应用于 1064 nm 倍频实验的啁啾周期极化铌酸锂 晶体的结构设计与角度鲁棒性测试

刘励强1)2)# 苏伟伦1)2)# 刘峻铭1)2) 邹娱1)2) 洪丽红2)3) 李志远1)2)†

1) (华南理工大学物理与光电学院,广州 510641)

2) (广东晶创光学机械有限公司, 广州 510510)

3) (中国科学院上海光学精密机械研究所,强场激光物理国家重点实验室,上海 201800)

(2024年5月31日收到; 2024年7月12日收到修改稿)

通过倍频技术产生的 532 nm 固体激光器是目前应用最广泛的激光器之一,其最常用的倍频晶体三硼酸 锂 (LBO) 在角度鲁棒性与倍频效率上仍有不足.为获得具有较好的角度鲁棒性的倍频晶体,实现激光器结构 复杂度的降低与稳定性的提升,本文从角度鲁棒性的理论分析出发,对啁啾周期极化铌酸锂 (CPPLN) 晶体 的结构进行设计,并对其进行理论仿真与实验测试.模拟仿真的结果表明,该设计结构的 CPPLN 晶体具有良好的角度鲁棒性,在-3°至+3°的范围内倍频效率一直维持在最高倍频效率的 60% 以上.倍频实验的结果显示可以达到 LBO 晶体的 11 倍以上.同时 CPPLN 晶体的倍频光功率关于入射角度的半高宽可以达到 6° 以上,并且出射光斑为标准的高斯光斑,几乎不受入射角度的影响.研究表明, CPPLN 晶体具有远高于 LBO 晶体的倍频效率,且角度鲁棒性优于 LBO 晶体的角度鲁棒性.

关键词:非线性光学, 啁啾周期极化铌酸锂晶体, 腔外倍频, 角度鲁棒性
 PACS: 42.65.-k, 42.65.Ky, 42.60.Lh
 DOI: 10.7498/aps.73.20240778

1 引 言

自 1961 年 Franklin 等^[1] 首次发现倍频现象 之后, 倍频现象就一直是光学工作者的研究重点, 被应用于制备各种不同波长的激光. 在这种类繁多 的倍频光中, 由 1064 nm 激光倍频而得的 532 nm 激光是获得最广泛应用的激光之一, 在工业加工^[2,3]、 医学美容^[4,5]、大气探测^[6]、激光雷达^[7]、科学研究 等领域中都有 532 nm 激光器的需求. 尤其在科研 领域中, 高质量的 532 nm 激光器一直是许多前沿 物理实验的前提. 原子的冷却与俘获^[8]、相干光通 信系统^[9] 的实现, 都需要先利用倍频过程制备出稳 定性优良的 532 nm 连续光为窄线宽激光器提供 优质的泵浦源;在进行量子保密通信^[10,11]和量子 计算^[12,13]等量子科学领域的研究时,作为实验核 心器件的量子纠缠源的性能直接取决于泵浦的 532 nm 连续激光器的性能;在高次谐波的产生实 验^[14,15]以及超连续谱的产生实验^[16-19]中,稳定性 高、光束质量好的 532 nm 连续光源与 kHz 级别、 脉冲能量高的 532 nm 纳秒脉冲激光器分别是钛 宝石飞秒振荡器与放大器所需的泵浦源的最佳选 择.因此,对 532 nm 激光的研究,对科研、对生产 都有重要意义.

目前,市面上的 532 nm 固体激光器使用频率 最高的倍频晶体是三硼酸锂 (LBO) 晶体,具有 加工工艺成熟、损伤阈值高、透光波段宽等优点. 1997年,便已经出现使用 LBO 晶体进行腔内倍频获

† 通信作者. E-mail: phzyli@scut.edu.cn

[#] 同等贡献作者.

^{© 2024} 中国物理学会 Chinese Physical Society

得 2.5 W 的 532 nm 单频光输出的报道^[20]. 2014 年, Zhang 等^[21]使用 LBO 晶体腔内倍频的方式获得 1.13 W 的连续绿光输出. 但是 LBO 晶体自身的非 线性系数并不高,这一点限制了 LBO 晶体可以达 到的最高倍频转换效率. 同时由于 LBO 晶体可以达 到的最高倍频转换效率. 同时由于 LBO 晶体倍频 时采用的是双折射相位匹配的方案,入射光必须从 合适的角度才能满足相位匹配条件达到最大的倍 频效率,这使得 LBO 晶体对于入射光角度的变化 十分敏感,无法获得较好的角度鲁棒性. 此外,双 折射相位匹配方案在原理上存在走离效应的问题, 这使得 LBO 晶体无法通过增大晶体长度的方式来 获得更高的功率,并且获得的激光光斑会呈椭圆形 而非理想的圆形光斑.

