低温溶液加工 CsPbBr₃ 纳晶薄膜 制备钙钛矿太阳电池^{*}

张喜生1)2)† 晏春愉1)2) 胡李纳1)2) 王景州1)2) 姚陈忠2)

(运城学院,山西省智能光电传感应用技术创新中心,运城 044000)
 2)(运城学院,山西省光电信息科学与技术实验室,运城 044000)

(2024年8月18日收到; 2024年9月30日收到修改稿)

溶液法制备钙钛矿多晶薄膜过程中,不仅使用有毒溶剂配置前驱液,而且热处理仍是诱导钙钛矿晶粒生 长的主要途径,这项工艺会增加能耗,还阻碍柔性电池的发展.为消除有毒溶剂的使用和高温处理,本文通过 低温溶液加工 CsPbBr₃ 纳晶薄膜获得相应的多晶薄膜,应用到太阳电池中.首先热注入法制备 CsPbBr₃ 纳米 晶墨汁前驱液,并采用旋涂法制备其纳晶薄膜.大气环境下,CsPbBr₃ 纳晶薄膜经 Pb(SCN)₂ 与 NH₄Br 乙酸甲 酯饱和溶液处理制备 CsPbBr₃ 多晶薄膜,将其作为吸收层制备钙钛矿太阳电池,有效提高了电池的性能,电 池效率达到 8.43%.研究表明,Pb(SCN)₂ 与 NH₄Br 乙酸甲酯 (MA) 饱和溶液不仅可以使纳晶继续结晶生长,同 时还可以有效地钝化钙钛矿薄膜中的缺陷.采用该方法制备 CsPbBr₃ 多晶薄膜过程中,既无高温处理,也无 高沸点毒性溶剂的使用,同时适用于刚性和柔性电池的制备.

关键词: CsPbBr₃,纳米晶,多晶,钙钛矿太阳电池 PACS: 81.05.-t, 84.60.Jt, 88.40.hj CSTR: 32037.14.aps.73.20241152

DOI: 10.7498/aps.73.20241152

1 引 言

无机铯铅钙钛矿材料 (CsPbX₃, X = Cl, Br, I) 在高效太阳电池、光电探测器、LED、激光器等 光电子领域具有广阔的应用前景,其优异性能归功 于钙钛矿材料独特的光电特性,包括高载流子迁移 率、弱束缚激子、强吸收系数等^[1-6].全无机铯铅卤 化 CsPbBr₃ 因其对湿度和光照的耐受性强,合适 的带隙,在室温下具有稳定的正交相结构等优点而 受到广泛关注^[7-13]. 尽管功率转换效率 (PCE) 相 对较低,但 CsPbBr₃ 太阳电池可提供高达 1.7 的高 开路电压 (V_{OC}),可作为叠层电池的理想窗口层选 择^[14-16]. 溶液加工的钙钛矿材料因其低成本和易于制造的高性能光伏薄膜而受到广泛关注^[16-20].然而,用于传统钙钛矿前驱溶液通常包括有毒的极性溶剂,如氮,氮-二甲基甲酰胺 (DMF)、二甲基乙酰胺 (DMAc)、氮-甲基-2-吡罗烷酮 (NMP)等,以及其他一些高沸点溶剂,如二甲基亚砜 (DMSO)、丁内酯 (GBL)或高浓度的二甲基乙酰胺 (DMA)^[17-20].替代或减少这些溶剂的使用成为钙钛矿太阳电池的一个研究方向,但尚未得到科学的解决.虽然有少许绿色溶剂被开发出来取代这些有毒溶剂,但由此制备的器件性能仍然无法与基于 DMF 前驱体制备的器件相比^[21,22].除此之外,溶液法制备钙钛矿多晶薄膜过程中,热处理仍是诱导钙钛矿晶粒长大的主要途径,这项工艺步骤不仅会增加能耗,还

^{*} 山西省自然科学基金 (批准号: 202303021211189) 和运城学院博士科研项目 (批准号: YQ2023068) 资助的课题.

[†] 通信作者. E-mail: zhangxisheng@ycu.edu.cn

^{© 2024} 中国物理学会 Chinese Physical Society

阻碍柔性电池的发展. 纯无机钙钛矿纳米晶 (NCs) 制备过程中,常用的溶剂包括十八烯 (ODE)、油酸 (OA)、油胺 (OLA)、乙酸甲酯 (MA)等,均为无毒 绿色溶剂,而且基于纳米晶墨汁前驱液,低温下便 可通过旋涂或者刮涂一步法制备成膜,该方法为大规 模制造无机钙钛矿太阳电池提供了新的途径^[23-25].

本文基于 CsPbBr₃ 纳晶墨汁制备高质量纳晶薄 膜,并在大气环境中, CsPbBr₃ 纳晶薄膜经 Pb(SCN)₂ 与 NH₄Br 的乙酸甲酯 (MA) 饱和溶液处理制备了 多晶薄膜,将其作为钙钛矿太阳能电池中的吸收 层,制备了具有高效率的 CsPbBr₃ 太阳电池. 该饱 和溶液不仅可以促使纳晶体生长为均匀致密、晶粒 尺寸大、缺陷密度低的多晶颗粒,还可以有效地钝 化钙钛矿薄膜的缺陷态密度,所得钙钛矿太阳能电 池的效率达到 8.43% 的效率. 基于纳晶低温溶液 加工制备钙钛矿多晶薄膜,不用在手套箱中进行, 也无需 GBL, DMSO, DMF, DMSO, 氯苯等有毒 有机溶剂的使用,该方法对低成本的尤其是柔性钙 钛矿电池的开发和应用具有很好的指导意义.

