稀土掺杂硼团簇 REB_n^- (RE = La, Sc; n = 6, 8)的几何及电子结构^{*}

陈子俊¹) 李慧芳¹)[†] 谢圳明¹) 张勇航²) 郑浩²) 姜凯乐²) 张博²) 张家铭²) 王怀谦¹)²)[‡]

(华侨大学工学院,泉州 362021)
 (华侨大学信息科学与工程学院,厦门 361021)
 (2024 年 7 月 11 日收到; 2024 年 8 月 17 日收到修改稿)

稀土掺杂硼团簇因其特殊的光学,电学和磁学性质受到广泛关注.本文采用人工蜂群算法结合密度泛函 理论,在 PBE0/RE/SDD//B/6-311+G*水平下研究了稀土掺杂阴离子硼团簇 REB_n⁻ (RE = La, Sc; n = 6, 8) 的几何结构、电子性质、稳定性和芳香性.计算结果表明,阴离子 REB_n⁻ (RE = La, Sc; n = 6)的基态结构具 有 C_2 对称性,掺杂的镧系原子位于顶部中心形成"船形"结构.通过与实验光电子能谱的比较,证实 LaB₈⁻ 的 基态结构类似于三维的"筝形"结构,而 ScB₈⁻ 的基态结构则是 Sc 原子位于"伞柄"处形成的具有 C_{7V} 对称性 的"伞状"结构. B—B之间存在通过共享电子对的相互作用,而 RE—B之间的电子定域性不如 B—B之间的 电子定域性.模拟得出的光电子能谱峰值位置与实验结果的吻合度较高,充分证实了研究获取的全局能量最 低结构与实验观测结构的一致性. LaB₆⁻ 和 ScB₆⁻ 的最低能量结构均为 σ - π 双芳香簇,表现出明显的芳香性. 此外,分别计算了 REB_n⁻ (RE = La, Sc; n = 6, 8)的总态密度,以及 RE 原子和硼簇的局部态密度,并对其轨 道能级密度进行了评估.开壳层的 ScB₈⁻态密度谱呈现出自旋极化现象,这表明其作为基元可以组装成具有 磁性的纳米材料.这些对稀土掺杂硼团簇的研究有助于深入理解纳米材料的结构和性质演变规律,为设计具 有实际价值的纳米材料提供了重要的理论支持.

关键词:密度泛函理论,稀土掺杂团簇,结构优化,芳香性 PACS: 36.40.Mr, 36.40.Qv, 36.40.Cg, 31.15.es CSTR: 32037.14.aps.73.20240962

DOI: 10.7498/aps.73.20240962

1 引 言

近几十年来,原子团簇已成为多学科交叉的研究热点.团簇的理论研究有助于揭示物质从微观的 单个原子和分子到宏观凝聚态的演变规律,为微观 尺度材料的设计和改性提供理论支持^[1].硼是缺电 子元素的一个例子,其原子核外有3个价电子,因 此显示出多种化学结构和键合模式. 硼的缺电子特性导致平面硼簇倾向于形成多中心的二电子键, 不同的连接方式导致多种团簇结构的形成^[2-4]. 实验和理论研究均表明, B_n^- (n = 2—38, 41, 42) 具有准平面或平面结构^[5-8], 而中性的 B_n 具有准平面、平面、轮状、管状或其他结构^[2,3,8,9], 21 世纪初, Boustani 等^[2,10–12] 对中小尺寸纯硼阴离子团簇 (B_n^- , n = 3—42) 进行光电子能谱 (PES) 实验和理论计算.

© 2024 中国物理学会 Chinese Physical Society

^{*} 福建省自然科学基金 (批准号: 2023J01141) 和厦门市自然科学基金 (批准号: 3502Z202373051) 资助的课题.

[†] 通信作者. E-mail: hfli@hqu.edu.cn

[‡] 通信作者. E-mail: hqwang@hqu.edu.cn

基于对纯硼团簇的研究, Islas 等^[13,14]进一步将单 一或多种元素掺入硼基团簇中, 该策略已被成功证 实可以有效调节纯硼团簇的化学成键与几何结构, 从而产生一系列具有独特性能的硼基掺杂团簇. Saha 等^[15]研究发现, 单一过渡金属 Co, Rh, Ir 掺 杂到 B_{12}^- 团簇中会形成独特的三维"伞状"结构. 2020年, 李世雄等^[16]基于粒子群优化算法程序 CALYPSO 研究了掺 Be 硼团簇 BeB_n^{0-} (n = 10— 15)的基态结构与性质, 发现了具有较强的非线性 光学响应掺杂团簇 BeB_{13}^- 和 BeB_{14}^- .