1962年, Armstrong 等^[22] 提出了准相位匹配 的概念,为相位匹配的实现提供了一种新的方案. 1993年, Yamada 等^[23]提出电场极化法制备准相 位匹配晶体,从根本上解决了准相位匹配晶体制作 工艺复杂的问题,人们开始使用周期极化铌酸锂 (PPLN) 晶体进行倍频实验. 2009年, Sakai 等^[24] 也利用 18 mm 的 PPMgLN 获得 1.2 W 的绿光输 出,转化效率为 60%. 2017年, Kang 等^[25]在 12 W 泵浦光的条件下获得1.75 W 的连续绿光输出, 倍 频效率 14.6%. 2019 年, Lai 等^[26] 使用 MgO: PPLN 获得7W的连续绿光.虽然PPLN晶体在倍频实 验中的效率远高于 LBO 晶体, 但是在实验过程中 必须令光正入射晶体才能获得最佳的倍频效率.入 射光的角度发生偏移会导致晶体倍频效率的降低, 这一点增加了 PPLN 晶体的使用难度,提高了使 用 PPLN 晶体的激光器的结构复杂度. 为了拓宽 准相位匹配技术的应用范围,满足在生产与科研中 遇到的不同需求,人们提出了包括准周期结构、二 维分布结构、啁啾周期结构等不同准相位匹配晶体 的结构设计方案,使得准相位匹配晶体得以获得更 多可能性.

为进一步提高 532 nm 激光器的稳定性,降低 激光器的复杂度,本文从倍频晶体入手,在理论和 实验上对啁啾周期极化铌酸锂 (CPPLN) 晶体的 角度鲁棒性进行探讨,通过对 CPPLN 晶体的结构 进行设计,以期获得优于目前常用的 LBO 晶体的 倍频效率与角度鲁棒性.仿真实验结果显示,设计 结构的 CPPLN 晶体在理论上具有良好的角度鲁 棒性.实际测试结果表明,该结构的 CPPLN 晶体 效率可以达到 LBO 晶体的 11 倍以上,其角度稳 定性也优于 LBO 晶体, 倍频功率关于角度的半高 宽大于 6°. 同时输出的倍频光斑为标准的高斯光 斑, 且几乎不受角度变化的影响. 本文实验结果表 明, 采用该设计结构的 CPPLN 晶体作为一种新 的 532 nm 激光器的倍频晶体具有可行性, 可为之 后 532 nm 激光器的功率提高与稳定性优化的研 究提供参考. 进一步, 也为其他波段连续光条件下 的倍频过程提供了一种准相位匹配晶体的倍频方 案, 为后续高功率条件下高效倍频过程提供了一种 思路选择.

2 理论分析

2.1 角度鲁棒性分析

为了使准相位匹配晶体获得较好的角度鲁棒 性,即在倍频过程中倍频光并不会因为基频光的入 射角度变化而受到过大的影响,我们需要先对准相 位匹配晶体的角度鲁棒性进行理论上的分析.

在近场、不考虑走离效应、小信号近似的条件 下, 倍频过程产生二次谐波的效率η可以表示为

$$\eta = \frac{P_2}{P_1} = \frac{8\pi^2 l^2 d_{\text{eff}}^2}{n_1^2 n_2 \lambda_1^2 c \varepsilon_0} \frac{P_1}{\pi r_1^2} \frac{\sin^2(\Delta k l/2)}{(\Delta k l/2)^2}, \qquad (1)$$