2 实验部分

2.1 主要试验试剂

溴化铅 (PbBr₂)(纯度 99.999%) 购于 Alfa Aesar 公司;碳酸铯 (Cs₂CO₃),(纯度 99.9%)、1-十八烯 (ODE)(纯度 90%)、油酸 (OA)(纯度 90%)、油胺 (OAm)(纯度 70%)等溶剂均采购于阿拉丁试剂公 司;聚芳胺衍生物 (PTAA), $M_w = 30000 \text{ g/mol}$, 采购于上海瀚丰化工科技有限公司.乙酸甲酯 MA (AR)、正辛烷 (AR)、无水甲醇 (AR)、金丝 (Au) (纯度 99.99%),均来自国药集团化学有限公司; FTO 玻璃 (2.5 cm × 2.5 cm)用 1.5% Hellmanex 清洗液水溶液、超纯水 (三次)和乙醇分别超声清 洗 10 min, 然后用 N₂流干燥.在沉积 TiO₂之前, 所有衬底进一步用 UV-臭氧清洗 15 min.根据之 前的报道^[22],通过化学浴沉积在清洁的 FTO 衬底 上涂覆一层致密的 TiO₂层.将 FTO/ TiO₂基底 在 200 ℃ 空气中退火 40 min 待用.

2.2 CsPbBr₃ 纳晶的合成

CsPbBr₃钙钛矿纳晶合成过程为:将 0.8 g碳酸铯和 3 mL 油酸加入圆底三口烧瓶中,倒入 30 mL 十八烯 (ODE),将烧瓶放于加热套,抽真

空 30 min 去除空气和水后, 通入氩气保护, 在 120 ℃ 条件下加热反应 30 min, 得到透明的 Cs⁺油酸盐 混合溶液.与此同时, 将 PbBr₂ (0.69 g) 和 ODE (60 mL) 加入另一个三口圆底烧瓶中搅拌, 并将温 度升至 120 ℃ 抽真空去除空气和水, 结束后换成 氩气保护, 分别加入 5 mL OLA 和 5 mL OA, 再 抽真空去空气和水, 当 PbBr₂ 完全溶解溶液变透 明后, 温度升高至反应温度 160 ℃.最后迅速注入 之前合成好的 Cs⁺油酸盐, 反应 30 s 后, 迅速将反 应混合物放在冰浴中冷却, 得到的最终沉淀物即 为 CsPbBr₃ 纳晶, 产物经乙酸甲酯 (MA) 去除部 分纳晶表面支链后离心清洗, 最终的纳晶溶解在 5 mL 正辛烷中形成墨汁, 用于旋涂薄膜所用的前 驱液, 浓度约 50 mg/mL, 产物通过旋蒸的方式得 到颗粒物可用于样品表征.

2.3 CsPbBr₃钙钛矿太阳电池的制备

在大气环境中,首先取 60 μL 的 50 mg/mL CsPbBr₃ 纳晶墨汁前驱液滴到 FTO 玻璃/TiO₂ 表 面, 2500 rad/min 转速旋涂 30 s, 过程中 (旋涂开 始 5 s 后) 将 300 μL 乙酸甲酯滴到薄膜表面, 旋涂 停止后,分别将 100 μL Pb(SCN)₂ 乙酸甲酯饱和 溶液和 100 μL NH₄Br 乙酸甲酯 (MA) 饱和溶液 滴到薄膜表面,静置 30 s 后,以 3000 rad/min 再 旋涂 30 s. 然后重复上述过程 5 次,可形成 500 nm 的薄膜,氮气吹干后在 70 ℃ 加热台上烘干 3 min 后,将配置好的 PTAA 溶液在钙钛矿表面以 5000 rad/min 的转速下旋转 30 s,形成大概 100 nm 厚的薄膜,放置在干燥器中 10 h,最后,用掩膜版 热蒸发厚度为 80 nm 的 Au 作为阳极, 电池面积 为 0.1 cm².