在各种掺杂元素中,稀土元素因其改变无机纳 米材料的晶相、形貌、尺寸和电子结构的能力而受 到广泛关注^[17]. 稀土元素具有独特的 4f 电子层结 构,这是稀土掺杂团簇具有广泛的光学、电学、磁 学和催化性能的重要原因[18],团簇组成的掺杂纳 米材料在许多技术应用中具有发展前景[19-24]. 在 过去的十年中, Li 等^[25-31] 对稀土元素掺杂的硼基 团簇进行了大量的实验和理论研究. Li 等^[32]利用 密度泛函理论,结合光电子能谱实验和理论计算, 研究了一系列镧系元素掺杂的硼团簇 (REB_{8}^{-} , RE =La, Pr, Tb, Tm, Yb) 的最低能量异构体的几何结 构,电子性质和成键方式.他们发现了LnB₈和PrB₈ 共存的两种类型结构,为设计具有可调节性和磁性 的镧系硼化物提供了有效依据.因此,硼团簇的稀 土元素掺杂是多样化硼团簇结构形式并拓展其性 能的有效方法.在此基础上,本文采用人工蜂群算 法结合密度泛函理论,在 PBE0/RE/SDD//B/6-311+G*水平下系统研究了稀土掺杂阴性硼团簇 REB_n^- (RE = La, Sc; n = 6, 8) 的几何结构、稳定 性、电子性质和芳香性.

2 计算方法

本文采用人工蜂群算法 (artiffcial bees colony, ABC)^[33] 结合密度泛函理论 (density functional theory, DFT), 在 Gaussian 09 程序下^[34] 完成 对稀土掺杂硼阴性团簇 REB_n⁻ (RE = La, Sc; n =6,8) 的全局优化, 通过多功能波函数分析程序 Multiwfn^[35] 进行性质分析, 并用可视化分子动力学软 件 (visual molecular dynamics, VMD)^[36] 进行可 视化处理.本文对于稀土掺杂硼团簇 REB_n⁻ (RE = La, Sc; n = 6, 8) 的计算采用以下 3 个步骤.

1) 初始结构的预优化 对 La 原子和 Sc 原子

分别采用 ECP46MWB^[37] 和 ECP10MDF 基组^[38], 对 B 原子采用 3-21G 基组^[39] 进行全局优化,进行 平面结构与立体结构各 800次的随机搜寻.计算 选择 PBE0 交换关联泛函^[40],简记为 PBE0/La/ ECP46MWB//B/3-21G 和PBE0/Sc/ECP10MDF //B/3-21G.

2) 结构的二次优化 将一次优化得到的所有 异构体按总能量的高低,由低到高进行排序.在此 排序的基础上,对每种尺寸下的体系选择能量最 低的 20 个不同的异构体结构,进行二次优化,选 择的基组与计算水平如下:对掺杂原子均采用包含 相对论效应的 Stuttgart-Dresden 大核赝势基组 SDD^[41];对 B 原子采用 6-311+G*基组^[42],计算方 法可写为 PBE0/RE/SDD//B/6-311+G*.

3) 最优结构的确定 按照二次优化 [PBE0/ RE/SDD//B/6-311+G*] 的结果,将总能量从低 到高的方式进行再次排序,并计算它们相对能量的 大小,将相对能量最低的4个的异构体认为是可能 的潜在的候选结构.计算中考虑了自旋多重度对团 簇能量的影响,其中 ScB₈体系在自旋多重度为 3 时最稳定,为开壳层结构,其余体系均在自旋多 重度为1 时最为稳定,为闭壳层结构.

3 结果与讨论

3.1 几何结构与稳定性

3.1.1 几何结构

图 1 为稀土掺杂硼团簇 REB_n^- (RE = La, Sc; n = 6, 8) 在 PBE0/RE/SDD//B/6-311+G*计算 水平下,能量最低结构和其他低能异构体,相对能 量以及点群对称性. 图中所列的结构依据相对能量 由低到高的顺序进行排序,在分子式后用Ⅰ,Ⅱ, Ⅲ, Ⅳ表示. 由图 1 可见, 团簇 LaB₆ 全局能量最低 团簇 LaB₆⁻ - I 具有 C_2 对称性, 团簇呈"船形"结 构, 掺杂的 La 原子位于"船"的顶部中心. 异构体 LaB₆ - Ⅱ和LaB₆ - Ⅲ由于它们平面和准平面的结 构而具有更高的对称性 (C_s 和 C_{2V}). LaB₆ - II 可以 看作是平面结构 LaB₆-Ⅲ中的 La 原子向 B 原子 所在平面上方移动一定的角度得到的异构体,而由 于较高的对称性, $LaB_6^- - II 和 LaB_6^- - III$ 的能量比能 量最低结构分别高 0.06 eV 和 0.19 eV. 锥形异构 体 LaB₆ - IV 表现出 C_{2V} 对称性, La 原子位于棱锥 的顶点位置,其余 B 原子位于底面.中间 4 个 B 原

图 1 在 PBE0/RE/SDD//B/6-311+G*理论水平下, REB_n (RE = La, Sc; n = 6, 8) 团簇低能异构体的结构、点群对称性、相对能 Fig. 1. Structures, symmetry point group and relative energy (eV) of the lower-lying isomers for REB_n (RE = La, Sc; n = 6, 8) clusters at the PBE0/RE/SDD//B/6-311+G* level of theory.