式中, P_1 和 P_2 分别代表基频光和倍频光的功率; n_1 和 n_2 分别代表基频光和倍频光在倍频晶体中的 折射率; λ_1 代表基频光的波长; r_1 代表基频光的 束腰半径; l代表倍频晶体的有效长度; $d_{\rm eff}$ 代表倍 频晶体的有效非线性系数; c代表光速, ε_0 代表真 空介电常数; Δk 代表相位失配量, 在第 m 阶准相 位匹配过程中可以表示为

$$\Delta k = k_2 - 2k_1 - G_m,\tag{2}$$

其中 k_1 和 k_2 分别代表基频光和倍频光的波数; G_m 为准相位匹配晶体的结构所提供的倒格矢向量,用于补偿倍频过程的相位失配量以满足相位匹配条件 $\Delta k = 0$.倒格矢量 G_m 与极化周期 Λ 的关系可以表示为

$$G_m = m \frac{2\pi}{\Lambda}.$$
 (3)

在进行单周期的 PPLN 晶体的结构设计时, 会先对没有倒格矢补偿时的倍频过程的相位失配 量 Δk₀进行计算:

$$\Delta k_0 = k_2 - 2k_1.$$
 (4)

利用 (4) 式得到极化周期需要提供的倒格矢 Gms =

 Δk_0 , 再通过 (3) 式求得满足实验需求的 PPLN 晶体的极化周期 A_s . 然而通过这种方法获得的单周期 PPLN 晶体, 其角度鲁棒性较差, 原因在于当基频光入射时存在一定角度而非正入射时, 此时光在 PPLN 晶体中经过的光程会变长, PPLN 晶体的等效极化周期会变大, 这就导致 PPLN 晶体提供的倒格矢量会随着基频光入射角的增大而减小, 总的相位失配量 Δk 也会随着基频光入射角的增大而增大, 导致倍频效率的下降. 因此, 如果通过对准相位匹配晶体的结构进行设计, 使晶体可以提供在一定范围连续可变的倒格矢, 那么该晶体的角度鲁棒性也可以得到相应的提高.

啁啾周期结构是指该准相位匹配晶体的极化 周期并非固定的单一周期, 而是在激光传播方向上 引入类似于啁啾的结构分布, 使晶体的极化周期沿 着光的传播方向连续增大或者减小. 采用啁啾周期 结构的准相位匹配晶体, 如 CPPLN 晶体, 其极化 周期可以表示为一个关于位置 z 的函数:

$$\Lambda(z) = \frac{\Lambda_0}{1 + D_{\rm g}\Lambda_0 z/(2\pi)},\tag{5}$$

其中 D_g 是 CPPLN 晶体极化周期的啁啾度; Λ_0 是 CPPLN 晶体的初始极化周期. 根据 (5) 式, 长度 为 L 的 CPPLN 晶体的极化周期将覆盖 $\Lambda_0 \cong \Lambda_1 = \frac{\Lambda_0}{1 + D_g \Lambda_0 L/(2\pi)}$ 之间的范围, 在第 m 阶准相位匹 配中将提供在 $m \frac{2\pi}{\Lambda_0} \cong m \frac{2\pi}{\Lambda_1}$ 之间连续可变的倒格 矢量, 即 CPPLN 晶体具有较好的角度鲁棒性, 选 用啁啾周期结构在理论上可以满足本次实验的需 求, 且 CPPLN 晶体的极化周期覆盖范围越大, 角 度鲁棒性越强. 但是需要注意的是, 啁啾度的增大 在扩大极化周期覆盖范围的同时, 也会导致晶体有 效非线性系数的减小^[27], 即导致倍频转化效率的 降低.

2.2 CPPLN 晶体结构设计

根据以上分析,为了使 CPPLN 晶体同时兼具 较高的倍频效率与较好的角度鲁棒性,需要对 CPPLN 晶体的结构进行设计与仿真.

由于极化周期的扩大会导致倍频效率的降低, 因此首先需要确定最小的晶体极化周期覆盖范围 以在理论上获得尽可能高的倍频转化效率.在本次 实验中,用于验证 CPPLN 晶体倍频效果的 1064 nm 激光器为自行搭建的半导体激光器 (LD) 泵浦的 Nd:YVO₄ 激光器.在 CPPLN 晶体结构的设计之前,我们先对该激光器的带宽进行了测量,实验结果显示该激光器带宽略小于 1 nm,考虑到实际加工时应保留一定的余量,选择将 CPPLN 晶体的增益带宽设置为 1 nm. 根据 (5) 式,选取 CPPLN 晶体的初始周期为 6.99 μ m, 啁啾度为 0.21 μ m²,周期数为 2104,占空比为 49.62%.同时,为了可以利用铌酸锂晶体非线性系数最大的方向,在设计CPPLN 晶体结构时将入射晶体的基频光与产生的倍频光都设定为 e 光,此时非线性系数为 $d_{33} = 27.2 \text{ pm/V}$.