CsPbBr₃纳晶墨汁及薄膜的荧光照片采用 325 nm 紫外灯激发,频域荧光光谱及时域寿命检 测采用脉冲激光器 (PicoQuant Fluo Time 300)激 发,波长选用 375 nm. X 射线衍射仪 (D8-Advance, Bruker)和紫外可见分光光度计 (JASCO V-570) 分别对样品进行晶相和吸收光谱分析.采用场发射 扫描电子显微镜 (FE-SEM, SU-8020, Hitachi),透 射电子显微镜 (JEM-2100 JEOLTEM)对薄膜表 面形貌进行表征.太阳能电池的 *J-V*电学特性测试 时,光源采用太阳模拟器 (Pharos Technology) 稳 态模拟器,辐照强度为 100 mW/cm²,数据源表 (Keithley 2400) 得到 *J-V*特性曲线.利用 EQE 测

衍射角附近均出现钙钛矿的(001),(101),(200),

(201), (211) 和 (220) 的特征峰^[26,27], 与 CsPbBr₃ 晶体 XRD 标准谱比对, 确定 CsPbBr₃ 纳晶为立方

相钙钛矿结构.采用透射电子显微镜表征纳米颗粒的形貌及尺寸,如图 1(b) 所示,纳晶呈立方体结构,颗粒均匀分布,大小约 15 nm. 扫描电子显微

镜对 CsPbBr₃ 纳晶薄膜表面进行观测, 从图 1(c)

可以看出, 基于 CsPbBr₃ 纳晶墨汁旋涂所得薄膜

由纳晶密堆积而成,薄膜表面平整,无裂痕,颗粒

大小均匀. CsPbBr3 纳晶薄膜经 Pb(SCN)2 与 NH4Br

的 MA 饱和溶液处理后, 如图 1(d) 所示, 所得薄

试系统 (QTest Station 2000 ADI) 通过与已知入 射单色光子-电子转化效率 (IPCE) 的标准硅探测 器进行比较,得出器件的 EQE 值,所用的氙灯光 源功率为 300 W.

3 结果与讨论

3.1 CsPbBr₃纳晶及其薄膜的性质

采用 X 射线衍射 (XRD) 技术表征热注入法制备的 CsPbBr₃ 纳晶粉末的晶相, 如图 1(a) 所示, 在 15.34°, 21.77°, 30.83°, 34.44°, 38.12°和 44.03°

35 (a)(200)(101)30 (211)Intensity/arb. units 25(200)2015 10 10 202530 3540 451550 $2\theta/(^{\circ})$ (c)Sunlight UV 325 nm 100 nm CsPbBr₃ NCs dispersed in - CsPbBr₃ NCs dispersed in hexane (f) hexane solution CsPbBr₃ NC film CsPbBr₃ NC film CsPbBr₃ PC film formed from CsPbBr₃ PC film formed from its NC film units Intensity/arb. units its NC film Intensity/arb. 300 350400450500550600 450475525550575600 500Wavelength/nm Wavelength/nm

图 1 CsPbBr₃纳晶 (a) X 射线衍射图; (b) TEM 图; (c) SEM 图; (d) 多晶薄膜的 SEM 图,内插照片分别为纳晶墨汁、纳晶及 多晶薄膜在自然光和紫外灯照射下荧光; (e), (f) CsPbBr₃纳晶墨汁、纳米晶薄膜和多晶薄膜的 (e) 紫外-可见吸收光谱和 (f) 光致 发光光谱图, NC 代表纳米晶

Fig. 1. CsPbBr₃ nanocrystalline: (a) XRD spectrum, (b) TEM image; (c) SEM image; (d) SEM image of polycrystalline film, the interpolated photos show the fluorescence emission of nanocrystalline ink, nanocrystalline and polycrystalline films under natural light and ultraviolet lamps, respectively; (e) UV-VIS absorption spectra and (f) photoluminescence spectra of CsPbBr₃ nanocrystalline ink, nanocrystalline film and polycrystalline film, NC in the figures represents nanocrystalline. 膜由多晶颗粒密堆积,晶粒大小在 300 nm 左右. 热注入法所得 CsPbBr₃ 纳晶表面被有机配体饱和, 易分散在辛烷、环己烷等有机溶剂中,图1(b)内插 照片为 CsPbBr₃ 纳晶溶于辛烷所形成的墨汁. 如 图 1(b)—(d) 内插照片所示, 墨汁样品和薄膜在自 然光照射下呈黄棕色,但在紫外灯激发下都有明显 的绿色荧光发射.采用 375 nm 脉冲激光分别激发 CsPbBr₃纳晶墨汁、纳晶及多晶薄膜时,图1(e) 显示三者在 530 nm 附近均表现出强烈的光致发 光效应. 图 1(f) 吸收谱图显示 3 种样品在波长范围 300-530 nm 之间都有强烈的吸收特性. 从图 1(e), (f) 可以清晰看到, 从纳晶墨汁到纳晶薄膜再到多 晶薄膜, 三者的吸收边和荧光峰出现明显的红移现 象,这是由于 CsPbBr3 晶体颗粒逐渐变大,带隙逐 渐变小,吸收边也逐渐变宽. CsPbBr₃多晶薄膜吸 收边在 538 nm, 计算可得光学带隙为 2.3 eV, 与 相应的 PL 峰对应.