子呈矩形排列, 长边 B—B 键长为 2.01 Å, 短边 B—B 键长为 1.61 Å. 另外两个 B 原子对称分布在 两长边外侧, 与矩形的长边构成对称的等腰三角 形, 腰的键长为 1.55 Å. 同时, 异构体能量比全局 最小结构高 0.86 eV. 对于 LaB₆ 团簇体系, 其 4 个 低能异构体的结构与 LaB₆ 团簇一致, 可以看作是 LaB₆ 团簇中 La 原子被 Sc 原子取代得到, 相对能 与对称性见图 1.

 LaB_8 团簇体系的基态结构如图中 LaB_8^- - I 所 示,展现出了 C_s 对称性,异构体表现出"筝形"的 结构特征,6个 B 原子组成六边形,其余一个 B 原 子位于六边形中心,一个 B 原子位于六边形外侧. 而 LaB_8^- - II 展现出了更高的对称性 (C_{7V}),其结构 可看作是"伞状"的立体结构,底部外围的7个 B 原子组成了正七边形的7个顶点,它们之间的距 离 (B—B 键键长)为1.54 Å,另一个 B 原子位于 七边形的中心, La 原子位于"伞状"结构的"伞 柄"处.另外两个异构体 LaB_8^- - III (C_8)和 LaB_8^- - IV (C_1)显示出了较为复杂的构型,并可推断出它 们不太可能被实验检测到.因为它们的相对能量分 别达到 1.40 eV 和 1.52 eV.

ScB₈ 团簇相较于 LaB₈ 团簇呈现出能级反转 现象. ScB₈ - Ⅲ具有 C_{8V} 对称性,其结构为一个正 八边形,由 8 个 B 原子组成顶点, B—B 键长为 1.55 Å, Sc 原子位于正八边形中心上方, Sc—B 键 长为 2.40 Å. 类似于 LaB₈ - Ⅲ, 异构体 ScB₈ - Ⅳ(C_s) 展示出复杂的构型,能量比基态高出 1.54 eV,推 测不太可能在实验中检测到.

通过以上对 REB_n⁻ (RE = La, Sc; n = 6, 8) 结构特征的分析, 表明了低能异构体中既存在平面 结构也存在三维立体构型, 且掺杂原子总是倾向于 占据 REB_n 团簇的表面位置. 在本文的计算中并未 发现掺杂原子位于硼基团簇内部的内嵌式低能异 构体. 各团簇低能异构体的笛卡尔坐标见补充材料 表 S1—S4 (online).

3.1.2 电子定域性分析

定域化轨道指示函数 (localized orbital loca-

tor, LOL)可用于反映电子在团簇不同区域中的定位函数.图2为REB_n(RE = La, Sc; n = 6, 8)低能异构体的LOL函数等值面图.从三维立体图像可见,16种不同结构的绿色的等值面均占据在B原子之间,意味着电子倾向于局域在B—B之间的区域中,表明了B—B之间以共享电子对的方式进行相互作用,这意味着B—B之间很有可能以共价键的形式连接.有趣的是,还可以观察到每个Sc原子都被绿色等值面包围着,这表明Sc原子周围有较大空间范围的电子分布,La原子周围则没有孤对电子聚集的现象.除此之外,RE—B之间的相互作用在这张图中是无法判断的,因为在RE原子和B原子之间电子定域化程度较低,这说明RE—B之间的电子定域性不如B—B之间的电子定域性.

