 发生了沸腾临界现象. 从前面分析来看, 沸腾临界 工况主要受局部热流密度的控制, 当过热液层的焓 值超过一定值时, 将出现沸腾临界工况.

类比亚临界低干度过冷沸腾,针对超临界流体 竖直加热管内的流动类沸腾换热临界工况提出一 个设想,如图 4(b)所示,同样将管道横截面沿径向 方向分为过热类液区、膨胀区和主流类液区 3 个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区 域.当近壁面被一层厚度为δ的过热类液区3个区

$$\beta_{\rm PB} = -\frac{1}{\rho_{\rm PB}} \left(\frac{\partial\rho}{\partial T_{\rm PB}}\right)_P.$$
 (7)

因膨胀产生的温度梯度为

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}T\right)_{\mathrm{expand}} = \frac{\mathrm{d}}{\mathrm{d}x}T_{\mathrm{PB}}.$$
(8)

取体积为 V的微元体, 假设流体不受约束而自由 膨胀, 仅在径向方向上变化, 且不产生任何力的作 用, 则有如下关系:

$$\delta^* = \frac{\Delta V}{V} = \beta T,\tag{9}$$

式中 β 为膨胀系数, ΔV 为流体因膨胀变化的体积, δ^* 表征了流体的膨胀能力. 当流体的温度达到拟临 界温度 $T_{\rm PB}$ 时, 应变达到最大:

$$\delta_{\max}^* = \beta_{\rm PB} T_{\rm PB}. \tag{10}$$

图 5 所示为 CO₂ 在不同压力下的 δ^* 值. 可以 看出,随着压力增大, CO₂ 的膨胀能力减弱,当 $P/P_c = 1.3$ 时, $\delta^*_{mat} = 21.9$,这意味着 CO₂ 膨胀后 的尺寸比原有尺寸高了 1 个数量级. 由此可见,超 临界流体的膨胀效应不能忽略.

图 5 CO₂在不同压力下的膨胀能力 Fig. 5. Expansion capacity of CO₂ under different pressures.

对过热类液层应用能量平衡分析有

$$G_{\rm LL}\delta \frac{\mathsf{d}\left(i-i_{\rm LL,s}\right)}{\mathsf{d}z} + \frac{h}{c_{\rm p,LL}}\left(i-i_{\rm LL,s}\right) = q_{\rm w},\qquad(11)$$

式中i和 $i_{LL,s}$ 分别为过热类液层的平均比焓和饱和 类液层比焓, $c_{p,LL}$ 为类液层的比热, G_{LL} 为平均质 量流速.对于给定均匀的热流密度, 以z = 0, $i(0) = i_0$ 为边界条件, 假设过热类液层的比热与饱和类液 比热近似相等, 对(11)式求解并无量纲化可得

$$\frac{i(z)}{i_{\rm LL,s}} = 1 + \frac{q_{\rm w}}{G_{\rm LL}i_{\rm LL,s}} \frac{(1 - e^{-cz})}{St},$$
 (12)

其中 St 为斯坦顿数,

$$c = \frac{h}{G_{\rm LL}c_{\rm p,LL}\delta}.$$
 (13)

与亚临界不同的是,由于超临界流体相态转变 是一个连续过程,在这个过程物性剧烈非线性变 化,在求解方程 (11)时,假设的合理性与*T*-和*T*+ 的定义方法有关,尚无普遍认可的定义方法.超临 界类沸腾临界工况是否发生不仅取决于过热类液 层的焓值,还取决于温度梯度大小,较大的温度梯 度使过热类液层覆盖在壁面, 而通过过热类液层的 热流密度越大, 越容易发生膨胀, 膨胀区变得越厚, 焓值就越高,从而决定了壁温的高低.超临界压力 下的类沸腾换热临界工况和亚临界低干度过冷沸 腾临界工况类似, 超临界压力下的膨胀层类似于亚 临界压力下的汽泡层, 二者均阻碍了核心区冷流体 回流到壁面,从而使传热变差.