为了可以直观地了解该设计结构的 CPPLN 晶体的角度鲁棒性,利用 MATLAB 进行仿真实验 以探究入射角度对该 CPPLN 晶体的倍频效率的 影响.当基频光的入射角为θ时,此时 CPPLN 晶 体等效的极化周期与晶体长度可以表示为

$$\Lambda(\theta, z) = \frac{\Lambda(0, z)}{\cos[\arcsin(\sin \theta/n_1)]},$$
(6)

$$l(\theta) = \frac{l_0}{\cos[\arcsin(\sin\theta/n_1)]},\tag{7}$$

式中, A(0, z) 和 l₀分别代表 CPPLN 晶体实际的 极化周期与晶体长度.结合(1)式、(6)式和(7)式, 可以得到倍频光功率随基频光入射角度的变化关 系,如图 1 所示.由图 1 可以看出,角度的变化对 倍频光的影响呈对称关系,即入射角的变化方向对 倍频过程的结果并没有影响.当入射光的角度逐渐 增大时,倍频效率呈先下降再升高最后降低的趋 势.当入射角度在 0°至 3°之间变化时,最高的倍频 效率为 0.80%,最低的倍频效率为 0.51%,即在这 个范围中倍频效率始终维持在最高倍频效率的 63% 以上.当入射角度在 0°至 1°之间变化时,倍 频效率基本保持不变,可以认为此时倍频光功率几

图 1 设计的 CPPLN 的倍频效率与入射角度的关系图

Fig. 1. The relationship between the SHG efficiency of the designed CPPLN and the incidence angle.

乎不受入射角度变化的影响. 由以上分析可知, 该 设计结构的 CPPLN 晶体在理论上具有较好的角 度鲁棒性.

3 实验装置搭建

倍频实验的装置图如图 2(a) 所示. 使用自制 的1064 nm 连续光作为泵浦, 输出最高功率为 24.69 W, 输出光的光斑如图 2(b) 所示, 出射光经 过扩束准直后,光斑直径约为 1.5 mm. 1064 nm 激光在经过一个半波片后,由一个焦距为 300 mm 的石英透镜聚焦到 CPPLN 晶体内部, 经过倍频过 程产生 532 nm 激光. CPPLN 晶体厚 1 mm, 高 6 mm, 两个通光面都镀有 1064 nm 和 532 nm 的 增透膜,为了尽可能提高倍频转换效率,同时考虑 到实际加工工艺的限制, CPPLN 晶体的通光长度 设定为 15 mm. 为了提高 CPPLN 晶体的损伤阈 值,在晶体中掺入质量分数为5%的 MgO. CPPLN 晶体的晶体夹为紫铜材质,表面进行镀金处理以提 高散热效果,并使用一个半导体制冷片 (TEC) 对 CPPLN 晶体进行温度控制, 使 CPPLN 晶体工作 在最佳工作温度 25 ℃ 的条件下. 晶体夹放置在一 个手动旋转台上,用以改变1064 nm 激光的入射 角度,旋转台的精度为±0.1°.在 CPPLN 晶体后 方放置一个对 532 nm 光高透、对 1064 nm 光高反 的双色镜和一个 532 nm 反射镜, 用以将出射光中 的 1064 nm 成分过滤掉, 最后使用一个光功率计 对获得的 532 nm 光进行测量.

在 CPPLN 晶体的倍频实验之后,为了进行对 照,将 CPPLN 晶体替换为 LBO 晶体进行倍频实 验. LBO 晶体的切割角为 $\theta = 90^\circ$, $\phi = 11.2^\circ$,长 3 mm,宽 3 mm,通光长度也为 15 mm,两个通光 面同样镀有 1064 nm 和 532 nm 的增透膜. LBO 晶体的晶体夹材质同样采用紫铜合金,并在表面进 行镀金处理,同时也使用 TEC 进行温度控制使其 工作在最佳工作温度 19 ℃ 条件下.