3.2 模拟光电子能谱

基于广义库普曼定理^[43],本文研究在 PBE0/ RE/SDD//B/6-311+G*计算水平下异构体的模拟 光电子能谱,并同时计算了这些低能异构体的第一 垂直拆分能 (VDE). VDE 被定义为中性结构 (保 留阴性团簇优化后的构型) 的能量与阴性结构能 量的差值. 倘若光电子能谱的 VDE, 谱峰数量及 其相对位置能较好地契合这一标准,便可将其视作 在实验中能够稳定存在的异构体. 图 3 为 REB_n (RE = La, Sc; n = 6, 8) 团簇低能异构体的模拟 光电子能谱,与 Li 等^[32] 实验测出 LaB₈ 的光电子 能谱同时绘制在图 3 中以便于比较,然而,其余团 簇体系的实验光电子能谱暂未见报道,实验光电子 能谱中的字母 X 代表第一个实验 VDE 值. 各体系 理论 VDE 值详细结果见补充材料表 S5(online). 由于计算中不考虑非谐振和非绝热相互作用,计算 得到的峰值强度无法与实验数据进行定量比较,因 此不考虑峰值强度,仅考虑光谱峰值的相对位置.

对于 LaB₈ 团簇,结合了理论与实验光电子能 谱进行比较,最低能量异构体 LaB₈ - I,其理论光 电子能谱呈现出 6 个峰值,位于 2.29—5.23 eV 之 间. 计算出的 VDE 值为 2.29 eV,这与实验光电子

图 2 REB_n⁻ (RE = La, Sc; n = 6, 8) 团簇低能异构体的定域化轨道指示函数等值面图

Fig. 2. REB_n^- (RE = La, Sc; n = 6, 8) isosurface of localized orbital locator function of low energy isomers.

图 3 REB_n (RE = La, Sc; n = 6, 8) 团簇低能异构体的模拟光电子能谱图, LaB₈ 的实验光电子能谱来自于文献 [32], 共同绘制在 LaB₈ - I 处用红色曲线表示

Fig. 3. Simulated PES spectra for low-lying isomers of REB_n^- (RE = La, Sc; n = 6, 8) clusters, the experimental PES spectra of the anionic ground state structure of LaB_8^- was obtained from Ref. [32].

能谱的结果基本保持一致 (2.40 eV), 经过很窄的 一段能隙后, 在 2.61 eV 处又出现了能量强度相似 的谱峰, 这与实验谱中的 2.77 eV 也保持了一致. 对于剩余谱峰, 具体来说, 谱峰位置分别为 3.08 eV, 4.20 eV, 4.73 eV 和 5.25 eV, 非常接近实验中所观 测到的峰值 (3.18 eV, 4.11 eV, 4.70 eV 和 5.11 eV). 理论峰值与实验峰值得到了良好的匹配, 此外, 对 于 LaB_8^- 体系的另外三个低能异构体, 都不具备与 实验谱相似的光谱模式, 通过仔细比较异构体 $LaB_8^- - II, LaB_8^- - II 和 LaB_8^- - IV 对实验光电子能谱$ 的贡献, 发现可以忽略不计, 同时, 它们的相对能 $均大于 0.40 eV, 因此, <math>LaB_8^- - I$ 被认为是 LaB_8^- 体 系的全局最优结构.

对于 LaB₆ 团簇,模拟得到的光电子能谱与 LaB₈ 团簇表现出类似的光谱特征,均呈现出 6 个 明显 的 谱峰, 谱峰 值 位 于 1.74—4.73 eV 之间. ScB₆ 团簇与 LaB₆ 表现出类似的光谱特征.模拟得 到的 VDE 为 2.08 eV. 对于 ScB₈ 团簇,模拟得到 的光电子能谱与 LaB₈ 团簇表现出的光谱特征有 很大的差别,这是由于结构的巨大差异导致电子构型的巨大差异.其中第1个谱峰对应的 VDE 为 1.91 eV.

简言之, 通过对 LaB₈ 体系的理论谱与实验谱 进行比较, 发现能量最低的结构在团簇模拟的光电 子能谱与实验数据中有良好的一致性, 计算得到 的 VDE 接近实验值. LaB₈ - I 被确认为该体系的 全局最优结构, 这也验证了选择 PBE0/RE/SDD// B/6-311+G*泛函基组的正确性, 并且此基组适用 于其他团簇体系. 通过对上述模拟光电子能谱和数 据进行详尽分析, 可推断所研究的能量最低异构体 是掺杂团簇的全局最优结构. 同时, 期待本研究获 得的模拟光电子能谱数据与理论结果能为未来实 验提供可靠的理论基础.

3.3 芳香性分析

图 4 为闭壳层结构 LaB₆ 的芳香性分析 (Ad-NDP) 分析图, 对全局优化后能量最低结构 LaB₆ - I 用 AdNDP 方法进行化学键分析, 揭示了其结构

图 4 LaB₆ 的芳香性分析图

Fig. 4. Adaptive natural density partitioning (AdNDP) bonding analyses of LaB_6^- .

