数据论文

OH+离子 14 个 Λ-S 态和 27 个 Ω 态 光谱性质的理论研究*

邢伟1)† 李胜周1) 张昉1) 孙金锋2) 李文涛3) 朱遵略2)

1) (信阳师范大学物理电子工程学院, 信阳 464000)

2) (河南师范大学物理学院, 新乡 453000)

3) (潍坊科技学院, 寿光 262700)

(2024年9月15日收到; 2024年10月11日收到修改稿)

在选择合适的活性空间和基组、考虑各种物理效应 (标量相对论效应、核-价电子关联效应、完备基组极限和自旋-轨道耦合效应) 的基础上,本文利用优化的 icMRCI+Q方法获得了 X³Σ⁻/a¹Δ/b¹Σ⁺/A³Π/c¹Π(OH⁺) ← X²Π(OH) 精确的电离能、OH⁺离子 14 个 Λ-S 态和相应的 27 个 Ω 态势能曲线.利用全电子 icMRCI/cc-pCV5Z + SOC 理论获得了 6 个 Ω态 [X³Σ⁻₀₊, X³Σ⁻₁, (1)2, (2)2, (2)1 和 (1)0⁻] 之间的跃迁偶极距.并且本文获得的电离能、光谱和振动-转动跃迁数据与现有的测量值符合得非常好.研究发现: 1) (1)2(v' = 0—6, J' = 2, +) 的辐射寿命随着 v'的增大而逐渐缩短,辐射宽度随着 v'的增大而逐渐增宽; (1)2(v' = 0—6, J' = 2, +) 的辐射寿命随着 v'的增大而逐渐缩短,辐射宽度随着 v'的增大而逐渐增宽; (1)2(v' = 0—6, J' = 2, +) ~ X³Σ⁻₁ (v'', J'' = 1, -) 自发辐射较弱. 2)(2)2^{第一势哄} (v' = 0—2, J' = 2, +), (2)1(v' = 0—9, J' = 1, +) 和 (1)0⁻(v' = 0—8, J' = 0, +) 的辐射寿命都是随着 v'的增大而逐渐增长,辐射宽度都随着 v'的增大而逐渐变窄; (2)2^{第一势哄} (v' = 0—2, J' = 2, +), (2)1(v' = 0—9, J' = 1, -) 和 (1)0⁻(v' = 0—8, J' = 0, +) 不3³Σ⁻₁ (v'', J'' = 1, -) 的自发辐射很强. 3) (2)2^{第一势哄} (v' = 0—2, +), (2)1(v' = 0—9, +) 和 (1)0⁻(v' = 0—8, +) 的辐射寿命都是随着 J的增大而逐渐增长.本文数据集可在科学数据银行数据库 https://www.doi.org/10.57760/sciencedb.j00213.00058 中访问获取 (数据集私有访问链接 https://www.scidb.cn/s/B7buIr).

关键词:势能曲线,自旋-轨道耦合,跃迁偶极矩,光谱和跃迁数据
 PACS: 31.50.Df, 31.15.aj, 95.30.Ky, 33.70.Ca
 CSTR: 32037.14.aps.73.20241301

DOI: 10.7498/aps.73.20241301

1 引 言

OH+是天体物理和星际化学中非常重要的离子之一^[1-6],天文学家们利用亚毫米波、红外和紫外 探测技术已在人马座 B2(M)^[1]、猎户座 KL^[2]、猎户 座棒状和山脊^[3]、蟹状星云超新星遗迹^[4]、行星状 星云^[5]、半透明和弥漫星际云^[6]等星云中发现了 它.另外,其在星际气相 H₂O 的形成中起着至关重 要的作用^[1-3],并且从高灵敏度大型天文望远镜的 谱线巡测中确认 OH+离子依赖于高质量的光谱数 据.因此, OH+精确的光谱数据是天体物理和化学 模型中的重要参数, 对研究恒星及原行星盘的诞生 具有重要意义.

自 1933 年 Rodebush 和 Wahl^[7] 首次在实验 室中观察到 OH+离子近紫外的 A³Π-X³Σ⁻(0, 0), (0, 1), (1, 0) 和 (1, 1) 带以来, 科学家们对 OH 的光 电离光谱^[8-13]、OH+离子的光解离^[14-16]、OH+离子

© 2024 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 61275132, 11274097, 12074328)、河南省自然科学基金 (批准号: 242300420263)、河南省高等学校重 点科研项目 (批准号: 21A140023, 25B140003) 和信阳师范学院南湖学者奖励计划青年项目资助的课题.

[†] 通信作者. E-mail: wei19820403@163.com

 $A^{3}\Pi(v'=0)$ 的辐射寿命 $\tau_{v'=0}$ ^[17,18]、OH+离子在亚 毫米波、红外、可见光和紫外区域[19-30]的光谱进行 了研究. 例如, Katsumata 和 Lloyd^[8] 报道了 OH 的光电子能谱,并且当电离能分别为 13.01 eV 和 15.20 eV 时, 产生 OH+的 X³Σ-和 a¹Δ 态. van Lonkhuyzen 和 Lange^[9]利用 OH 的紫外光电子能谱测 得 X³Σ⁻/a¹Δ/b¹Σ⁺/A³Π(OH⁺)←X²Π(OH) 的绝热 电离能, 并获得了 OH^+ 离子 $X^3\Sigma^-$, $a^1\Delta$, $b^1\Sigma^+$ 和 $A^3\Pi$ 态的光谱常数. Wiedmann 等^[10]利用转动分辨零 电子动能脉冲场电离光电子能谱测得 OH+(X³Σ[−])← OH(X²Π) 的绝热电离能. Cutler 等^[11]利用光电离 光谱获得 a¹Δ/b¹Σ⁺/A³Π/c¹Π(OH⁺)←X²Π(OH) 的 绝热电离能. Barr 等^[12]利用同步辐射的恒定离子 态 (CIS) 和光电子能谱 (PES), 研究了 H + NO₂ 反应产生的 OH 在 13.0—17.0 eV 光能区气相中的 光电离. Garcia 等^[13]利用双成像光电子--光离子符 合光谱技术研究了 OH 的光电子能谱, 精确测量 了 OH⁺(X³Σ⁻)←OH(X²Π) 的绝热电离能. Helm 等^[14] 利用光致碎片光谱技术研究了 OH+的光解作用, 并推断出 $X^{3}\Sigma$ -态的离解能 D_{0} 为 (40384±45) cm⁻¹. Levin 等^[15] 研究了 OH+离子在测试储存环上的 光解离光谱, 推导出 OH+在离解极限附近的准束 缚能级结构及其离解能 $D_0 = (40409 \pm 3) \text{ cm}^{-1}$.