4 实验结果与分析

由于 CPPLN 晶体的加工工艺的限制, 晶体的 厚度只有1mm,而为了获得通光长度有15mm, 当角度偏移超过±2°时晶体夹的侧壁便会对入射 的 1064 nm 激光产生阻挡, 因此本文讨论的角度 范围规定为-2°至+2°之间.因为LBO晶体为双 折射晶体,当入射角垂直于光偏振方向变化时,与 平行于光偏振方向变化时表现出的性质并不相同, 因此在进行 LBO 晶体的对照实验时, 我们对这两 个方向上的变化都进行了测试. 在相同的入射角角 度梯度条件下, 测得的 CPPLN 晶体以及 LBO 晶 体在两个不同方向上的倍频斜效率如图 3 所示. 根 据(1)式, 倍频过程的效率 n 应与基频光 P1 的功率 成正比, 倍频光功率 P2应与基频光功率的平方 P1 成正比. 在图 3 中将各图中测得的数据用二次项曲 线进行拟合,结果显示实际的数据与拟合的曲线基 本符合. 由图 3 可以发现, CPPLN 晶体在 1064 nm 光倍频过程中的效率远高于 LBO 晶体. 在入射光 功率为 24.69 W 时, CPPLN 晶体输出的倍频光功 率最高可达 175 mW, 倍频转换效率为 0.71%, LBO 晶体输出的倍频光功率最高为14.8 mW, 倍频转 换效率约为 0.060%, CPPLN 晶体的倍频效率为 LBO 晶体的 11 倍以上.

进一步地,取24W功率条件下CPPLN晶体 输出的倍频光功率与入射角度变化的数据,结果如 图4(a)所示.实际生产的CPPLN晶体,其倍频效 率随角度变化的曲线与理论仿真的结果基本相同. 当角度为-1°时,此时功率最高;当角度转动至

图 2 倍频实验相关图 (a) 装置示意图; (b) 1064 nm 激光器输出光斑图像

Fig. 2. Correlation diagram of frequency doubling experiment: (a) Schematic diagram of the installation; (b) output spot image of 1064 nm laser.

图 3 倍频实验结果对比 (a) CPPLN; (b) LBO, 入射角变化方向平行于偏振方向; (c) LBO, 入射角变化方向垂直于偏振方向 Fig. 3. Comparison of SHG experiment results: (a) CPPLN; (b) LBO, the angle of incidence changes in a direction parallel to the direction of polarization; (c) LBO, the angle of incidence changes in a direction perpendicular to the direction of polarization.

+2°时, CPPLN 晶体的倍频效率下降到最低, 此时倍频效率约为 0.42%, 是最高倍频效率的 59.4%. 考虑到角度变化的对称性, 可以推断 CPPLN 倍频 效率关于入射角度的半高宽将可以达到 6°以上, 这说明实际生产的 CPPLN 晶体具有良好的角度 鲁棒性.

作为对比,图 4(b) 与图 4(c) 分别展示了在基 频光功率 24 W 条件下,入射角在 LBO 晶体两个 不同方向上变化时倍频光功率随入射角度变化的 曲线.当入射角的变化方向平行于光偏振方向时, 此时 LBO 晶体表现出较好的角度鲁棒性,在-2° 到+1°的范围内倍频功率基本保持不变.当入射角 度超过+1°时,LBO 晶体的倍频功率随着角度的 偏转出现明显减小,入射角度达到+2°时倍频转换 效率减小为 0.034%,约为最高倍频效率的 57.4%, 降低幅度略大于 CPPLN 晶体,即 LBO 晶体在该 方向上的角度鲁棒性低于 CPPLN 晶体的角度鲁 棒性.当入射角的变化方向垂直于光偏振方向时, LBO 晶体表现出很差的角度鲁棒性: LBO 晶体的 倍频效率关于角度的半高全宽仅为0.4°,且边缘处 的倍频效率仅为中心处的 1.9%.当入射角在两个 方向上变化时, LBO 晶体的角度鲁棒性具有明显 差异的原因在于 LBO 晶体的各项异性的特性, LBO 晶体在垂直于偏振方向与平行于偏振方向两 个方向上折射率变化不同,因此入射角在两个方向 上分别发生相同变化时基频光与倍频光的折射率 变化并不相同,导致相位失配量的变化量具有较大 的差异:当入射光角度在平行于偏振光方向上变化 时,引入的相位失配量较小,LBO 晶体的倍频输出 受到的影响也较小;当入射光角度在垂直于偏振光 方向上变化时,引入的相位失配量较大,LBO 晶体 的倍频转换效率明显降低.