外围的 4 个 2c-2e B—B σ 键, 它们的轨道占据数 在 1.85—1.90 |e|之间,和两个 3c-2e La—B σ 键, 它们的轨道占据数为 1.94 |e|.此外,还有 3 个 7c-2e π 键和 3 个 7c-2e σ 键,他们的轨道占据数均为 2.00 |e|.对于全局的 7c-2 e 轨道,3 个全局 π 键和 3 个全局 σ 键构成了 6 个 π 电子和 6 个 σ 电子,因 此可以认为它是 σ - π 双芳香簇,结构呈现出芳香性 特征,这也是它能够作为全局优化后能量最低结构 的原因.对于 LaB₆⁻-IV,其外围有 3 对对称的 2c-2e B—B σ 键,它们的轨道占据数在 1.90—1.95 |e|之 间.在全局轨道上,有 2 个 7c-2e π 键,以及 3 个 7c-2e σ 键,与次低能异构体类似,2 个全局 π 键和 3 个全局 σ 键分别构成了 4 个 π 电子和 6 个 σ 电 子,当体系的 π 电子数为 4n+2,而体系的 σ 电子 数为 4n 时,相应的电子稳定性会降低,由此形成 的化合物具有冲突芳香性. 它是 σ 型芳香簇而 π 型反芳香簇, 具有冲突芳香性, 这可以作为解释 其全局能量高于前 3 种异构体的依据. 不难发现 $LaB_6^- - IV 与 LaB_6^- - I 在几何结构上存在一定的相$ $似性, 两者的形状都来源于 <math>B_6^-$ 的能量最低异构体^[44]. 不同之处在于 $LaB_6^- - IV$ 保留了 B_6^- 的平面性, 而由 于 $LaB_6^- - I$ 中 La 与两端 B 原子的距离, 使得电子 在此区域内更倾向于形成定域性更强的 3c-2e σ 键 而不是全局离域 σ 键. 另外, 经过尝试发现, 由于存在 两个外围键距极短的 B—B 键, 其电子定域性不强, 无法划分为 2c-2e σ 键, 而倾向于构成全局离域键.

反观次低能异构体 LaB₆⁻-Ⅱ,其外围有 6 个两 两对称的 2c-2e B—B σ键,它们的轨道占据数在 1.92—1.95 |e|之间,和 1 个 5c-2e π键,它们的轨道 占据数为 2.00 |e|. 此外,还有 1 个 7c-2e π键,以 及 3 个 7c-2e σ 键, 他们的轨道占据数均为 2.00 |e|. 对于全局的 7c-2 e 轨道, 1 个全局 π 键和 3 个全局 σ 键分别构成了 2 个 π 电子和 6 个 σ 电子, 它既属 于 σ 型芳香簇, 又具有 π 型反芳香簇的性质, 其结 构总体上依旧展现出芳香性特征. 这一特性能够很 好地解释它的能量仅比全局最低结构略高 0.06 eV 的现象.

对于平面结构的 LaB₆⁻-Ⅲ,其外围有 3 对对称 的 2c-2e B-B σ 键,它们的轨道占据数在 1.92— 1.95 |*e*|之间. 在全局轨道上,有 2 个 7c-2e π 键,以 及 3 个 7c-2e σ 键,与次低能异构体类似,2 个全 局 π 键和 3 个全局 σ 键分别构成了 4 个 π 电子和 6 个 σ 电子,它是 σ 型芳香簇而 π 型反芳香簇,具 有冲突芳香性,相对能量值为 0.19 eV.

图 5 为同是闭壳层结构的 ScB₆⁻ - I, 价电子数 为 22, 对全局优化后能量最低结构 ScB₆⁻ - I用 AdNDP 方法进行化学键分析, 揭示了其结构外围 的 4 个 2c-2e B—B σ 键, 它们的轨道占据数在 1.85—1.89 |e|之间, 和两个关于中心 Sc 原子对称 的 3c-2e La—B σ 键, 它们的轨道占据数为 1.96 |e|. 此外, 还有 3 个 7c-2e π 键和 3 个 7c-2e σ 键, 他们的轨道占据数均为 2.00 |e|. 对于全局的 7c-2e 轨道, 3 个全局 π 键和 3 个全局 σ 键构成了 6 个 π 电子和 6 个 σ 电子, 它们均符合 4*n*+2 休克 尔规则, 因此可以认为其是 σ - π 双芳香簇, 结构呈 现出芳香性特征, 这也是它能够作为全局优化后能 量最低结构的原因.

Fig. 5. Adaptive natural density partitioning (AdNDP) bonding analyses of ${\rm ScB}_6^-$ - I .