分析实验结果 4

超临界类沸腾数决定临界工况 4.1

通过类比亚临界沸腾,理论上分析了类沸腾临 界工况, (12) 式包含了一个重要无量纲数:

$$\pi = \frac{q_{\rm w}}{G_{\rm LL} i_{\rm LL,s}},\tag{14}$$

这个无量纲数表征了热流密度 qw 与壁面类液层质 量流速 GLL 相对大小, 较大的 GLL 促使更多的热量 通过对流从壁面被带走,从而使壁面温度降低,临 界工况不容易发生.因此,无量纲数π可以用于判 断超临界压力下类沸腾临界工况是否发生,而过热 类液层厚度δ很大程度上决定了壁温的高低.

对于管内横截面的流量,由质量守恒可知,假 设存在如下关系:

$$\dot{m} = GA = G_{\rm GL}A_{\rm GL} + G_{\rm LL}A_{\rm LL}, \qquad (15)$$

式中A表示面积.给定压力、质量流速、热流密度 以及几何参数后,发生临界工况的GGL和iGLs是一 定的,作如下等价代换:

 $q_{\rm w}$

 $T_{\rm wi}/T_{\rm PB}$

2

0 L 230

$$\frac{q_{\rm w}}{G_{\rm LL}i_{\rm LL,s}} \sim \frac{q_{\rm w}}{Gi_{\rm PB}},\tag{16}$$

式中, qw/GipB 为超临界沸腾数[11], 给定压力时, 有 唯一的拟临界焓值 ipp,故用 ipp 估计类液层焓值 iGLs 是合理的. 超临界沸腾数 SBO 最早被 Zhu 等[11] 提出用来判断 sCO₂ 是否发生传热恶化, 后来被本 课题^[21]进一步推广到超临界压力下的H₂O, R134a 和 R22, 对于超临界 CO₂, SBO 为 5.126×10⁻⁴, 超 临界 H₂O 为 2.018×10⁻⁴, 超临界 R134a 为 1.653× 10⁻⁴, 超临界 R22 为 1.358×10⁻⁴.

如图 6(a) 所示, 对于 sCO₂ 管内加热上升流 动,当 SBO 穿过临界值 5.126×10⁻⁴ 时,由正常传 热转化为传热恶化. 如图 6(b) 所示, 在 0 $\leq T^* \leq 1$ 时, 壁温出现一个明显的峰值. 这是因为当 Twi 大 于 T_{PB}时, 过热类液层刚好出现在近壁面, 对于传 热恶化,较大的温度梯度使其覆盖在壁面,在近壁 区迅速生长,局部过热类液层变厚,使壁面热阻增 大,从而导致传热恶化,理论分析与实验结果吻合, 类似的规律在 R134a, R22 和 H₂O 等工质也被发 现[22]. 见图 7.

4.2 流体温度梯度大小与壁温分布

在本课题组^[22]之前的研究中,认为较大的温 度梯度使类气膜覆盖在壁面,最终导致传热恶化, 并提出了表征类气层温度梯度大小的无量纲数 $(q_w \beta_{PB} d_i) / \lambda_{GL}$,其中 β_{PB} , d_i 和 λ_{GL} 分别为拟临界 温度对应的膨胀系数、管道内径以及类气膜的导热 系数. 如图 8(a) 所示, 对于 sCO2 垂直管内加热流 动,上升流和下降流均出现了严重的传热恶化,当 壁面温度大于拟临界温度 TPB 时, 类气层出现在 壁面,此时的类气层温度梯度数变化趋势(图 8(b)) 与壁温类似,温度梯度越大,传热恶化越严重.与

图 6 SBO 的微小变化决定两种传热特性的突变 (a) 正常传热; (b) 传热恶化

Fig. 6. Sudden changes of two heat transfer characteristics with small deviation from the critical SBO: (a) Normal heat transfer; (b) heat transfer deterioration.

图 7 不同超临界压力流体在正常传热和恶化传热过程中的 Twi/TPB 和 Tb/TPB 随焓值变化分布

Fig. 7. Distribution of $T_{\rm wi}/T_{\rm PB}$ and $T_{\rm b}/T_{\rm PB}$ with enthalpy during normal heat transfer and heat transfer deterioration of different supercritical fluids.

图 8 上升流和下降流大温度梯度下的 sCO₂ 传热恶化 (a) 传热恶化工况下的壁温分布; (b) 温度梯度分布

Fig. 8. The HTD under large temperature gradient in upflow and downflow operation: (a) Wall temperature distribution at heat transfer deterioration; (b) temperature gradient distribution.