3.2 饱和溶液处理对 CsPbBr₃ 钙钛矿太阳 电池性能的影响

图 2(a)—(d) 为 CsPbBr₃ 钙钛矿太阳电池截面 图, 其中 CsPbBr₃ 纳晶/多晶薄膜 (500 nm)、PTAA 薄膜 (100 nm)、TiO₂ 薄膜 (70 nm)、FTO 分别作 为 CsPbBr₃ 钙钛矿太阳电池的吸收层、空穴传输 材料、电子传输材料和透明导电层.如图 2 所示, 经 Pb(SCN)₂ 和 NH₄Br 的乙酸甲酯 (MA) 饱和溶 液处理后,吸收层从钙钛矿纳晶薄膜演变为较大晶 粒多晶薄膜,最终形成的大晶粒可以垂直贯穿整 个薄膜,有利于光生电荷的分离与传输.图 2(e)—(h) 分别对应经饱和溶液处理 0 s, 5 s, 15 s, 30 s 后, CsPbBr₃薄膜从纳晶到多晶薄膜表面形貌的演变 过程.饱和溶液处理 5 s 后,纳晶薄膜开始团聚,随 着时间加长,CsPbBr₃纳晶表面上越来越多的油酸 和油胺配体被洗掉,相邻纳晶表面悬挂键相互作用 再次结晶生长,在此过程中溶液中的 Pb²⁺,Br³⁺, SCN⁻,NH⁴₄离子也可以饱和部分悬挂键,最终形 成较大的晶体颗粒.

为了研究饱和溶液处理对 CsPbBr₃ 钙钛矿太 阳电池光伏性能的影响,同时验证制备工艺的可重 复性, CsPbBr₃纳晶薄膜, 饱和溶液处理 15 s 和 30 s 所得 CsPbBr3 多晶薄膜分别作为吸收层制备 20个太阳电池器件进行比较,3种器件光伏性能及 电学参数的最大值和平均值在表1列出,统计分布 见补充材料图 S1 (online). 结果显示, 3 种器件光 电转换效率的平均值分别为 5.23%, 6.80% 和 8.35%, 效率的标准偏差分别为 0.215, 0.180 和 0.118, 表 明该制备工艺所得器件的重复性较好. 图 3(a), (b) 分别为3种器件效率最大值所对应的伏安(J-V) 特性曲线、EQE 图. 图 3(a) 可见基于 CsPbBr₃纳 晶薄膜制备的太阳电池 PCE 最大值为 5.36%, 开路电压 $(V_{\rm OC})$ 为 1.49 V, 短路电流密度 $(J_{\rm SC})$ 为 5.62 mA/cm², 填充因子 (FF) 为 64.1%. 虽然相 较 CsPbBr₃多晶薄膜, 纳晶薄膜的带隙较大, 但开 路电压却较低,这是由于纳米晶体表面较多的油酸 和油胺配体,缺陷较多,致使电池串联电阻较大,

图 2 CsPbBr₃钙钛矿太阳电池的截面图 (a)纳晶薄膜; (b)纳晶团聚结晶; (c), (d)纳晶薄膜经饱和溶液分别处理 15 s 和 30 s 所得的多晶薄膜.钙钛矿薄膜表面形貌 (e)纳晶薄膜; (f)纳晶团聚薄膜; (g), (h)分别对应图 (c), (d)多晶薄膜

Fig. 2. Cross-sectional SEM images of CsPbBr₃ perovskite solar cells: (a) Nanocrystalline; (b) nanocrystalline agglomerative crystals; (c), (d) polycrystalline films obtained by treating nanocrystalline films with saturated solution for 15 s and 30 s, respectively. Morphology of perovskite films: (e) Nanocrystalline film; (f) nanocrystalline agglomerative film; (g), (h) corresponding to panels (c), (d) polycrystalline films, respectively.

Table 1. Photovoltaic properties and electrical parameters of solar cells prepared by three thin films.							
Device		$V_{\rm OC}/{ m V}$	$J_{ m SC}/({ m mA}{\cdot}{ m cm}^{-2})$	$\mathrm{FF}/\%$	PCE/%	$R_{ m s}/\Omega$	
NO Shu	最大值	1.49	5.62	64.1	5.36	261.4	
NC nim	平均值	1.46	5.61	63.8	5.23	_	
15 - DC flag	最大值	1.47	6.34	74.2	6.92	71.7	
15 s PC nim	平均值	1.46	6.34	73.5	6.80	_	
20 a DC film	最大值	1.55	6.96	78.1	8.43	65.9	
50 s PC nim	平均值	1.54	6.94	77.9	8.35	_	

表 1 3 种薄膜所制备太阳能电池光伏性能及电学参数 Photovoltaic properties and electrical parameters of solar cells prepared by three thin fill

图 3 CsPbBr₃钙钛矿太阳能电池的 (a) *J-V*和 (b) EQE 曲线, 图中 NC film 表示纳晶薄膜器件, 15 s PC film 和 30 s PC film 分 别代表纳晶薄膜经饱和溶液分别处理 15 s 和 30 s 所得的多晶薄膜器件

Fig. 3. (a) J-V curves and (b) EQE curve of CsPbBr₃ perovskite solar cells, where NC represents nanocrystalline film, 15 s PC film and 30 s PC film represent devices of polycrystalline film obtained by nanocrystalline film treated with saturated solution for 15 s and 30 s, respectively.