图 6 为相对能量 0.05 eV 的 ScB₆⁻-III,其外围 有 6 个 2c-2e B—B σ 键,它们的轨道占据数在 1.92—1.95 |e|之间,在全局轨道上,有 2 个 7c-2e π 键,以及 3 个 7c-2e σ 键,他们的轨道占据数均 为 2.00 |e|.对于全局的 7c-2e 轨道,2 个全局 π 键 和 3 个全局 σ 键分别构成了 4 个 π 电子和 6 个 σ 电子,6 个 σ 电子符合 4*n*+2 休克尔规则,而4 个 π 电子并不符合休克尔规则,它是 σ 型芳香簇而 π 型反芳香簇.

3.4 态密度

为了更好地理解 RE 原子的掺杂对团簇分子 轨道的影响,将 REB_n⁻ (RE = La, Sc; n = 6, 8)全 局最优结构的总态密度图 (total density of states, TDOS) 绘制在图 7 中,同时还绘制了 RE 原子和 B₆/B₈ 框架的局部态密度图 (partial density of states, PDOS),从而评估它们对 TDOS 的贡献, 图中的竖直虚线表示团簇前沿分子轨道 (HOMO 和 LUMO 轨道) 的位置情况.由图 7 可知,对于 4 个体系而言,掺杂原子的 PDOS 曲线与 B₆/B₈ 的 PDOS 曲线相比通常较低,这表明分子轨道的 组成主要由 B₆/B₈ 框架贡献.掺杂原子 RE 几乎不 参与分子轨道的形成.这一现象对于闭壳层体系 LaB₈ 尤为显著.但也有例外的是开壳层结构的

ScB₈⁻, 掺杂原子 Sc 在 α-HOMO 和 β-LUMO 轨道 的组成中异常活跃, 并对团簇的能量较低分子轨道 有显著贡献. 同时, α 轨道与 β 轨道的 TDOS 在能 量较高的区域有明显的差异, 说明该体系有一定的 自旋极化现象, 是潜在的磁性团簇基元.

团簇的 HOMO-LUMO 能隙反映了电子从占 据轨道跃迁到未占据轨道所需要的能量. 对于闭壳 层的 LaB₆⁻, LaB₈⁻和 ScB₆⁻, 它们的 HOMO-LUMO 能隙分别为 2.02 eV, 2.27 eV 和 1.67 eV, 这在一 定程度上表明其参与化学反应的能力较强, 对于开 壳层的 ScB₈⁻, 存在较大的 HOMO-LUMO 能隙, α轨道与β轨道的 HOMO-LUMO 能隙分别为 2.26 eV 和 4.08 eV, 这可以作为团簇化学稳定性 较强的依据.

4 结 论

利用人工蜂群算法结合第一性原理计算, 研究 了稀土掺杂阴离子硼团簇 REB_n^- (RE = La, Sc; n = 6, 8)的稳定结构, 得到了能量最低的基态结构, 主 要研究结果如下.

1) REB_n^- (RE = La, Sc; n = 6) 的基态结构

均具有 C_2 对称性, 掺杂的 RE 原子位于顶部中心 的 "船形"结构. 通过与实验光电子能谱的比较, 证实 LaB₈ 的基态结构呈现类似"筝形"的三维结 构, 而 ScB₈ 的基态结构是由 Sc 原子位于 "伞柄" 处而形成的具有 C_{7V} 点群对称的 "伞状"结构.

2) LOL 分析表明, B—B 之间是以共价相互 作用为主导的成键模式, 而 RE—B 之间的电子定 域性不如 B—B 之间的电子定域性.

3) AdNDP 分析表明, $LaB_6^- - I \ \pi \ ScB_6^- - I \ \&pm \ \pi$ 电子和 σ 电子均符合体克尔 (4*n*+2) 规则的 σ - π 双芳香簇, 结构呈现出芳香性特征, 这也是它们能够作为全局优化后能量最低结构的主因. 而 LaB_6^- 和 ScB_6^- 的其余低能异构体则普遍具有反芳香性, 这也解释了它们的相对能量较高的现象.

4) 态密度分析表明, ScB₈ 态密度谱呈现出自旋 极化现象, 表明其有望成为磁性纳米材料的组装基元.

综上所述,本文的理论预测极大程度地丰富了 稀土掺杂硼基团簇的结构,进一步加深了对稀土掺 杂硼基团簇性质与演变规律的认识,为未来实验奠 定了理论基础.

参考文献

[1] Zhang C J, Xu H G, Xu X L, Zheng W J 2021 Acta Phys.