本文提出的模型不同之处在于,当热流密度较大时, 传热恶化是由于类气层覆盖在壁面上, 类似于 亚临界膜态沸腾, 而本文模型提出的模型适合描述 低热流密度条件下发生的传热恶化, 类似亚临界低 干度过冷沸腾工况, 二者相似之处均与壁面附近的 流体膨胀有关. 当发生传热恶化时, 发生了类似于 属于亚临界膜态沸腾还是亚临界低干度过冷沸腾 需要进一步研究.

4.3 传热恶化壁温预测

在之前的研究^[23],本课题组提出了两个关 联式来预测传热恶化发生时的壁温峰值位置和 大小.首先通过已知的宏观参数来确定壁温峰值 对应的主流温度,然后进一步求出壁温峰值对应 的 Nu,此方法不需要迭代就可以获得壁温峰值 大小:

$$T_{\rm b,HTD}^{+} = 5.212 \times 10^{-7} \left(\frac{q_{\rm w}}{Gi_{\rm pc}}\right)^{-2.87} \left(\frac{L}{d_{\rm i}}\right)^{-1.356},$$
(17)

$$T_{\rm b,HTD}^{+} = \frac{T_{\rm b,HTD} - T_{\rm in}}{T_{\rm out} - T_{\rm in}},\tag{18}$$

 $Nu_{\rm HTD} = 0.00796 Re_{\rm b}^{0.7215} Pr_{\rm b}^{-0.1568} K^{-0.115}, \quad (19)$

$$K = \left(\frac{q_{\rm w}}{Gi_{\rm w}}\right)^2 \frac{\rho_{\rm b}}{\rho_{\rm w}},\tag{20}$$

式中T_{b,HTD}为壁温峰值对应的无量纲温度,T_{out}和 T_{in}分别为进出口温度,L和 d_i分别为管道长度 和内径,Nu 为努塞尔数,Re_b和 Pr_b分别为雷诺 数和普朗特数, ρ为密度.(18)式—(20)式仅适 用于传热恶化工况.K为超临界 K数^[24],这个无 量纲数被引入用来表征覆盖在壁面的局部类气层 厚度.

检验关联式 (20) 是否可以预测传热恶化壁温 变化趋势,具体计算过程如下,给定 P, G, q_w, d_i, T_b,首先,假设一个壁温来决定换热系数 h,从而确 定一个新的壁温,经过多次迭代,当假设值与迭代 结果相差小于 0.01 K 时,停止计算过程,最终得到 所有壁温.对于 H₂O, R134a 和 CO₂ 预测结果,如 图 9 所示,从结果来看,这个关联式的预测结果与 实验数据有一定的误差,但可以反映壁温变化趋 势,如果壁温随焓值出现了不均匀变化,这表明出 现了传热恶化,必须给予必要的关注.如图 10 所 示,给出了新关联式 (20)和其他关联式预测的传 热恶化时的壁温与实验结果比较,关联式见表 1. 对于不同工质的传热恶化壁温预测选取平均相对 误差 (*e*_A)、平均绝对相对误差 (*e*_R)和均方根相对 误差 (*e*_S)评估,新关联式预测精度大大提升,而其 他关联式局限性较大,可能仅对一种或两种工质预 测精度相对较好.由于 SCF 传热恶化实验数据有 限,未来需要更多的实验数据通过该方法发展新关 联式,从而使提高新关联式的预测精度.

图 9 K数关联预测超临界 H₂O、超临界 R134a 和 sCO₂ 壁温的能力 (a) 超临界 H₂O; (b) 超临界 R134a; (c) 超临 界 CO₂

Fig. 9. Capability of the K number correlation to predict the H₂O, R134a and CO₂ data at supercritical: (a) Supercritical water; (b) supercritical R134a; (c) supercritical CO₂.

图 10 K数关联式和其他传热关联式预测结果与实验数据比较

Fig. 10. Comparison of the K number correlation and other heat transfer correlations with experimental database.

Table 1. Review of supercutical fluids heat transfer correlations.