当入射角变化时, CPPLN 晶体和 LBO 晶体 输出的倍频光斑如图 5 所示,图 5(a) 到图 5(d) 为 CPPLN 晶体产生的倍频光的光斑,分别对应 -1°, 0°, +1°和+2°的角度变化,图 5(e) 至图 5(1) LBO

图 4 角度鲁棒性实验结果 (a) CPPLN; (b) LBO, 入射角变化方向平行于偏振方向; (c) LBO, 入射角变化方向垂直于偏振方向 Fig. 4. Results of the angular robustness experiment: (a) CPPLN; (b) LBO, the angle of incidence changes in a direction parallel to the direction of polarization; (c) LBO, the angle of incidence changes in a direction perpendicular to the direction of polarization.

图 5 CPPLN与 LBO 倍频实验输出光斑对比 (a), (b), (c), (d) CPPLN 分别在 -1°, 0°, +1°和 +2°条件下的光斑; (e), (f), (g), (h) 当角度在平行于偏振方向上变化时, LBO 分别在 -1°, 0°, +1°和 +2°条件下的光斑; (i), (j), (k), (l) 当角度在垂直于 偏振方向上变化时, LBO 分别在 -0.3°, 0°, +0.3°和 +0.6°条件下的光斑

Fig. 5. Comparison of output light spots between CPPLN and LBO SHG experiments: (a), (b), (c) (d) The output spots of CPPLN at -1° , 0° , $+1^{\circ}$ \hbar l $+2^{\circ}$, respectively; (e), (f), (g), (h) the output spots of LBO when the angle changes parallel to the direction of polarization under conditions of -1° , 0° , $+1^{\circ}$ \hbar l $+2^{\circ}$ respectively; (i), (j), (k), (l) the output spots of LBO when the angle changes perpendicular to the direction of polarization under conditions of -0.3° , 0° , $+0.3^{\circ}$ \hbar l $+0.6^{\circ}$, respectively.

晶体产生的倍频光的光斑,其中图 5(e) 至图 5(h) 分别对应入射光的角度在平行于偏振的方向变化 为 -1° , 0° , $+1^{\circ}$ 和 $+2^{\circ}$ 的情况,图 5(i) 至图 5(l) 分别对应入射光的角度在垂直于偏振的方向变化 为 -0.3° , 0° , $+0.3^{\circ}$ 和 $+0.6^{\circ}$ 的情况.

当基频光的入射角度发生变化时, CPPLN 晶 体输出的倍频光光斑并无明显变化.对 CPPLN 晶 体的倍频光斑的光强分布进行拟合分析,结果如 图 6 所示,可以发现输出的光斑的光强分布呈高斯 分布. 当基频光的入射角度变化方向平行于光偏振 方向时, LBO 晶体的倍频光斑几乎没有变化, 仅有 较为明显的强弱变化. 当基频光的入射角度变化方 向垂直于光偏振方向时,此时倍频光斑随入射角度 的变化出现分裂的情况. LBO 晶体的倍频光斑呈 现椭圆的原因是因为 LBO 晶体采用双折射匹配方 案,不可避免地会出现走离效应使光斑沿横向变 长. 出现分裂的原因, 我们认为可能是由于实际加 工的晶轴与设计的晶轴方向有所偏差,产生的走离 效应使基频光的垂直偏振部分与水平偏振部分及 倍频光产生分离. CPPLN 晶体由于采用的是准相 位匹配技术,可以避免走离效应,因此可以避免光 斑的变形和分裂,输出良好的高斯光斑.

5 结 论

为了可以获得较好的角度鲁棒性的倍频晶体, 本文首先对倍频晶体的角度鲁棒性理论进行探讨, 然后根据理论结果对 CPPLN 晶体的结构进行了 设计,最后从理论与实验两个方面对其性能进行分 析,并与当前最常用的倍频晶体 LBO 进行对比. 理论结果表明,该结构的 CPPLN 晶体具有良好的 角度鲁棒性,在-3°至+3°的范围内倍频功率一直 维持在最高倍频功率的 63% 以上. 实验结果显示, 设计的 CPPLN 晶体的倍频效率远高于 LBO 晶 体,可以达到 LBO 晶体的 11 倍以上.同时与 LBO 晶体相比,该结构的 CPPLN 晶体具有更加优秀的 角度鲁棒性, 倍频光关于角度的半高宽可以达到 6°以上,输出的倍频光光斑为标准的高斯光斑,且 几乎不受角度变化的影响. 该结构的 CPPLN 晶体 在兼具较高的倍频效率与较好的角度鲁棒性,可以 应用于 532 nm 固体激光器中,降低激光器的复杂 度,提高激光器的稳定性,在医疗、工业、通信、基 础科学等领域中具有重要价值.