Sin. 70 023601 (in Chinese) [张超江, 许洪光, 徐西玲, 郑卫军 2021 物理学报 70 023601]

- [2] Boustani I 1997 Phys. Rev. B 5 16426
- [3] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961
- [4] Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin.
 6 103102 (in Chinese) [李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 6 103102]
- [5] Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349
- [6] Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550
- [7] Wang L S 2016 Int. Rev. Phys. Chem. 35 69
- [8] Bai H, Chen T T, Chen Q, Zhao X Y, Zhang Y Y, Chen W J, Li W L, Cheng L F, Bai B, Cavanagh J, Huang W, Li S D, Li J, Wang L S 2019 *Nanoscale* 11 23286
- [9] Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355 (in Chinese) [刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学 报 58 5355]
- [10] Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32
- [11] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004
- [12] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nature Chem. 6 727
- [13] Islas R, Heine T, Ito K, Schleyer P V, Merino G 2007 J. Am. Chem. Soc. 129 14767
- [14] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2013 Acc. Chem. Res. 46 350
- [15] Saha R, Kar S, Pan S, Martínez-Guajardo G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971
- [16] Li S X, Chen D L, Zhang Z P, Long Z W 2020 Acta Phys. Sin. 69 193101 (in Chinese) [李世雄, 陈德良, 张正平, 隆正文 2020 物理学报 69 193101]
- [17] Li H F, Wang H Q, Zhang J M, Qin L X, Zheng H, Zhang Y H 2024 Molecules 29 1692
- [18] Jiang X M, Wang H Q, Cao Y, Sun Z H, Cao Y F, Wu W B 2018 Chemical Journal of Chinese Universities 39 1976 (in Chinese) [蒋贤明, 王怀谦, 曹宇, 孙之惠, 曹玉芳, 吴伟宾 2018 高等学校化学学报 39 1976]
- [19] Zheng H, Wang H Q, Li H F, Zhang J M, Zhang Y H, Qin L X, Mei X J, Jiang K L, Zeng J K, Zhang B, Wu W H 2024 Chem. Phys. 583 112321

- [20] Wen S H, Zhou J J, Zheng K Z, Bednarkiewicz A, Liu X G, Jin D Y 2018 Nat. Commun. 9 2415
- [21] Jiang L Y, Wang H Q, Li H F, Xie B, Zhang J M, Ji J Y 2023 Chem. Phys. 567 111819
- [22] Wang H Q, Li H F 2014 RSC Adv. 4 29782
- [23] Yi Z G, Luo Z C, Qin X, Chen Q S, Liu X G 2020 Acc. Chem. Res. 53 2692
- [24] Qin L X, Li H F, Xiao B W, Zhang J M, Zeng J K, Mei X J, Zhang Y H, Zheng H, Wang H Q 2023 Chem. Phys. 575 112064
- [25] Li W L, Chen T T, Xing D H, Chen X, Li J, Wang L S 2018 Proc. Natl. Acad. Sci. 115 E6972
- [26] Robinson P J, Zhang X X, McQueen T, Bowen K H, Alexandrova A N 2017 J. Phys. Chem. A 121 1849
- [27] Chen T T, Li W L, Li J, Wang L S 2019 Chem. Sci. 10 2534
- [28] Zuo J N, Zhang L L, Chen B L, He K H, Dai W, Ding K W, Lu C 2024 J. Phys. Condens. Matter 36 015302
- [29] Xiang Z Y, Luo Z J, Bi J, Jin S Y, Zhang Z Q, Lu C 2022 J. Phys. Condens. Matter 34 445302
- [30] Jin S Y, Sun W G, Chen B L, Kuang X Y, Lu H Y, Lu C 2021 J. Phys. Chem. A 125 4126
- [31] Lu C, Gong W, Li Q, Chen C 2020 J. Phys. Chem. Lett. 11 9165
- [32] Li W L, Chen T T, Chen W J, Li J, Wang L S, 2021 Nat. Commun. 12 6467
- [33] Zhang J, Dolg M 2015 Phys. Chem. Chem. Phys. 17 24173
- [34] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.)
- [35] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
- [36] Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33
- [37] Dolg M, Stoll H, Savin A, Preuss H 1989 Theor. Chim. Acta. 75 173
- [38] Peterson A, Kirk F, Detlev G, Erich S H, Michael D 2003 J. Chem. Phys. 119 11113
- [39] Binkley, Stephen J, Pople, John A, Hehre, Warren J 1980 J. Am. Chem. Soc. 102 939
- [40] Adamo C, Barone V 1999 J. Chem. Phys. 110 6158
- [41] Wadt W R, Hay P J 1985 J. Chem. Phys. 82 284
- [42] Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650
- [43] Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180
- [44] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S, Steiner E, Fowler P W 2003 J. Phys. Chem. A 107 1362

Geometry and electronic structures of rare earth-doped boron-based clusters REB_n^- (RE = La, Sc; n = 6, 8)^{*}