Hechtfischer 等^[16] 测量了光子能量为 38100— 40900 cm⁻¹ 冷 OH+到 O + H+和 O+ + H 的近阈 值光解光谱,并获得 OH+的离解能 D₀ = (40253.8± 1.1) cm⁻¹. Curtis 和 Erman^[17] 利用静态气体多通道 技术获得了 OH+离子 A³ $\Pi(v'=0)$ 态的 $\tau_{v'=0}$ 为 (2.4±0.3) µs. Möhlmann 等^[18] 通过对 OH+离子 $A^{3}\Pi(v'=0)$ → $X^{3}\Sigma^{-}(v''=0)$ 发射强度的衰变曲线 进行分析,并采用延迟符合技术测量得到 A³П (v'=0)态的 $\tau_{v'=0}$ 为 (2.5 ± 0.3) µs. 对于 X³Σ⁻和 a¹Δ态的亚毫米波和红外光谱^[19-25], Bekooy 等^[19] 观察和分析了 OH+离子 $X^3\Sigma$ 态 v'' = 0, N'' =1←0 的转动跃迁. Gruebele 等^[20] 用激光磁共振光 谱法观察了 OH^+ 离子 $X^3\Sigma^-(v''=0)$ 态中 4 个最低 转动能级之间的远红外转动跃迁. Varberg 等^[21] 利用远红外激光磁共振光谱法观察了 OH+离子 $a^{1}\Delta(v'=0)$ 态 J'= 3←2 跃迁的相关光谱, 确定 了 $a^{1}\Delta(v'=0)$ 态的 B_{0} , D_{0} 和 J'=3←2 跃迁的频 率 v₀. Crofton 等^[22]利用差频系统的可调谐红外 辐射和速度调制检测技术, 观察了 OH+离子 X³Σ-态 v" = 1←0 基本振动-转动带,确定了转动常数

 $B_{v}(v''=0,1)$ 和离心畸变常数 $D_{v}(v''=0,1)$. Rehfuss 等^[23]观察了 OH+离子在高激发振动能级 下的红外光谱,并确定了 X³Σ-态的光谱常数和分 子常数. Markus 等^[24]利用噪声免疫腔增强光外差 速度调制光谱技术测量了 OH+离子 X³Σ⁻(0, 1) 带 中 30 个振动--转动跃迁, 对以前的研究 [19,20,23] 进行 了较大的修正. Müller 等^[25]利用 Rehfuss 等^[23]提 供的大量红外数据并结合 Bekoov 等^[19] 提供的无 场转动数据,确定了 X³Σ-态精确的 Dunham 常数, 并预测了 OH+在太赫兹区域的转动光谱,其光谱 常数收录于科隆分子光谱数据库. Rodgers 和 Sarre^[26] 利用快离子束激光光碎片光谱法观察了 541.19— 579.45 nm 范围内 c¹Π-b¹Σ⁺(3, 0) 带, 并获得了这 两个态的 B_v和 D_v. Rodgers 等^[27]利用高分辨率 激光光谱测量了 533.00—617.71 nm 范围内 c¹Ⅱ $b^{1}\Sigma^{+}(2,0), (3,0), (4,1), (5,1)$ 和 (6,1) 带以及 $c^{1}\Pi$ a¹Δ(2, 4), (3, 4) 和 (1, 3) 带, 获得了跃迁波数和 这3个态的 B_v和 D_v. 对于 A³Π-X³Σ-紫外发射光 谱, Merer 等^[28] 对其进行了详细的研究, 分析了 14个谱带(其中7个为新谱带),得到了这两个态 v= 0—2 能级的精确转动常数. Hodges 和 Bernath^[29] 利用傅里叶变换光谱对其进行了重新分析和改进. 最近, Hodges 等^[30]利用改进的光谱常数, 采用 Rvdberg-Klein-Rees 方法构建了 X³Σ-和 A³Π 态的 经验势能曲线,并利用从头算方法计算的跃迁和偶 极矩函数,确定了相关跃迁的振子强度和爱因斯 坦 A 系数. 上述实验^[8-30] 报道了所涉及辐射跃迁 的跃迁波数, X³Σ--X³Σ-跃迁的振子强度和爱因斯 坦 A 系数, $X^{3}\Sigma^{-}$, $a^{1}\Delta$, $A^{3}\Pi$, $b^{1}\Sigma^{+}$ 和 $c^{1}\Pi$ 态的部分 光谱常数和分子常数. 但未报道考虑自旋--轨道耦 合后 Ω 态的光谱常数, Ω 态之间跃迁的爱因斯坦 A 系数 $(A_{n',I' \rightarrow n'',I''})$ 、振动分支比 $(R_{n',I' \rightarrow n'',I''})$ 、加权 的吸收振子强度 $(gf_{v'J' \leftarrow v''J''})$ 、激发 Ω 态的辐 射寿命 $(\tau_{v', l'})$ 和辐射宽度 (Γ_r) 等振动-转动跃迁 数据.

与此同时, OH+离子的 X³Σ⁻, a¹Δ, A³Π, b¹Σ⁺和 c¹Π 光谱性质的理论研究也取得了进展. 1974年, Meyer^[31] 基于变分组态相互作用波函数 (PNO-CI) 和耦合电子对近似 (CEPA), 从头计算了 OH⁺ 离子的 X³Σ⁻态势能曲线, 并获得了 X³Σ⁻态的光谱 常数和 CEPA 极限 OH⁺(X³Σ⁻)←OH(X²Π) 的绝 热电离能. Hirst 和 Guest^[32] 利用多参考双激发组 态相互作用 (MRDCI) 方法计算了 OH⁺与 O(³P_g,