如表 1 所示, 电阻值为 261.4 Ω , 器件中载流子复 合严重,这也导致电池的填充因子较小.经饱和溶 液处理 15 s 后,器件的 J_{SC} 和 FF 参数均有明显的 提升, 效率达到 6.92%, 说明纳晶薄膜变为多晶薄 膜使得电池的串联电阻变小, 电阻值降低为 71.7 Ω, 但由于薄膜的晶界较多,开路电压降低.当处理时 间增长为 30 s 时,纳米晶体生长为均匀致密、晶粒 尺寸大、缺陷密度低的多晶颗粒, 大晶粒可以垂直 贯穿整个薄膜,使钙钛矿中产生的载流子可以被有 效的分离和收集,器件的各个参数均有明显的 提升, V_{OC} 达到 1.55 V, 填充因子达到 78.%, J_{SC} 增 大为 6.96 mA/cm², 优化后最终效率高达 8.43%. CsPbBr₃纳米晶体的表面能大,在乙酸甲酯处理过 程中,由于纳米晶表面络合剂(稳定剂)油酸和油 胺的减少,就会出现彼此相结合,然后相互融合以 求表面能降低,从而形成大的颗粒^[28].当乙酸甲酯 的处理时间超出 40 s 后, 纳米晶体失去表面有机 支链的保护,开始溶解,溶解产物经旋涂后被清洗 掉,导致薄膜出现空洞和间隙见补充材料图 S2 (online). 此外, 薄膜的晶相中出现杂相, 在 11.89° 衍射角出现了新的衍射峰,该衍射峰与 CsPbBr_x (SCN)_{3-x}在此处的衍射峰对应^[29],说明随着处理 时间的增长,更多的 SCN-取代或者填补了 Br-离 子或者缺陷空位,导致 CsPbBr_x(SCN)_{3-x}在此处的 衍射峰强度逐渐增大,见图 S3 (online).可见处理 时间对薄膜溶解再结晶及薄膜钝化的决定性作用, 适量的 SCN-可以起到钝化缺陷的作用.为了分析 Pb(SCN)₂和 NH₄Br 的钝化效果,分别采用二者的 乙酸甲酯饱和溶液单独处理 CsPbBr₃纳晶薄膜 30 s,所得器件的光伏性能与二者共同处理多得器 件相比较,结果见图 S4 (online),Pb(SCN)₂和 NH₄Br 分别单独钝化所制备器件的最佳效率分别为 7.96%和7.24%,进一步说明 SCN-较强的钝化作用.

图 3(b) 为 3 种器件 EQE 曲线和积分所得的 电流密度, 积分电流与 *J-V*中短路电流密度 *J*_{SC} 结 果一致. CsPbBr₃ 纳米薄膜表面缺陷多, 其表面油 酸油胺有机支链会阻碍载流子的传导, 器件在 300—520 nm 范围内 EQE 值均低于 70%. 纳晶器 件在短波区 300—450 nm 波长范围 EQE 值较长 波区低, 主要原因是短波区光子被吸收层吸收后, 一部分转化为电子空穴对,导出后产生光电流,还 有部分会以光的形式辐射损失.相较纳米薄膜器 件,多晶薄膜器件的 EQE 值在 300—520 nm 波长 范围内均有提升明显,主要是由于薄膜晶界明显变 少,同时由于 Pb²⁺, Br³⁺, SCN⁻, NH⁴₄离子对晶体 缺陷的钝化作用,使得钙钛矿材料可以产生足够的 载流子,并且可以有效导出.由于 CsPbBr₃多晶薄 膜器件在短波区光辐射损失较小,因此 EQE 值在 300—450 nm 范围内提升较明显.

4 CsPbBr₃钙钛矿太阳电池性能提高的机理分析

为进一步分析上述 3 种薄膜 (纳米晶、经饱和 溶液处理的 15 s 和 30 s 所得多晶薄膜) 吸收层材 料提高器件光伏性能的机理, 分别对 3 种薄膜做 了 XRD, PL, TRPL, 单电子器件暗态 *I-V*测试. 图 4(a) 为原始 CsPbBr₃ 纳晶薄膜和经饱和溶液处 理 (15 s 和 30 s) 后的产物的 X 射线衍射 (XRD) 图. 与原始 CsPbBr₃ 纳晶膜相比,处理后样品的 XRD 衍射峰强度变大、半峰宽减小,如补充材料 图 S5 内插图 (online) 所示, 15.34°衍射角对应的 (001) 晶面特征峰,纳米薄膜半峰宽为0.44 nm, 15 s 和 30 s 处理所得多晶薄膜半峰宽为分别为 0.32 nm 和 0.29 nm,说明晶粒尺寸增大,结晶度提高.对FTO/ TiO₂ 上制备的 3 种薄膜样品用 375 nm 激光测试 稳态荧光,结果如图 4(b) 所示. CsPbBr₃ 多晶薄膜 钙钛矿与纳晶薄膜相比,荧光峰发生了很明显的红 移,荧光有非常明显的猝灭作用,荧光强度下降 90% 以上,说明钙钛矿中产生的载流子在复合发光 之前被快速导出.相应的时间分辨荧光 (TRPL) 测 试结果如图 4(c) 所示.利用指数方程进行拟合,平 均复合寿命 (τ_{ave}) 采用 (1) 式计算^[30]:

$$\tau_{\rm ave} = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i},\tag{1}$$