Fig. 6. CPPLN output spot intensity distribution fitting curve: (a) -1° ; (b) 0° ; (c) $+1^{\circ}$; (d) $+2^{\circ}$.

参考文献

- Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 1 7 118
- [2] Sharma A, Jain V, Gupta D 2018 Measurement 128 254
- [3] Kartopu G, Oklobia O, Tansel T, Jones S, Irvine S J 2023 Solar Energy Mater. Sol. Cells 251 112112
- [4] Peng Y J, Huang Y 2023 Jiangxi Med. J. 58 977 (in Chinese)
 [彭亚军, 黄颖 2023 江西医药 58 977]
- [5] Liu Y H, Chen J Y, Yang Z 2023 Diabetes New World 26 172 (in Chinese) [刘宇欢, 陈建伟, 杨洲 2023 糖尿病新世界 26 172]
- [6] Penide G, Szczap F, Delanoë J 2024 AIP Conference Proceedings 2988 030004
- [7] Studinger M, Smith B E, Kurtz N, Petty A, Sutterley T, Tilling R 2023 The Cryosphere Discussions 2023 1
- [8] Wang X K, Zhou Z Y, Li M D, Zheng Y G, Zhang W Y, Su G X 2022 Rev. Sci. Instrum. 93 123002
- [9] Li D, Yan B, Yuan Y, Cai Y, Hao Z, Li J 2024 J. Lightwave Technol. 2024 1
- [10] Li F, Zhang X, Li J, Wang J, Shi S, Tian L, Wang Y, Chen L, Zheng Y 2023 Front. Phys. 18 42303
- [11] Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301 (in Chinese) [廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学 报 72 040301]
- [12] Ramesh K S, Munusamy S, Saravanakumar M, Manigandan S, Muthusamy K, Vinitha G, Sekar M 2024 J. Mater. Sci.-Mater. Electron. 35 329
- [13] Li T Y, Xing H X, Zhang D B 2023 Acta Phys. Sin. 72

200303 (in Chinese) [李天胤, 邢宏喜, 张旦波 2023 物理学报 72 200303]

- [14] Ganeev R A 2023 Photonics $\mathbf{10}$ 854
- [15] Seres E, Seres J, Martinez-de-Olcoz L, Schumm T 2024 Opt. Express 32 17593
- [16] Li M, Hong L, Li Z Y 2022 Research 2022 1
- [17] Hong L, Chen B, Hu C, Li Z Y 2022 Photonics Research 10 905
- [18] Hong L, Hu C, Liu Y, He H, Liu L, Wei Z, Li Z Y 2023 *PhotoniX* 4 1
- [19] Hong L, Yang H, Liu L, Li M, Liu Y Chen B, Yu H, Ju W, Li Z Y 2023 *Research* 6 0210
- [20] Martin K I, Clarkson W A, Hanna D C 1997 Appl. Opt. 36 4149
- [21] Zhang C, Lu H, Yin Q, Su J 2014 Appl. Opt. 53 6371
- [22] Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918
- [23] Yamada M, Nada N, Saitoh M, Watanabe K 1993 Appl. Phys. Lett. 62 435
- [24] Sakai K, Koyata Y, Itakura S, Hirano Y 2009 J. Lightwave Technol. 27 590
- [25] Kang Y, Yang S, Brunel M, Cheng L, Zhao C, Zhang H 2017 Appl. Opt. 56 2968
- [26] Lai J Y, Hsu C S, Hsu C W, Wu D Y, Wu K, Chou M H 2019 Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII 10902 8
- [27] Peng L, Hong L, Li Z 2021 Phys. Rev. A 104 053503

Design and angular robustness test of chirped periodically poled lithium niobate crystal for 1064 nm second-harmonic generation experiment