 ${}^{1}D_{\sigma}, {}^{1}S_{\sigma}) + H^{+}({}^{1}S_{\sigma}) \pi O^{+}({}^{4}S_{u}, {}^{2}D_{u}, {}^{2}P_{u}) + H({}^{2}S_{\sigma})$ 相关的 18 个态的势能曲线, 并获得了 X³Σ⁻, a¹Δ, A³Π, b¹Σ⁺和 c¹Π态的光谱常数. Saxon 和 Liu^[33] 对OH+的3个最低32-和3个最低3∏态的电子结 构进行了二阶组态相互作用 (SOCI) 计算, 并报 道了 X³Σ⁻和 A³Π态的光谱常数. Vivie 等^[34]利用 MRDCI 方法研究了 OH+的电子结构, 并报道了 X ${}^{3}\Sigma^{-}$, A³П和 b¹Σ+态的势能曲线. Merchán 等^[35] 对 OH+离子的 X³Σ-和 A³Π态的势能曲线以及它们之 间的跃迁偶极矩进行了限制活性空间自洽场 (RASSCF) 计算,并报道了这两个态的光谱常数和 A³П 态的 $\tau_{n'=0-2} = 2.41, 2.56$ 和 2.93 µs. Yarkony^[36] 利用组态相互作用 (CI) 方法计算了 OH+离子 $X^{3}\Sigma^{-}$, $a^{1}\Delta$, $A^{3}\Pi$, $b^{1}\Sigma^{+}$, $c^{1}\Pi$, $1^{5}\Sigma^{-}$ 和 $2^{3}\Sigma^{-}$ 态的势能曲 线,并报道了 X³Σ⁻, a¹Δ, A³Π, b¹Σ⁺和 c¹Π 态的光 谱常数. Li 和 Paldus^[37]利用基于酉群方法 (UGA) 的完全自旋适应单双耦合簇方法 (CCSD) 计算了 OH+离子 a¹∆ 态的势能曲线, 并获得了相应的光谱 常数. Spirko 等^[38]利用完全活性空间-多组态自洽 场 (CAS-MCSCF)-CI方法对 OH+的 X³Σ⁻, 2³Σ⁻ 和 3³Σ-态的电子结构进行了计算,获得了 X³Σ-态的 光谱常数. Gómez-Carrasco 等^[39]利用考虑 Davidson 修正 (+Q) 的内收缩 (ic) 多参考组态相互作 用 (MRCI) 方法获得了 OH+离子 7 个电子态 (X³Σ-, a¹Δ, A³Π, b¹Σ⁺, 1⁵Σ⁻, c¹Π和 2³Σ⁻) 完全基组极限时 的势能曲线和跃迁偶极矩, 并报道了 X³Σ⁻和 A³Π 态的光谱常数、A³II 态的 $\tau_{\nu'=0} = 2.524 \ \mu s.$ Xavier 等^[40]利用 MRCI+Q方法和 aug-cc-pVXZ (X = 5, 6) 获得了 OH+离子 X³Σ-态完全基组极限的势 能曲线,并报道了 X³Σ-态的光谱常数.

综上所述,实验和理论科学家们已对 OH+离 子的基态和部分激发态的电子结构和跃迁特性进 行了一些研究. 然而, 考虑自旋--轨道耦合效应后 Ω 态的光谱数据和 Ω 态之间的很多跃迁数据仍然未 知. 因此, 在选择合适的组态空间和基组、考虑各 种物理效应 (标量相对论效应、核--价电子关联效 应、基组截断误差和自旋--轨道耦合效应)的基础 上, 本文利用优化的 icMRCI+Q 和量子动力学等 理论框架, 系统深入地研究了 OH+前 5 个离解极 限对应的 14 个 Λ-S 态和相应的 27 个 Ω 态的电子 结构、振动--转动结构和辐射跃迁特性. 另外, 研究 了 OH 自由基 X²Π态的光电离, 并确定了 X³Σ⁻/ $a^{1}\Delta/b^{1}\Sigma^{+}/A^{3}\Pi/c^{1}\Pi(OH^{+})$ \leftarrow X²Π(OH) 精确的垂直 电离能和绝热电离能.

2 计算方法

根据 O, O+和 H 基态和激发态的能级、O+ (⁴S_{3/2})←O(³P₂) 和 H⁺(¹S₀)←H(²S_{1/2}) 的电离能^[41]、 Wigner-Witmer 定则,确定了 OH+离子的前 5个 离解极限和它们所产生的 14 个 Λ -S 态, 如表 1 所 示. 自旋--轨道耦合效应使上述的 14 个 Λ-S 态分 裂为 27 个 Ω 态. 本文在 MOLPRO 2010.1 程序包^[42] C2v对称性下执行 OH+离子电子结构的从头计算. 首先计算单、双电子积分,在 Hartree-Fock (HF) 级别产生 X³Σ-态的初始猜测分子轨道和波函, 然后利用态平均的完全活性空间自治场 (SA-CASSCF) 方法对初始分子轨道和波函进行优化, 获得这14个电子态的波函和自然轨道,最后基于 SA-CASSCF 的参考波函,采用 icMRCI+Q方法 获得这 14 个 Λ-S 态的势能 (包括参考能、动态和 非动态电子相关能). 由于 SA-CASSCF 和 icMRCI+ Q计算的精度由基组和活性空间的选择决定^[43-45], 所以我们对 O 和 H 都选用 aug-cc-pVXZ (X = 5,

表 1 OH+离子前 5个离解极限产生的 14 个 Λ-S 态的离解关系

Table 1.	Dissociation relationships of the	14 A-S states	generated from	the first f	five dissociation	asymptotes of	of the O	H+
cation.								

南細丸阳	<u>۸ c</u> 太	能量/cm ⁻¹								
丙 肼似叱	Л- Бу <u>с</u> к	本文	实验[41]	理论 ^[33]	理论 ^[38]	本文与实验[41]的偏差				
$O(^{3}P_{g}) + H^{+}(^{1}S_{g})$	$X^{3}\Sigma^{-}, A^{3}\Pi$	0	0^*	0	0	0				
${\rm O}^+({}^4{\rm S}_{\rm u})+{\rm H}({}^2{\rm S}_{\rm g})$	$2^3\Sigma^-,\ 1^5\Sigma^-$	159	158	-3042	-3441	1(0.63%)				
$O(^{1}D_{g}) + H^{+}(^{1}S_{g})$	$a^{1}\Delta,b^{1}\Sigma^{+},c^{1}\Pi$	15709	15739	—	—	30(0.19%)				
${\rm O}^+(^2D_u)+{\rm H}(^2S_g)$	$1^{1}\Sigma^{-}, 3^{3}\Sigma^{-}, 2^{1}\Pi, 2^{3}\Pi, 2^{1}\Delta, 1^{3}\Delta$	26859	26979^*	25123	24262	120(0.45%)				
$O(^{1}S_{g}) + H^{+}(^{1}S_{g})$	$2^{1}\Sigma^{+}$	33522	33664			142(0.42%)				

注:*表示J能级的算术平均值.

6) 基组^[46,47], 我们选择 (6e, 6o) 为活性空间, 即 OH+ 的 6 个价电子排布在 6 个分子轨道 (4a₁, 1b₁ 和 1b₂) 上; 其中, 对于 X³Σ⁻, A³Π, a¹Δ, b¹Σ⁺, c¹Π 和 2¹Σ⁺ 态, O 原子的 2s 与 2p 杂化轨道组合成 5 个价轨 道, O 原子的 3s 轨道形成 1 个虚轨道; 对于 2³Σ⁻, 1⁵Σ⁻, 1¹Σ⁻, 3³Σ⁻, 2¹Π, 2³Π, 2¹Δ 和 1³Δ 态, O+离子 的 2s 与 2p 杂化轨道与 H 的 1s 轨道组合成 5 个价轨 道, O+离子的 3 s 形成 1 个虚轨道.在 0.06292— 1.04292 nm 核间距内, 步长为 0.02 nm, 在 0.06292 到 0.16092 nm 的核间距内, 即每个态的平衡位置 附近, 步长为 0.002 nm.