Ref.	Correlation	Operatings parameters
[25]	$\begin{split} Nu_{\rm b} &= 0.023 Re_{\rm b}^{1.03} Pr_{\rm b}^{0.5} F_1 F_2 \\ F_1 &= \begin{cases} 0.98, & \text{for } \pi_{\rm A} < 1.75 \times 10^{-4}, \\ 0.85 + 0.056 \left(10^4 \pi_{\rm A}\right)^{1.5}, & \text{for } 1.75 \times 10^{-4} \leqslant \pi_{\rm A} < 3.75 \times 10^{-4}, \\ 13.1/4.5 + (104 \pi_{\rm A})^{1.35}, & \text{for } 3.75 \times 10^{-4} < \pi_{\rm A}, \end{cases} \\ F_2 &= \begin{cases} 0.93 Pr_{\rm b}^{0.265}, & \text{for } Pr_{\rm b} \leqslant 2.5, \\ 1.61 Pr_{\rm b}^{-0.333}, & \text{for } Pr_{\rm b} > 2.5, \end{cases} \pi_{\rm A} = \frac{q_{\rm w}\beta_{\rm b}}{Gc_{\rm p,b}} \end{split}$	$\rm CO_2/H_2O/R134a$
[26]	$Nu_{\rm w} = 0.0033 Re_{\rm w}^{0.94} \overline{Pr}_{\rm w}^{0.76} \left(\rho_{\rm w}/\rho_{\rm b}\right)^{0.16} \left(\mu_{\rm w}/\mu_{\rm b}\right)^{0.4}$	—
[27]	$Nu_{b} = 0.0061 Re_{b}^{0.904} Pr_{b,ave}^{0.684} (\rho_{w}/\rho_{b})^{0.564}$ $Pr_{b,ave} = \frac{\mu_{b}}{\lambda_{b}} \frac{i_{w} - i_{b}}{T_{w} - T_{b}}$	$\begin{array}{l} {\rm H_2O} \\ P = 24 \ {\rm MPa;} \ d_{\rm i} = 10.0 \ {\rm mm} \\ G = 200{-}1500 \ {\rm kg/(m^2 \cdot s)} \\ q_{\rm w} = 0{-}1250 \ {\rm kW/m^2} \end{array}$
[28]	$Nu_{b} = 0.226Re_{b}^{1.174}Pr_{b,ave}^{1.057} \left(\frac{\rho_{w}}{\rho_{b}}\right)^{0.571} \left(\frac{\bar{c}_{p,b}}{c_{p,b}}\right)^{1.023} Ac^{0.489} Bu^{0.0021}$ $Ac = \frac{q_{w}\beta_{b}}{Gc_{p,b}Re_{b}^{0.625}} \left(\frac{\mu_{w}}{\mu_{b}}\right) \left(\frac{\rho_{b}}{\rho_{w}}\right)^{0.5}, \ Gr = \frac{g\beta_{b}d_{i}^{4}q_{w}}{v_{b}^{2}\lambda_{b}}$ $Bu = \frac{Gr}{Re_{b}^{3.425}Pr^{0.8}} \left(\frac{\mu_{w}}{\mu_{b}}\right) \left(\frac{\rho_{b}}{\rho_{w}}\right)^{0.5}, \ \bar{c}_{p,b} = \frac{i_{w} - i_{b}}{T_{w} - T_{b}}$	$\begin{array}{c} {\rm CO}_2 \\ P = 7.46{}10.26 \ {\rm MPa} \\ d_{\rm i} = 4.5 \ {\rm mm} \\ G = 208{-}847 \ {\rm kg}/({\rm m}^2{\cdot}{\rm s}) \\ q_{\rm w} = 38{}234 \ {\rm kW/m^2} \end{array}$
[29]	$Nu_{\rm b} = \frac{(\xi/8)Re_{\rm b}\overline{Pr}_{\rm b}}{1+900/Re_{\rm b}+12.7\sqrt{\xi/8}\left(\overline{Pr}_{\rm b}^{2/3}-1\right)}$ $\xi = [1.82\log_{10}\left(Re_{\rm b}\right)-1.64]^{-2}\left(\rho_{\rm w}/\rho_{\rm b}\right)^{0.4}\left(\mu_{\rm w}/\mu_{\rm b}\right)^{0.2}$	_