Liu Li-Qiang $^{1)2}$ # Su Wei-Lun $^{1)2}$ # Liu Jun-Ming $^{1)2}$ Zou Yu $^{1)2}$ Hong Li-Hong $^{2)3}$ Li Zhi-Yuan $^{1)2}^{\dagger}$

1) (School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China)

2) (Guangdong Jingchuang Optical Machinery Co., LTD, Guangzhou 510510, China)

3) (State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics,

Chinese Academy of Sciences, Shanghai 201800, China)

(Received 31 May 2024; revised manuscript received 12 July 2024)

Abstract

A 532-nm solid-state laser, generated by second-harmonic generation (SHG) technology, has become one of the most extensively used lasers in various applications today. In the traditional scheme, the most prevalent SHG crystal of the 532-nm solid-state is lithium borate (LBO), and continues to exhibit insufficient angular robustness and SHG efficiency. In order to overcome these limitations and obtain SHG crystals with better angular robustness, this study starts with a comprehensive theoretical analysis of angular robustness. On this basis, the structure of a chirped periodically poled lithium niobate (CPPLN) crystal is designed by taking into account the desired properties for improving its performance, and then the theoretical simulations and experimental tests are implemented to validate the effectiveness of the designed crystal. The simulation results corroborate the superior angular robustness of the CPPLN crystal. In a range from -3° to $+3^{\circ}$, the designed CPPLN crystal exhibits a maximum SHG efficiency of 0.80% and a minimum one of 0.51%, which indicates that the SHG efficiency of this crystal in this range can be maintained at 60% of the maximum efficiency. The experimental results show that the SHG efficiency can be more than 11 times that of LBO crystal. Moreover, the study indicates that the half width of the actual SHG efficiency near the incident angle of the designed CPPLN crystal can exceed 6° , demonstrating its excellent tolerance for changes in incident angle. Furthermore, the output spot of the SHG light generated by the designed CPPLN crystal exhibits a standard Gaussian profile, which remains virtually unaffected by the incident angle. In summary, the findings of this research highlight the CPPLN crystal as a promising alternative to LBO, with markedly higher SHG efficiency and better angular robustness. These superior characteristics make the CPPLN crystal a highly attractive candidate for a wide range of laser applications.

Keywords: nonlinear optics, chirped periodically poled lithium niobate crystal, angle robustness, extracavity frequency doubling

PACS: 42.65.–k, 42.65.Ky, 42.60.Lh

DOI: 10.7498/aps.73.20240778

 $^{^{\#}\,}$ These authors contributed equally.

[†] Corresponding author. E-mail: phzyli@scut.edu.cn

Institute of Physics, CAS

应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试 刘励强 苏伟伦 刘峻铭 邹娱 洪丽红 李志远 Design and angular robustness test of chirped periodically poled lithium niobate crystal for 1064 nm secondharmonic generation experiment

Liu Li-Qiang Su Wei-Lun Liu Jun-Ming Zou Yu Hong Li-Hong Li Zhi-Yuan

引用信息 Citation: Acta Physica Sinica, 73, 174204 (2024) DOI: 10.7498/aps.73.20240778

在线阅读 View online: https://doi.org/10.7498/aps.73.20240778

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟

Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation

物理学报. 2022, 71(13): 134206 https://doi.org/10.7498/aps.71.20220016

铌酸锂集成光子器件的发展与机遇

Thin-film lithium niobate photonic integrated devices: Advances and oppotunities 物理学报. 2023, 72(23): 234201 https://doi.org/10.7498/aps.72.20231295

绝缘体上铌酸锂薄膜片上光子学器件的研究进展

Research progress of photonics devices on lithium-niobate-on-insulator thin films 物理学报. 2020, 69(15): 157801 https://doi.org/10.7498/aps.69.20200302

光学微腔中倍频光场演化和光谱特性

Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator 物理学报. 2020, 69(2): 024203 https://doi.org/10.7498/aps.69.20191294

光纤飞秒激光五倍频产生206 nm深紫外激光

206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser 物理学报. 2023, 72(22): 224209 https://doi.org/10.7498/aps.72.20230877

边界对石墨烯量子点非线性光学性质的影响

Effect of edge on nonlinear optical property of graphene quantum dots 物理学报. 2021, 70(5): 057801 https://doi.org/10.7498/aps.70.20201643