为了获得这 14 个 Λ-S 态完全基组极限时精确 的势能曲线,基于上述计算,本文考虑了各种物理 效应(标量相对论效应、核-价电子关联效应、完全 基组极限和自旋-轨道耦合效应). 具体处理方法 为: 基于 icMRCI+Q/cc-pV5 Z-DK^[46,48] 理论, 利 用三阶 Douglas-Kroll-Hess (DKH3)^[49] 近似计算 标量相对论效应贡献的势能(表示为+SR);利用 icMRCI+Q/cc-pCV5 Z^[46,48] 理论计算核-价电子 关联效应贡献的势能(表示为+CV),其中,全电子 计算时, OH+离子的 8 个电子都参与计算; 冻结核 计算时, OH+离子活性空间中的 6 个价电子参与计 算;本文利用 Ovevemi 等⁵⁰ 的外推方案,通过将 icMRCI+Q方法连同 aug-cc-pVXZ (X = 5, 6) 获得的参考能和相关能分别外推得到 14 个 Λ-S 态 完全基组极限的势能, 表示为 icMRCI+Q/56; 将 标量相对论效应和核-价电子关联效应贡献的势能 加到 icMRCI+Q/56 势能里, 便得到 icMRCI+ Q/56 + SR + CV 理论水平上 14 个 Λ-S 态的势 能曲线, 如图 1 所示. 在全电子 icMRCI+Q/ccpCV5 Z 理论的基础上,本文通过利用完全 Breit-Pauli 自旋-轨道耦合算符 (\hat{H}_{SO})^[51] 执行态相互作 用计算,获得自旋-轨道耦合效应贡献的势能 (表 示 为+SOC). icMRCI+Q/56+SR+CV+SOC理 论水平上 27 个 Ω 态精确的势能曲线,如图 2 所示.

本文使用 icMRCI+Q/56+SR+CV 和 icMRCI +Q/56+SR+CV+SOC理论水平的势能曲线、全 电子icMRCI/cc-pCV5 Z+SOC 理论水平6个Ω态 $[X^{3}\Sigma_{0+}^{-}, X^{3}\Sigma_{1}^{-}, (1)2, (2)2, (2)1$ 和 (1)0⁻] 之间的 跃迁偶极距 (如图 3 所示), 借助 LEVEL 8.2 程序^[52] 求解核运动的振转薛定谔方程和(1)式-(4)式, 获得束缚和弱束缚的 12 个 Λ-S 态 (X³Σ⁻, A³Π, 1⁵Σ⁻, $a^{1}\Delta, b^{1}\Sigma^{+}, c^{1}\Pi, 1^{1}\Sigma^{-}, 3^{3}\Sigma^{-}, 2^{1}\Pi, 2^{3}\Pi, 1^{3}\Delta \Pi 2^{1}\Sigma^{+})$ 以及 27 个 Ω 态的光谱常数 ($T_{e}, R_{e}, \omega_{e}, \omega_{e}x_{e}, B_{e}$, $\alpha_{\rm e}$ 和 $D_{\rm e}$) 和分子常数、以及受其他 Ω 态微扰较小 的 $X^{3}\Sigma_{0^{+}}^{-}$, $X^{3}\Sigma_{1}^{-}$, (1)2($\upsilon' = 0$ —6), (2)2^{第—势阱}($\upsilon' = 0$ (0-2), (2)1(v' = 0-9) 和 (1)0(v' = 0-8) 态之间7对跃迁的跃迁波数($\tilde{\nu}$)、 $A_{n',l' \rightarrow n'',l''}$ 、 $R_{n',l' \rightarrow n'',l''}$ 、 $gf_{v'J' \leftarrow v''J''}$ 、波长 ($\lambda_{v'J' \leftarrow v''J''}$)、4个激发 Ω态 0-2, J' = 2, +), (2)1(v' = 0-9, J' = 1, +) 和 $(1)0^{-}(\upsilon' = 0 - 8, J' = 0, +)]$ 的 $\tau_{\nu'J'}$ 和 Γ_r 等振动-转动跃迁数据.

 $R_{v'J' \rightarrow v''J''}$, $gf_{v'J' \leftarrow v''J''}$, $\tau_{v'J'}$ 和 Γ_{γ} 的表达 式分别为

$$R_{\upsilon'J'\to\upsilon''J''} = A_{\upsilon'J'\to\upsilon''J''} \Big/ \sum_{\upsilon''} A_{\upsilon'J'\to\upsilon''J''}, \quad (1)$$

$$gf_{\upsilon'J'\leftarrow\upsilon''J''} = 1.4991938 \frac{2J'+1}{\tilde{\nu}^2} A_{\upsilon'J'\to\upsilon''J''}, \quad (2)$$

图 1 (a) OH+离子 14 个 Λ-S 态的势能曲线以及 (b) 第四离解极限 O+(²Du) + H(²S_o) 对应的 6 个态的放大图

Fig. 1. Potential energy curves of OH⁺ cation for (a) 14 Λ -S states and (b) enlarged graphs of 6 states corresponding to the fourth dissociation limit O⁺(²Du) + H(²S_g).

图 2 OH⁺离子 27 个 Ω 态的势能曲线 Fig. 2. Potential energy curves of 27 Ω states of the OH⁺ cation.

图 3 OH+7 对跃迁的跃迁偶极矩曲线

$$\tau_{\upsilon'J'} = \frac{1}{A_{\upsilon'J'}} = 1 \Big/ \sum_{i} A_{i,\upsilon'J'}, \tag{3}$$

$$\Gamma_{\gamma} = 1/(2\pi c \tau_{\upsilon' J'}). \tag{4}$$

式中, *g* 为低能量态振转能级的统计权重 (2*J*''+1); *A_{i, v'J'}* 是从高能量态能级 *v'J'* 发射的第 *i* 个系统的总爱因斯坦 *A* 系数.

icMRCI+Q/56+SR+CV理论水平计算的前 5个离解极限的能量差值、实验值^[41]和理论值^[33,38] 也列于表 1. 由表 1 可知, 本文结果与实验值^[41] 吻 合得很好.

3 结果与讨论

3.1 OH 自由基 X²∏ 态的电离能

利用 icMRCI+Q/56+SR+CV 理论获得了 OH 自由基 X²П 态的垂直电离能和绝热电离能,本 文计算的结果连同实验值^[8-13] 以及理论值^[31] 列于 表 2. OH 自由基 X²П 态的电子组态为 1 $\sigma^2 2\sigma^2 3\sigma^2$ 1 $\pi^3 4\sigma^0 5\sigma^0$.由(1 π)⁻¹电离产生OH+的X³Σ⁻, a¹Δ 和b¹ Σ⁺态,由表 2 可知,本文获得的X³Σ⁻/a¹Δ/b¹Σ⁺(OH⁺) ←X²Π(OH) 的绝热电离能与实验值^[8-11,13] 符合 得很好,它们之间的最大偏差分别为 0.0070 eV (0.054%), 0.063 eV (0.41%) 和 0.015 eV (0.090%). (3 σ)⁻¹电离则产生OH+的A³П 和 c¹П 态,本文获 得的A³Π/c¹Π(OH⁺)←X²Π(OH) 的绝热电离能与 实验值^[9,11,12] 吻合得也很好,它们之间的最大偏差 分别为 0.0060 eV (0.036%) 和 0.011 eV (0.060%). 仅 Meyer^[31] 估算的OH⁺(X³Σ⁻)←OH(X²Π) 的绝热 电离能与实验值^[10,13] 的偏离稍微小于本文的结果.