5 结 论

SCF 穿过拟临界点时, 流体存在非平衡过程, 使传热研究变得十分困难. 在类气和类液转变过程 中不存在界面,故 SCF 传热没有亚临界相变传热 复杂,但仍不能简单地视为非等温流体问题.SCF 流动过程中的类气和类液不均匀分布可能引起动 力学特性变化,进而影响传热.如何更好地处理 SCF 物性畸变对流动传热的影响仍没有很好的得 到解决. 本文假设 SCF 在宏观上存在类气和类液 转变,类比亚临界沸腾对其传热进行了理论研究. 本文求解数学方程时,假设的合理性与类气、类液 的划分方法有关,这主要是因为超临界压力下的类 气和类液转变是一个连续的非平衡过程,物性剧烈 非线性变化. 在较大的温度梯度下, 流体的膨胀效 应是不能忽略,这可能使流场和温度场明显变化, 促使传热模式改变;提出了类沸腾临界点膨胀层模 型描述 SCF 传热恶化, 大温度梯度使 SCF 流动传 热看起来和亚临界沸腾类似, 当膨胀区流体充分膨 胀而变厚, 焓值超过一定值时, 会导致传热恶化. 虽然考虑类沸腾的传热关联式预测传热恶化精度 大大提高,但仍需要更多准确的实验数据来发展精 度更高的关联式. 未来需要可视化实验来验证本文 的假设,进一步揭示类气和类液转变对流动传热的 影响.

参考文献

- [1] Jackson J D 2017 Appl. Therm. Eng. 124 1481
- [2] Huang D, Wu Z, Sunden B, Li W 2016 *Appl. Energ.* 162 494
 [3] Xie J Z, Liu D C, Yan H B, Xie G N, Boetcher S K S 2020
- Int. J. Heat Mass Tran. 149 119233

- [4] Cabeza L, Gracia A, Fernández A, Farid M 2017 Appl. Therm. Eng. 125 799
- [5] Chen W W, Fang X D, Yu X, Su X H 2015 Ann. Nucl. Energy 76 451
- [6] Cheng X, Liu X J 2018 J. Nucl. Eng. Radiat Sc. 4 011003
- [7] Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 4114
- [8] Maxim F, Karalis K, Boillat P, Banuti D, Marquez J, Damian B, Niceno P, Ludwig C 2021 Adv. Sci. 8 2002312
- [9] Liu M Y, Tang J, Liu S H 2022 J. Supercrit. Fluids 183 105554
- [10] Ackerman J W 1970 J. Heat Tran. 92 490
- [11] Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254
- [12] Zhang H S, Xu J L, Zhu X J, Xie J, Li M J, Zhu B G 2021 Appl. Therm. Eng. 182 116078
- [13] Wang Q Y, Ma X J, Xu J L, Li M J, Wang Y 2021 Int. J. Heat Mass Tran. 181 121875
- [14] Tripathi P, Basu S 2021 Phys. Fluids 33 043304
- [15] Wang J T, Li Z H, Zhai Y L, Wang H 2023 Int. J. Heat Mass Tran. 201 123571
- [16] Peeters J 2022 Int. J. Heat Mass Tran. 186 122441
- [17] Fan Y H, Tang G H, Sheng Q, Li X 2023 Energy 262 125470
- [18] Banuti D T 2015 J. Supercrit. Fluids 98 12
- [19] He X T, Xu J L, Cheng Y W 2023 Acta Phys. Sin. 72 057801 (in Chinese) [何孝天, 徐进良, 程怡玮 2023 物理学报 72 057801]
- [20] Lin R T 1988 Boiling Heat Transfer (Beijing: Science Press) p278 (in Chinese) [林瑞泰 1988 沸腾换热 (北京: 科学出版社) 第 278 页]
- [21] Xu J L, Zhang H S, Zhu B G, Xie J 2020 Solar Eng. 195 27
- [22] Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401 (in Chinese) [张海松, 徐进良, 朱鑫杰 2021 物理学报 70 044401]
- [23] Zhang H S, Xu J L, Wang Q Y 2023 Int. J. Therm. Sci. 188 108242
- [24] Zhu B G, Xu J L, Yan C S, Xie J 2020 Int. J. Heat Mass Tran. 148 119080
- [25] Cheng X, Zhao M, Feuerstein F, Liu X J 2019 Int. J. Heat Mass Tran. 131 527
- [26] Gupta S, Mokry S, Pioro I 2011 Proc. ICONE-19 43503 11
- [27] Mokry S, Pioro I, Farah A, King K, Gupta S, Peiman W, Kirillov P 2011 Nucl. Eng. Des. 241 1126
- [28] Kim D, Kim M 2010 Nucl. Eng. Des. 240 3336
- [29] Petukhov B, Kirillov S 1958 Thermal Eng. 4 63