图 4 (a) CsPbBr₃纳晶及经饱和溶液处理 15 s 和 30 s 所得多晶薄膜的 XRD 谱; (b) 薄膜正面照射所得 PL 光谱 (激光激发波长 为 375 nm); (c) 时间分辨荧光光谱图; (d) 单电子器件的暗态 *LV* 曲线 (内插图单电子器件的结构)

Fig. 4. (a) XRD patterns of CsPbBr₃ nanocrystalline and polycrystalline films obtained by treating it with saturated solution for 15 s and 30 s; (b) PL spectrum obtained by positive irradiation of the films (laser excitation wavelength is 375 nm); (c) time-resolved fluorescence spectrum; (d) dark state $I \cdot V$ curves of single electron device (internal illustration of the structure of single electron device).

Table 2.	Fitting parameters of time-resolved photoluminescence of three thin films.							
器件类型	平均寿命 $ au_{\rm ave}$ /ns	寿命 $ au_1$ /ns	权重 A_1	寿命 $ au_2$ / ns	权重 A_2			
$\rm FTO/TiO_2/NC~film$	14.60	19.71	261945	9.73	556783			
$\rm FTO/TiO_2/15~s~PC$ film	4.36	4.36	875893	4.36	875893			
$FTO/TiO_2/30$ s PC film	2.13	2.13	3112950	2.13	3112950			

表 2 3 种薄膜薄膜的时间分辨荧光的拟合参数

其中, τ_i 为衰减分量的时间常数, A_i 为衰减幅度, 拟合参数列于表 2. 从表 2 可以看出, 与纳米晶样 品平均荧光寿命 (14.60 ns) 相比, 多晶薄膜的 τ_{ave} 明显降低, 证实了 CsPbBr₃ 多晶钙钛矿的缺陷态 密度较小. 经饱和溶液处理 15 s 和 30 s 所得的多 晶薄膜的 τ_{ave} 从 4.36 s 降低 2.13 s, 说明纳晶薄膜 经过足够长时间的重新结晶可以使得多晶薄膜颗 粒变大, 晶界变少, 同时 Pb²⁺, Br³⁺, SCN⁻, NH₄⁺ 离子可以对晶体缺陷的充分钝化反应.

缺陷严重制约电池性能的提高, 钝化、材料提 纯、减少晶界等手段可以降低半导体材料的缺陷. 通过测试 3 种钙钛矿单电子器件暗态电流-电压 (*I-V*) 特性, 如图 4(d) 所示, 通过 (2) 式计算电子 缺陷态密度 n_t^[31]:

$$n_{\rm t} = \frac{2\varepsilon\varepsilon_0 V_{\rm TFL}}{eL^2},\tag{2}$$

式中, e 为元电荷电量 1.6×10-19 C, L 为钙钛矿薄 膜的厚度 (500 nm), ε_0 为真空介电常数 8.85× 10^{-12} F/m, ε 为 CsPbBr₃ 的相对介电常数 (16.46^[32]), n₄ 为缺陷态密度. 偏置电压较低时, I 与 V呈线性 关系, 表示器件为欧姆接触, 当偏置电压大于拐点 电压时,该拐点电压为陷阱填充极限电压(V_{TFL}), 陷阱状态被完全填充,在该陷阱填充区域,随 V增 大, I呈非线性快速增长. 3种钙钛矿单电子器件 V_{TFL}在暗态 I-V图中可直接读出,结果标注在 图 4(d) 中. 计算得出纳晶薄膜器件电子缺陷态密 度为 9.3×10¹⁴ cm⁻³, 多晶薄膜的电子缺陷态密度 降低到 7.1×10¹⁴ 和 6.4×10¹⁴ cm⁻³. 在相对湿度 50% 的环境空气条件下,测试了最佳器件的长期稳定 性,基于活性层纯无机 CsPbBr₃钙钛矿材料的高 稳定性,如补充材料图 S6 (online) 所示,器件在 240 h 后仍保持初始 PCE 的 98.53%. 综合以上结 果表明, CsPbBr3 纳晶薄膜经 Pb(SCN)2 与 NH4Br 的 MA 饱和溶液处理所得的 CsPbBr₃ 薄膜, 可以 通过重新结晶和钝化降低钙钛矿表面的电子缺陷, 使缺陷态密度减小, 也是器件的光伏性能各个参数 均有明显提升的原因.

5 结 论

本文基于 CsPbBr₃ 纳晶薄膜, 在大气环境下, 经 Pb(SCN)₂ 与 NH₄Br 乙酸甲酯 (MA) 饱和溶液 低温处理制备了 CsPbBr₃ 多晶薄膜. 饱和溶液处 理后, 纳米晶体生长为均匀致密、晶粒尺寸大、缺 陷密度低的多晶颗粒, 同时 Pb(SCN)₂ 与 NH₄Br 还 可以有效地钝化钙钛矿薄膜中的缺陷, 优化后 CsPbBr₃ 太阳电池最终效率达到 8.43%. 整个过程 中, 既无高温处理, 也无高沸点毒性溶剂的使用, 实验和分析结果表明, 开发的可低温溶液加工的 CsPbBr₃ 纳米晶薄膜制备多晶薄膜的方法, 可为制 备低成本和高效率的柔性钙钛矿太阳能电池提供 指导.