表 2 icMRCI+Q/56+SR+CV 理论水平上 OH 自由基 X ² II 态的垂直电离能 (VIEs) 和绝热电离能 (AIEs)
Table 2. Vertical ionization energies (VIEs) and adiabatic ionization energies (AIEs) for $X^2\Pi$ state of OH radical at the
theoretical level of $icMRCI+Q/56+SR+CV$.

中文	VIEs/eV				AII	Es/eV			
电商	本文	本文	实验[8]	实验[9]	实验 ^[10]	实验 ^[11]	实验 ^[12]	实验 ^[13]	理论 ^[31]
$OH^+(X^3\Sigma^-) \leftarrow OH(X^2\Pi)$	12.895	13.010	13.010	13.010	13.017	_	_	13.016	13.020
$OH^+(a^1\Delta){\longleftarrow}OH(X^2\Pi)$	15.017	15.137	15.200	15.170	—	15.178	—	—	—
$\mathrm{OH^{+}(b^{1}\Sigma^{+})}{\longleftarrow}\mathrm{OH}(\mathrm{X}^{2}\Pi)$	16.481	16.595	—	16.610	—	16.599	—	—	—
$OH^+(A^3\Pi) {\longleftarrow} OH(X^2\Pi)$	16.699	16.480	—	16.480	—	16.474	—	—	—
$OH^+(c^1\Pi) {\longleftarrow} OH(X^2\Pi)$	18.858	18.311			_		18.300 ^{a)}		

注: a)表示利用实验值^[9,11]和理论^[32]导出的值.

3.2 12 个 A-S 态的光谱常数

由图 1 可知,除了 2³Σ⁻和 2¹Δ 排斥态之外,其他 12 个 Λ-S 态为束缚和弱束缚态.为便于讨论, 表 3 列出了本文计算的 12 个束缚和弱束缚 Λ-S 态的光谱常数和各自 *R*_e处的主要价电子组态、挑选的实验值^[9,14-16,21,23-29]、其他理论值^[31-40].

X³Σ⁻态的势阱深度为 41803.55 cm⁻¹, 包含 33 个振动态;本文计算的 $G_0(v'' = 1-5) = G(v'' = 1-5) - G(0)$ 分别为 2957.25, 5757.84, 8407.69, 10912.71和 13278.80 cm⁻¹; 它们分别比 Rehfuss 等^[23]的 $G_0(v'' = 1 - 5)$ 稍大 0.88 cm⁻¹ (0.030%), 2.12 cm⁻¹ (0.037%), 3.48 cm⁻¹ (0.041%), 4.70 cm⁻¹ (0.043%)和 5.36 cm⁻¹ (0.040%); Hodges 和 Bernath^[29]的 $G_0(v'' = 1 - 4)$ 分別比本文稍小 0.89 cm⁻¹ (0.030%), 2.15 cm⁻¹ (0.037%), 3.53 cm⁻¹ (0.042%) 和 4.77 cm⁻¹ (0.044%).由表 3 可知,本文计算的 $R_{\rm e}, \omega_{\rm e}, \omega_{\rm e}x_{\rm e}, B_{\rm e}, \alpha_{\rm e}$ 和 $D_{\rm e}$ 与实验值 ^[14-16,23-25,29] 符 合得很好.例如, $R_{\rm e}$ 和 $\omega_{\rm e}x_{\rm e}$ 分别比最近的实验值 ^[29] 小 0.00017 nm (0.17%)和 0.3788 cm⁻¹ (0.46%), 仅理论 ^[31,39,40] 中的 $R_{\rm e}$ 值比本文更接近实验值 ^[23,29];

表 3 icMRCI + Q/56 + SR + CV 理论水平上 OH+离子 12 个 Λ-S 态的光谱常数

Table 3. Sp	ectroscopic constants of	of the 12 $\Lambda\text{-}\mathrm{S}$ states	of OH ⁺ at level of icM	$\mathrm{RCI} + Q/56 + \mathrm{SR} + \mathrm{CV}.$
-------------	--------------------------	--	------------------------------------	--

Λ-S态	来源	$T_{ m e}/{ m cm}^{-1}$	$R_{\rm e}/{\rm nm}$	$\omega_{ m e}/{ m cm}^{-1}$	$\omega_{ m e} x_{ m e}/{ m cm}^{-1}$	$B_{ m e}/{ m cm}^{-1}$	$10^2lpha_{ m e}/{ m cm}^{-1}$	$D_{\rm e}/{\rm eV}$	R _e 处主要的价电子组态 ^a
	本文	0	0.10275	3119.57	82.7602	16.8372	74.9926	5.183	$2\sigma^2 3\sigma^2 1\pi^2 4\sigma^0 5\sigma^0 (93.33\%)$
	实验 ^[23]	0	0.10289	3119.3	83.1372	16.7946	74.883	$5.1978 \pm 0.0056^{ m bc}$	—
	实验 ^[24]	0	—	3119.29	83.1273	16.7945	74.8377	$5.2009 \pm 0.0004^{\rm bd}$	—
	实验 ^[25]	0	—	3119.32	83.1606	16.7945	74.838	—	—
	实验 ^[29]	0	0.10292	3119.3	83.139	16.7948	74.903	$5.1817{\pm}0.0001^{\rm be}$	—
	理论 ^[31]	0	0.10283	3124	84.7	16.77	73.7	5.24	—
V 3 V -	理论 ^[32]	0	0.10328	3104	77.8	16.57	69	5.31	—
$\Lambda^{0}\Sigma$	理论 ^[33]	0	0.1031	3088.1	72.8	16.58	77	5.358	—
	理论[34]	0	0.10218	3128	—	16.41	—	—	—
	理论[35]	0	0.1031	3090	80.8	16.75	75	5.24	—
	理论[36]	0	0.10324	3124	72.1	—	—	—	—
	理论 ^[38]	0	0.1034	3076.3	75.6	—	—	5.406	—
	理论 ^[39]	0	0.10284	—	—	—	—	5.1949	—
	理论 ^[40]	0	0.10286	3121.98	78.6019	16.8066	74.72	5.19	—
	本文	17275.95	0.10258	3099.03	69.1178	16.617	61.5397	4.984	$2\sigma^2 3\sigma^2 1\pi^2 4\sigma^0 5\sigma^0 (93.54\%)$
	实验 ^[9]	$28417.44^{\rm f}$	0.1035	2960.00^{g}	_	_	—	4.96	_
-14	实验 ^[21]	—	_	—	—	$16.4921^{\rm h}$	—	—	—
a ⁻ Δ	理论 ^[32]	19042.74	0.10364	3122	76.6	16.61	67	5.05	—
	理论 ^[36]	18002.8	0.10305	3164.1	68.9	—	—	—	—
	理论 ^[37]	—	0.10242	3182	—	16.94	—	5.05	—