Chen Zi-Jun¹⁾ Li Hui-Fang^{1)†} Xie Zhen-Ming¹⁾ Zhang Yong-Hang²⁾

Zheng Hao²⁾ Jiang Kai-Le²⁾ Zhang Bo²⁾ Zhang Jia-Ming²⁾

Wang Huai-Qian^{1)2)‡}

1) (College of Engineering, Huaqiao University, Quanzhou 362021, China)

2) (College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China)

(Received 11 July 2024; revised manuscript received 17 August 2024)

Abstract

Rare earth doped boron clusters have attracted much attention due to their special optical, electrical and magnetic properties. The geometric structures, stability, electronic properties and aromaticity of negative rare earth doped boron clusters REB_n^- (RE = La, Sc; n = 6, 8) are investigated with the artificial bee colony algorithm combined with density functional theory calculations at the PBE0/RE/SDD//B/6-311+G* level of theory. Calculations show that the ground state structures of REB_n^- (RE = La, Sc; n = 6, 8) are all of C_2 symmetry, and the doped lanthanide atom is located in a "boat-shaped" structure at the top center. By comparing with the experimental photoelectron spectra, it is confirmed that the ground state structure of $\text{LaB}_8^$ is a "zither-like" three-dimensional structure, and the ground state structure of ScB_8^- is an "umbrella" structure with C_{7V} symmetry formed by the scandium atom at the "umbrella handle". The electron localization between RE—B is not as good as that between B—B. The simulated photoelectron spectra have similar spectral characteristics to the experimental results. The lowest energy structures of LaB_6^- and ScB_6^- are σ - π double aromatic clusters, and the structures exhibit aromaticity. The density of states of low-energy isomers shows that the open shell ScB_8^- density of states spectrum exhibits spin polarization phenomenon, which is expected to assemble magnetic material components. These studies contribute to understanding the evolution of structure and properties of nanomaterials, and provide important theoretical support for designing nanomaterials with practical value.

Keywords: density functional theory, rare earth doped clusters, structural optimization, aromaticityPACS: 36.40.Mr, 36.40.Qv, 36.40.Cg, 31.15.esDOI: 10.7498/aps.73.20240962

CSTR: 32037.14.aps.73.20240962

^{*} Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2023J01141) and the Natural Science Foundation of Xiamen, China (Grant No. 3502Z202373051).

[†] Corresponding author. E-mail: hfli@hqu.edu.cn

[‡] Corresponding author. E-mail: hqwang@hqu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

稀土掺杂硼团簇REB, (RE = La, Sc; n = 6, 8) 的几何及电子结构 陈子俊 李慧芳 谢圳明 张勇航 郑浩 姜凯乐 张博 张家铭 王怀谦

Geometry and electronic structures of rare earth–doped boron–based clusters $REB_n^-(RE = La, Sc; n = 6, 8)$ Chen Zi-Jun Li Hui-Fang Xie Zhen-Ming Zhang Yong-Hang Zheng Hao Jiang Kai-Le Zhang Bo Zhang Jia-Ming Wang Huai-Qian

引用信息 Citation: Acta Physica Sinica, 73, 193601 (2024) DOI: 10.7498/aps.73.20240962 在线阅读 View online: https://doi.org/10.7498/aps.73.20240962 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

掺Be硼团簇BeB (n = 10-15)的基态结构和性质

Ground state structures and properties of Be atom doped boron clusters BeB(15) 物理学报. 2020, 69(19): 193101 https://doi.org/10.7498/aps.69.20200756

(n=0-4)团簇的电子结构、成键性质及稳定性

Electronic structures, chemical bonds, and stabilities of (n = 04) clusters: Anion photoelectron spectroscopy and theoretical calculations

物理学报. 2021, 70(2): 023601 https://doi.org/10.7498/aps.70.20201351

P掺杂LiNH,团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制

 $\label{eq:linear} \mbox{Density functional theory on reaction mechanism between p-doped LiNH_2 clusters and LiH and a new hydrogen storage and desorption mechanism$

物理学报. 2023, 72(15): 153101 https://doi.org/10.7498/aps.72.20230374

胆红素分子激发态性质的密度泛函理论研究

Density functional theory studies on the excited-state properties of Bilirubin molecule 物理学报. 2020, 69(16): 163101 https://doi.org/10.7498/aps.69.20200518

特丁基对苯二酚的光谱及密度泛函研究

Spectral analysis and density functional theory study of tert-butylhydroquinone 物理学报. 2021, 70(5): 053102 https://doi.org/10.7498/aps.70.20201555

经式8-羟基喹啉铝的光谱与激发性质密度泛函

Density functional theory calculation of spectrum and excitation properties of mer-Alq₃

物理学报. 2020, 69(2): 023101 https://doi.org/10.7498/aps.69.20191453