An expansion effect based pseudo-boiling critical point model for supercritical CO_2^*

Zhang Hai-Song^{1)†} Lu Mao-Cong¹⁾²⁾ Li Zhi-Gang¹⁾²⁾

 (Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academic of Science, Beijing 100190, China)
 (Chinese Academic of Science, Beijing 100049, China)

(Received 26 February 2024; revised manuscript received 20 August 2024)

Abstract

Heat transfer deterioration (HTD) is one of the important issues in the study of supercritical fluid (SCF) heat transfer. However, when the SCF crosses the pseudo-critical point, the none-quilibrium process occurs in liquid, so SCF is very complicated. Recently, the existence of SCF pseudo-boiling on a macro scale has sparked controversy. There is still no unified understanding of the mechanism of gas-like and liquid-like transition affecting heat transfer. In this work, it is assumed that SCF has a macroscopic phenomenon similar to subcritical flow boiling. By analogy with subcritical boiling heat transfer, a boiling critical point model is proposed to describe the HTD in supercritical CO₂. Our study reveals that the HTD caused by pseudo-boiling only occurs under large temperature gradient, which makes the superheated liquid-like layer cover the wall, and the gas-like and liquid-like may present different distribution forms, thus changing the heat transfer characteristics. When the wall temperature is higher than the pseudo-critical temperature and the enthalpy of the fluid layer covering the wall exceeds a certain value, the HTD may occur. The proposed theoretical model can explain the experimental results well, and the prediction accuracy of heat transfer correlation considering pseudo-boiling is greatly improved. In this work, the connection between supercritical heat transfer and subcritical heat transfer is established theoretically, which provides a new idea for studying the deterioration of SCF heat transfer, thus enriching the theory of supercritical heat transfer.

Keywords: supercritical fluid, expansion, pseudo-boiling, heat transfer deterioration, theoretical model

PACS: 44.05.+e, 44.15.+a, 44.27.+g

DOI: 10.7498/aps.73.20240293

^{*} Project supported by the Chinese Academy of Sciences for Young Scientists in Basic Research (Grant No.YSBR-043) and the National Natural Science Foundation of China (Grant No. 52076206).

[†] Corresponding author. E-mail: zhanghaisong@iet.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

基于膨胀效应的超临界CO。类沸腾临界点模型

张海松 卢茂聪 李志刚

An expansion effect based pseudo-boiling critical point model for supercritical CO₂

Zhang Hai-Song Lu Mao-Cong Li Zhi-Gang

引用信息 Citation: Acta Physica Sinica, 73, 184402 (2024) DOI: 10.7498/aps.73.20240293 在线阅读 View online: https://doi.org/10.7498/aps.73.20240293 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于拟沸腾理论的超临界CO2管内传热恶化量纲分析

Dimensional analysis of flow and heat transfer of supercritical CO_2 based on pseudo-boiling theory

物理学报. 2021, 70(4): 044401 https://doi.org/10.7498/aps.70.20201546

浮升力和流动加速对超临界CO2管内流动传热影响

Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes

物理学报. 2020, 69(6): 064401 https://doi.org/10.7498/aps.69.20191521

光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式

Measurements and identification of supercritical pseudo-boiling heat transfer modes based on fiber optic probes and multiscale entropy

物理学报. 2023, 72(5): 057801 https://doi.org/10.7498/aps.72.20222060

流动方向对超临界二氧化碳流动传热特性的影响 Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide 物理学报. 2024, 73(2): 024401 https://doi.org/10.7498/aps.73.20231142

超临界CO。池式传热流固耦合传热特性数值模拟

Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer

物理学报. 2024, 73(10): 104401 https://doi.org/10.7498/aps.73.20231953

超临界压力CO₂在水平圆管内流动传热数值分析

Numerical analysis on flow and heat transfer of supercritical CO₂ in horizontal tube

物理学报. 2020, 69(4): 044401 https://doi.org/10.7498/aps.69.20191513