物理学报 Acta Phys. Sin. Vol. 73, No. 22 (2024) 223101

			FF-						
Λ-S态	来源	$T_{ m e}/{ m cm}^{-1}$	$R_{\rm e}/{\rm nm}$	$\omega_{ m e}/{ m cm}^{-1}$	$\omega_{ m e} x_{ m e}/{ m cm}^{-1}$	$B_{ m e}/{ m cm}^{-1}$	$10^2 lpha_{ m e}/{ m cm}^{-1}$	$D_{\rm e}/{\rm eV}$	R _e 处主要的价电子组态 ^a
	本文	28473.1	0.11345	2138.5	78.2863	13.7634	81.0012	1.653	$2\sigma^2 3\sigma^1 1\pi^3 4\sigma^0 5\sigma^0 (93.12\%)$
	实验 ^[28]	28438.55	0.11354	2133.65	79.55	13.7916	88.89	—	—
	实验 ^[29]	—	0.11354	—	—	13.7991	85.71	—	—
	实验 ^[30]	—	—	2135.08	79.55	13.8127	89.174	1.6621^{i}	—
A 311	理论 ^[32]	29350.5	0.1147	2187	87.6	13.66	80	1.66	—
A ⁶ H	理论 ^[33]	28689	0.1134	2219.8	83.2	13.8	88	1.786	—
	理论 ^[34]	29520	0.11314	2100	—	13.46	—	_	—
	理论 ^[35]	28914	0.1137	2178	86.4	13.76	85	1.7	—
	理论 ^[36]	28772.9	0.11399	2157.5	78.4	—	—	_	—
	理论 ^[39]	28522.65	0.10356	_		—	_	1.6938	_
	本文	28908.98	0.10285	3120.57	90.0316	16.8047	75.2825	3.5524	$2\sigma^2 3\sigma^2 1\pi^2 4\sigma^0 5\sigma^0 (89.10\%)$
	实验[9]	—	0.1032	—	—	16.2986^{j}	—	3.52	—
	实验 ^[27]	29063.23^{k}	—	—	—	$16.3070^{ m h}$	—	—	—
1.15+	实验 ^[28]	29058.76^{k}	0.10440^{l}	—	—	16.3200^{h}	—	_	—
D*2.1	实验 ^[29]	29060.88^{k}	—	—	—	$16.3057^{\rm h}$	—	_	—
	理论 ^[32]	30415.16	0.10398	3132	89	16.53	68	3.63	—
	理论 ^[34]	30034	0.10216	2979	—	16.34	—	—	—
	理论 ^[36]	29571	0.10331	3127.4	70.9	—	—	—	—
$1^5\Sigma^-$	本文	41583.64	0.2943	231.573	41.7526	2.05857	38.2184	0.047	$2\sigma^2 3\sigma^1 1\pi^2 4\sigma^1 5\sigma^0 (95.72\%)$
	本文	43398.91	0.12205	1807.3	52.1931	11.9113	63.5297	1.7697	$2\sigma^2 3\sigma^1 1\pi^3 4\sigma^0 5\sigma^0 (89.98\%)$
$c^1\Pi$	理论 ^[32]	45021.85	0.12382	1825	49.3	11.76	60	1.84	—
	理论 ^[36]	44151.1	0.12258	1797.3	52.4	—	—	_	—
$1^{1}\Sigma^{-}$	本文	68266.49	0.30473	205.002	24.5737	1.72803	12.7854	0.0415	$2\sigma^2 3\sigma^1 1\pi^2 4\sigma^1 5\sigma^0 (96.16\%)$
$1^{3}\Delta$	本文	68367.67	0.29629	229.065	41.8813	2.03045	37.9223	0.0456	$2\sigma^2 3\sigma^1 1\pi^2 4\sigma^1 5\sigma^0 (96.10\%)$
$3^{3}\Sigma^{-}$	本文	68372.93	0.3365	166.609	41.479	1.60991	42.7186	0.0215	$2\sigma^2 3\sigma^1 1\pi^2 4\sigma^1 5\sigma^0(88.50\%)$
$2^{1}\Pi$	本文	68473.67	0.37389	142.463	36.1618	1.2721	30.9438	0.0221	$\begin{array}{l} 2\sigma^2 3\sigma^2 1\pi^1 4\sigma^1 5\sigma^0(49.82\%),\\ 2\sigma^2 3\sigma^0 1\pi^3 4\sigma^1 5\sigma^0(46.00\%) \end{array}$
$2^{3}\Pi$	本文	68500.45	0.32916	187.681	39.4373	1.65197	35.0742	0.0346	$\begin{array}{c} 2\sigma^2 3\sigma^2 1\pi^1 4\sigma^1 5\sigma^0(49.63\%),\\ 2\sigma^2 3\sigma^0 1\pi^3 4\sigma^1 5\sigma^0(46.34\%) \end{array}$
$2^{1}\Sigma^{+}$	本文	69946.13	0.20031	774.652	16.7243	4.39776	17.0302	0.7099	$\begin{array}{c} 2\sigma^2 3\sigma^1 1\pi^2 4\sigma^1 5\sigma^0(79.24\%),\\ 2\sigma^2 3\sigma^2 1\pi^2 4\sigma^0 5\sigma^0(13.54\%) \end{array}$

表 3 (续) icMRCI + Q/56 + SR + CV 理论水平上 OH+离子 12 个 A-S 态的光谱常数 Table 3 (continued). Spectroscopic constants of the 12 A-S states of OH+ at level of icMRCI + Q/56 + SR + CV.

注: "表示小括号里是组态函数系数的平方值; ^b表示 $D_e = D_0 + 1/2\omega_e - 1/4\omega_e x_e$; ^c表示 D_0 用实验值^[14]; ^d表示 D_0 用实验值^[15];

^e 表示 D_0 用实验值^[16]; ^f 表示实验^[29]的 T_4 值; ^g 表示 $\Delta G_{1/2} = \omega_e - 2\omega_e x_e$ 值; ^h 表示 B_0 值; ⁱ 表示实验^[16]的 D_e 值;

¹ 表示实验^[26]的 B_0 值;^k表示 T_0 值;¹表示 r_0 值.