感谢陕西师范大学材料科学与工程学院冯江山副研究 员的讨论.

参考文献

- Bai W H, Xuan T T, Zhao H Y, Dong H R, Xie R J 2023 Adv. Mater. 35 2302283
- [2] Zhang J X, Zhang G Z, Su P Y, Huang R, Lin J G, Wang W R, Pan Z X, Rao H S 2023 Angew. Chem. Int. Ed. 62 e202303486
- [3] Xu T F, Xiang W C, Yang J J, J. Kubicki D, Tress W G, Chen T, Fang Z M, Liu Y L, Liu S Z 2023 Adv. Mater. 35 2303346
- [4] Zhang X S, Wang Q, Jin Z W, Zhang J R, Liu S Z 2017 Nanoscale 9 6278
- [5] Chen Y, Li F Q 2024 Acta Energiae Solaris Sin. 45 123 (in Chinese) [陈莹, 李富强 2024 太阳能学报 45 123]
- [6] Wang Y H, Zheng W, Ji H, Shen D P, Zhang Y H, Han Y K, Gao J W, Qiang L, Liu H, Han L, Zhang Y 2021 Adv. Mater. Interfaces 8 2100279
- [7] Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418
- [8] Feng S N, Qin Q L, Han X P, Zhang C F, Wang X Y, Yu T, Xiao M 2022 Adv. Mater. 34 2106278
- [9] Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Wang Q, Liu S Z 2018 ACS Appl. Mater. Interfaces 10 7145
- [10] Lin H, Wei Q, Ng KW, Dong J Y, Li J L, Liu W W, Yan S S, Chen S, Xing G C, Tang X S, Tang Z K, Wang S P 2021 Small 17 2101359
- [11] Sun J Y, Zhao X, Si H N, Gao F F, Zhao B, Ouyang T, Li Q,

Liao Q L, Zhang Y 2023 Adv. Opt. Mater. 11 2202877

- [12] Yang M L, Zou L, Cheng J J, Wang J M, Jiang Y F, Hao H Y, Xing J, Liu H, Fan Z J, Dong J J 2023 Acta Phys. Sin. 72 168101 (in Chinese) [羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝 会颖, 邢杰, 刘昊, 樊振军, 董敬敬 2023 物理学报 72 168101]
- [13] Xie G X, Li Q L, Lu X C, Li L T 2024 11 3365
- [14] Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989
- [15] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T 2016 J. Phys. Chem. Lett. 7 746
- [16] Zhang S J, Guo R, Zeng H P, Zhao Y, Liu X Y, You S, Li M, Luo L, Lira-Cantu M, Li L, Liu F X, Zheng X, Liao G L, Li X 2022 Energy Environ. Sci. 15 244
- [17] Li M H, Jiao B X, Peng Y C, Zhou J J, Tan L G, Ren N Y, Ye Y R, Liu Y, Yang Y, Chen Y, Ding L M, Yi C Y 2024 *Adv. Mater.* **36** 2406532
- [18] Hailegnaw B, Demchyshyn S, Putz C, Lehner L E, Mayr F, Schiller D, Pruckner R, Cobet M, Ziss D, Krieger T M, Rastelli A, Sariciftci N S, Scharber M C, Kaltenbrunner M 2024 Nat. Energy 9 677
- [19] Chin X Y, Turkay D, Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M, Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59
- [20] Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557
- [21] Doolin A J, Charles R G, De Castro C S P, Garcia Rodriguez

R, Vincent Péan E, Rahul P, Dunlop T, Charbonneau C, Watson T, Lloyd Davies M 2021 *Green Chem.* **23** 2471

- [22] Zhang X S, Cao Y, Feng J S, Liu S Z 2024 Solar RRL 8 20230087
- [23] Shi W B, Zhang X, Chen H S, Matras-Postolek K, Yang P 2022 J. Mater. Chem. C. 10 13117
- [24] Ma J J, Qin M C, Li P W, Han L Y, Zhang Y Q, Song Y L 2022 Energy Environ. Sci. 15 413
- [25] Jia D L, Chen J X, Mei X Y, Fan W T, Luo S, Yu M, Liu J H, Zhang X L 2021 Energy Environ. Sci. 14 4599
- [26] Liu H, Worku M, Mondal A, Blessed Shonde T, Chaaban M, Ben-Akacha A, Lee S J, Gonzalez F, Olasupo O, Lin X S, Raaj Vellore Winfred J S, Xin Y, Lochner E, Ma B W 2023 Adv. Energy Mater. 13 2201605
- [27] Zhao C, Li Y K, Ye W G, Shen X F, Wen Z C, Yuan X Y, Cao Y G, Ma C Y 2022 Adv. Opt. Mater. 10 2102200
- [28] Christopher B M 2009 Science 324 1276
- [29] Liao C H, Chen C H, Bing J M, Bailey C, Lin Y T, Pandit T M, Granados L, Zheng J H, Tang S, Lin B H, Yen H W, McCamey Dane R, Kennedy Brendan J, Chueh C C, Ho-Baillie Anita W Y 2022 Adv. Mater. 34 2104782
- [30] Yan N, Cao Y, Jin Z W, Liu Y C, Liu S Z, Fang Z M, Feng J S 2024 Adv. Mater. 36 2403682
- [31] Wang H, Zheng D X, Jiang X, Cao Y X, Du M Y, Wang K, Liu S Z, Zhang C F 2024 Acta Phys. Sin. 73 078401 (in Chinese) [王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福 2024 物理学报 73 078401]
- [32] Song J Z, Cui Q Z, Li J H, Xu J Y, Wang Y, Xu L M, Xue J, Dong Y H, Tian T, Sun H D, Zeng H B 2017 Adv. Opt. Mater. 5 1700157