 $ω_{\rm e}, B_{\rm e}$ 以及 $α_{\rm e}$ 分别比实验值^[29]稍大 0.27 cm⁻¹ (0.0087%), 0.0424 cm⁻¹ (0.25%)和 0.000896 cm⁻¹ (0.12%), 仅理论^[31,40]中的 $B_{\rm e}$ 值比本文更接近实 验值^[29]; $D_{\rm e}$ 比最近的实验值^[16,29]稍大 0.0013 eV (0.025%).

a¹Δ态的势阱深度为 40198.32 cm⁻¹, 包含 30 个振动态;本文计算的 T_4 , R_e , $\Delta G_{1/2}$, B_0 和 D_e 与 现有的实验值^[9,21,29] 吻合得很好, T_4 和 R_e 分别比 实验值^[9,29] 稍小 65.11 cm⁻¹(0.23%) 和 0.00092 nm (0.89%), $\Delta G_{1/2}$, B_0 和 D_e 分别比实验值^[9,21] 稍大 0.79 cm⁻¹(0.027%),0.0393 cm⁻¹(0.24%) 和0.024 eV (0.48%); 仅理论^[32,36]中的 R_e 值比本文的 R_e 稍微 接近实验值^[9]. b¹Σ⁺态的势阱深度为 28653.51 cm⁻¹, 包括 15 个振动态;本文计算的 T_0 和 B_0 分别为 28907.85 和 16.4308 cm⁻¹,与现有实验值^[26-29]的 最大偏离分别为 155.38 cm⁻¹(0.53%) 和 0.1322 cm⁻¹ (0.81%). 由表 3 可知,本文计算的 R_e 和 D_e 与 Lonkhuyzen 等^[9]的实验值符合得也很好,它们之间的差 别分别为 0.00035 nm(0.34%) 和 0.0324 eV(0.92%).

A³Ⅱ的势阱深度为 13332.43 cm⁻¹, 包括 11 个

振动态;由表3可知,本文计算的 $T_{e}, R_{e}, \omega_{e}, B_{e}$ 和 D_e 与实验值^[16,28-30]符合得很好,它们之间的 最大偏差分别为 34.55 cm⁻¹(0.12%), 0.00009 nm $(0.079\%), 4.85 \text{ cm}^{-1}(0.23\%), 0.0493 \text{ cm}^{-1}(0.36\%)$ 和 0.0091 eV(0.55%); 仅理论^[33] 中的 B。 值和理论^[32] 中的 D。值比本文的 B。和 D。稍接近实验值^[16,28-30]. c¹П的势阱深度为 14273.97 cm⁻¹, 包括 13 个振动 态; 本文计算的 T_{v'} (v' = 2, 3) 分别为 46057.48 和 47565.84 cm⁻¹, 它们比 Hodges 和 Bernath^[29] 报道 的实验值分别大 8.00 cm⁻¹(0.017%) 和 41.34 cm⁻¹ (0.087%); 本文计算的 B_v(v'=1-6) 分别为 10.9707, 10.3754, 9.8110, 9.2592, 8.7238 和 8.1897 cm⁻¹, 它 们分别与实验值^[26,27,29]的最大偏差为 0.0614 cm⁻¹ $(0.56\%), 0.0591 \text{ cm}^{-1}(0.57\%), 0.0758 \text{ cm}^{-1}(0.78\%),$ $0.0672 \text{ cm}^{-1}(0.73\%), 0.1688 \text{ cm}^{-1}(1.97\%)$ 和 0.2497 $cm^{-1}(3.14\%)$. 另外, 本文计算的 $c^{1}\Pi(\upsilon'=3)-b^{1}\Sigma^{+}$ (v' = 0)的能级间隔为 18657.99 cm⁻¹, 它比实验 值^[26,27]分别大 183.20 cm⁻¹(0.99%) 和 173.37 cm⁻¹ (0.94%).

X³Σ 态 3σ¹→4σ¹的电子激发形成 1⁵Σ⁻, 2³Σ⁻, 1¹Σ⁻, 1³Δ, 3³Σ⁻和 2¹Σ⁺态. 4 个弱束缚态 (1⁵Σ⁻, 1¹Σ⁻, 1³Δ 和 3³Σ⁻)的势阱深度分别为 379.25, 334.70, 367.40 和 173.41 cm⁻¹, 分別包括 4, 3, 4 和 2 个振 动态. 2¹Σ⁺态的势阱深度为 5725.87 cm⁻¹, 包括 12 个振动态. X³Σ⁻态 1π¹→4σ¹ 和 3σ²→1π¹4σ¹ 的电 子激发形成弱束缚态 2¹Π 和 2³Π. 这两个态的势阱 深度分别为 178.21 和 279.39 cm⁻¹, 包括 3 个和 4 个振动态. 2¹Δ 排斥态通过 3σ²→1π² 的电子激发形成.

3.3 27 个 Ω 态的光谱常数

自旋--轨道耦合效应使 OH+离子前 5 个离解

极限分裂成 8 条离解极限.表 4 列入了这 8 个离解极限的能量间隔及它们所产生的 27 个 Ω 态.由表 4 可知,考虑自旋-轨道耦合效应后,本文计算的第 2— 第 8 离解极限的相对能量与相应地测量值^[41]吻合得也很好.利用 icMRCI+Q/56+SR+CV+SOC 理论获得的 27 个 Ω 态的光谱常数和 R_e 处 Ω 态的构成见表 5.

由图 1 可知, $X^{3}\Sigma$ -态的势能曲线不和其他激 发 A-S 态的势能曲线发生交叉,自旋-轨道耦合 效应使 $X^{3}\Sigma$ -态分裂为 $X^{3}\Sigma_{0+}^{-}$ 和 $X^{3}\Sigma_{1}^{-}$ 束缚态.由 图 1 和图 2 可知,这 2 个 Ω 态势能曲线的形状与 X^{3} Σ -态势能曲线的形状相同.由表 5 可知,在 $R_{e} =$ 0.10275 nm 处, $X^{3}\Sigma_{0+}^{-}$ 和 $X^{3}\Sigma_{1}^{-}$ 态波函的 A-S 成 分 100% 来自 $X^{3}\Sigma$ -态.由表 3 和表 5 可知,这两个 Ω 态的光谱常数与 $X^{3}\Sigma$ -态的光谱常数差别很小.