Perovskite solar cells prepared by processing CsPbBr₃ nanocrystalline films in low temperature solution^{*}

Zhang Xi-Sheng^{1)2)†} Yan Chun-Yu¹⁾²⁾ Hu Li-Na¹⁾²⁾

Wang Jing-Zhou $^{1(2)}$ Yao Chen-Zhong $^{2)}$

1) (Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation Center, Yuncheng University, Yuncheng 044000, China)

2) (Shanxi Province Optoelectronic Information Science and Technology Laboratory, Yuncheng University, Yuncheng 044000, China)

(Received 18 August 2024; revised manuscript received 30 September 2024)

Abstract

In the process of preparing perovskite polycrystalline films by solution method, toxic solvents are used, and heat treatment is still the main way to induce perovskite grain growth, which not only increases energy consumption, but also hinders the development of flexible solar cells. In order to avoid the use of toxic solvents and high-temperature process, CsPbBr₃ nanocrystal films are treated with low temperature solution to obtain corresponding polycrystalline thin films, which are applied to solar cells. Firstly, CsPbBr₃ nanocrystalline (nanocrystalline NC) ink precursor is prepared by hot injection method, and nanocrystalline film is prepared by spinning coating method. In atmospheric environment, CsPbBr₃ nanocrystalline films are prepared by saturated solution of Pb(SCN)₂ and NH₄Br methyl acetate. Using the CsPbBr₃ nanocrystalline film as an absorbing layer, the perovskite solar cell is prepared and the performance of the cell is effectively improved, and the efficiency of the cell reaches 8.43%. The results show that the saturated solution of Pb(SCN)₂ and NH₄Br methyl acetate (MA) can not only continue the nanocrystalline crystallization, but also effectively passivate the defects in the perovskite films. In the process of preparing CsPbBr₃ polycrystalline films, neither high temperature treatment nor the high boiling point toxic solvent is used, which is suitable for the preparation rigid and flexible solar cells.

The inorganic halide perovskite nanocrystals are developed and used as "ink" to fabricate fully airprocessed, electrically stable solar cells. Although the prepared film is composed of mosaic nanocrystals capped with a large number of organic ligands and surface traps, this method provides a new approach for single-step. large-scale fabrication of inorganic perovskite devices. Moreover, the flexible control of the composition provides a platform material for uncovering the optimal conditions for optoelectronics and photonics.

Keywords: CsPbBr₃, nanocrystalline, polycrystalline, perovskite solar cells

PACS: 81.05.-t, 84.60.Jt, 88.40.hj

DOI: 10.7498/aps.73.20241152

CSTR: 32037.14.aps.73.20241152

^{*} Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202303021211189) and the Yuncheng University Doctoral Research Project, China (Grant No. YQ2023068).

[†] Corresponding author. E-mail: zhangxisheng@ycu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池

张喜生 晏春愉 胡李纳 王景州 姚陈忠

Perovskite solar cells prepared by processing CsPbBr₃ nanocrystalline films in low temperature solution

Zhang Xi-Sheng Yan Chun-Yu Hu Li-Na Wang Jing-Zhou Yao Chen-Zhong 引用信息 Citation: Acta Physica Sinica, 73, 228101 (2024) DOI: 10.7498/aps.73.20241152 在线阅读 View online: https://doi.org/10.7498/aps.73.20241152 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能

Improvement of performance of CsPbBr₃ perovskite solar cells by polyvinylidene fluoride additive

物理学报. 2023, 72(16): 168101 https://doi.org/10.7498/aps.72.20230636

采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池

Efficient and stable carbon-based CsPbBr₃ solar cells added with PEABr additive

物理学报. 2022, 71(2): 028101 https://doi.org/10.7498/aps.71.20211344

锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用

Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells 物理学报. 2022, 71(21): 217801 https://doi.org/10.7498/aps.71.20221222

反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用 Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells 物理学报. 2023, 72(17): 178401 https://doi.org/10.7498/aps.72.20230693

肖特基钙钛矿太阳电池结构设计与优化

Simulation and architectural design for Schottky structure perovskite solar cells 物理学报. 2020, 69(5): 057901 https://doi.org/10.7498/aps.69.20191891

钙钛矿太阳电池中的缓冲层研究进展

Progress in perovskite solar cells based on different buffer layer materials 物理学报. 2020, 69(13): 138401 https://doi.org/10.7498/aps.69.20200543