考虑自旋-轨道耦合效应后, $A^{3}\Pi_{O}(\Omega = 0^{-}, 0^{+}, 1,$ 2) 是倒转态. 由图 1 可知, 在-75.17868400 Hartree 至-75.06367400 Hartree 的能量范围内, A³Ⅱ态势 能曲线与 $a^{1}\Delta$, $b^{1}\Sigma^{+}$ 和 $1^{5}\Sigma^{-}$ 态的势能曲线交叉, $a^{1}\Delta$ 态势能曲线还与 $1^{5}\Sigma$ -和 $2^{3}\Sigma$ -态势能曲线交叉, $b^{1}\Sigma^{+}$ 态势能曲线还与 $1^{5}\Sigma^{-}$, $c^{1}\Pi$ 和 $2^{3}\Sigma^{-}$ 态势能曲线交叉, c¹Π态势能曲线还与1⁵Σ⁻和2³Σ⁻态势能曲线交叉. 在-74.99916693-74.96254484 Hartree 的能量范 围内, $2^{1}\Sigma^{+}$ 态势能曲线与 $1^{5}\Sigma^{-}$, $2^{3}\Sigma^{-}$, $1^{1}\Sigma^{-}$, $1^{3}\Delta$, $3^{3}\Sigma^{-}$, $2^{1}\Pi$, $2^{3}\Pi$ 和 $2^{1}\Delta$ 态势能曲线相交, $2^{1}\Delta$ 态势能曲线 还与1¹Σ⁻, 1³Δ, 3³Σ⁻, 2¹Π和2³Π态势能曲线相交, 2¹Π 态势能曲线还与 $1^{1}\Sigma^{-}$, $1^{3}\Delta$ 和 $2^{3}\Pi$ 态势能曲线相交, $3^{3}\Sigma$ -态势能曲线还与 $1^{3}\Delta$ 和 $1^{1}\Sigma$ -态势能曲线相交. 自旋--轨道耦合效应使这 13 个 Λ-S 态分裂出的 $22 \uparrow \Omega = 0^{-}, 0^{+}, 1$ 和2组分 [(1)2, (2)2, (2)1, (2)0^{+}, 0^{-}, 0^{ $(1)0^{-}, (3)0^{+}, (2)0^{-}, (3)1, (3)2, (4)1, (5)1, (4)0^{+},$

	表 4	OH+离子 27 个 Ω 态的离解关系
Table 4.	Dissociation	relationships of the 27 Ω states of the OH ⁺ cation.

	0*							
原丁忩	Ω 念	本文	实验[41]	偏差				
$O(^{3}P_{2}) + H^{+}(^{1}S_{0})$	$2,1,0^+$	0	0	0				
$O(^{3}P_{1}) + H^{+}(^{1}S_{0})$	$1, 0^+$	156	158	2(1.27%)				
$O(^{3}P_{0}) + H^{+}(^{1}S_{0})$	0-	233	227	6(2.64%)				
${\rm O}^+({}^4{\rm S}_{3/2})+{\rm H}({}^2{\rm S}_{1/2})$	$2,1(2),0^+,0^-$	159	158	1(0.63%)				
$O(^{1}D_{2}) + H^{+}(^{1}S_{0})$	$2,1,0^+$	15789	15868	79(0.50%)				
$O^+(^2D_{5/2}) + H(^2S_{1/2})$	$3,2(2),1(2),0^+,0^-$	26850	26969	119(0.44%)				
$O^+(^2D_{3/2}) + H(^2S_{1/2})$	$2,1(2),0^+,0^-$	26865	26989	124(0.46%)				
$O(^{1}S_{0}) + H^{+}(^{1}S_{0})$	0^{+}	33602	33793	191(0.57%)				

物理学报 Acta Phys. Sin. Vol. 73, No. 22 (2024) 223101

Tabl	e 5. spec	stroscopic	constants	obtained L	by the icivi	1001+Q/50+	-sn+0 v	$+500$ calculations for the 27 Ω states.
Ω态	$T_{ m e}/{ m cm}^{-1}$	$R_{\rm e}/{ m nm}$	$\omega_{ m e}/{ m cm}^{-1}$	$\omega_{ m e} x_{ m e}/{ m cm}^{-1}$	$B_{ m e}/{ m cm}^{-1}$	$10^2lpha_{ m e}/{ m cm}^{-1}$	$D_{\rm e}/{\rm eV}$	在 R_{e} 附近主要的 Λ -S态/%
$X^{3}\Sigma_{0^{+}}^{-}$	0	0.10275	3119.56	82.7599	16.8371	74.9924	5.1839	$X^{3}\Sigma^{-}$ (100.00)
$X^3\Sigma_1^-$	1.10	0.10275	3119.56	82.7605	16.8371	74.9928	5.1839	$X^{3}\Sigma^{-}$ (100.00)
(1)2	17276.38	0.10258	3143.20	75.2690	16.8297	65.3477	3.0345	$\mathrm{a}^{1}\Delta(100.00)$
(2)2 ^{第一势阱}	28390.58	0.11344	2116.85	87.1647	13.6626	83.5584	1.9206	$A^{3}\Pi$ (100.00)
(2)2 ^{第二势阱}	41585.61	0.29125	307.074	118.127	2.17713	57.2189	0.0476	$1^5\Sigma^-$ (99.54), $A^3\Pi(0.46)$
(2)1	28474.20	0.11345	2138.51	78.3049	13.7632	80.9914	1.6649	$A^{3}\Pi$ (100.00)
$(2)0^{+}$	28555.41	0.11344	1805.75	30.4828	14.0502	19.4672	1.6535	$A^{3}\Pi(99.80), b^{1}\Sigma^{+} (0.20)$
$(1)0^-$	28558.92	0.11345	2143.13	80.1777	13.7510	80.1793	1.6642	$A^{3}\Pi$ (100.00)
$(3)0^{+}$	29091.36	0.10590	4018.05	516.736	15.9062	92.3184	2.9603	$b^{1}\Sigma^{+}$ (60.16), $A^{3}\Pi$ (39.84)
$(2)0^-$	41616.12	0.27885	508.208	269.788	3.27403	261.169	0.0432	$1^5\Sigma^-$ (99.92), $A^3\Pi(0.08)$
(3)1 ^{第一势阱}	43400.67	0.12205	1819.77	63.4260	11.9318	65.8296	0.4771	$c^{1}\Pi$ (100.00)
(3)1 ^{第二势阱}	41596.15	0.28279	442.071	249.963	2.51688	115.517	0.0456	$1^{5}\Sigma^{-}$ (99.86), $A^{3}\Pi(0.14)$
(3)2	44255.74	0.20168	2659.30	144.453	4.35488	9.35580	1.6417	$1^5\Sigma^-$ (99.96), $a^1\Delta(0.04)$
(4)1	49829.74	0.18030	2272.64	—	5.48251	—	0.3371	$c^{1}\Pi$ (100.00)
(5)1	54259.84	0.22212	1941.70	151.368	3.60130	0.654805	0.4229	$2^{3}\Sigma^{-}(100.00)$
$(4)0^{+}$	55193.04	0.21833	1647.33	79.8804	3.66204	13.6759	0.2949	$2^{3}\Sigma^{-}(99.98), \mathrm{b}^{1}\Sigma^{+} \; (0.02)$
$1^{1}\Sigma_{0^{-}}^{-}$	68267.80	0.30475	204.965	24.6976	1.73120	11.9130	0.0413	$1^{1}\Sigma^{-}(99.96), 2^{3}\Pi$ (0.04)
(4)2	68368.10	0.29640	230.081	—	2.07414	—	0.0208	$1^{3}\Delta(99.48), 2^{3}\Pi (0.52)$
(6)1	68368.54	0.29656	127.077	18.7167	1.82500	52.1092	0.0206	$1^{3}\Delta(99.92), 2^{3}\Pi (0.06), 2^{1}\Pi (0.02)$
$1^{3}\Delta_{3}$	68368.76	0.29637	228.281	41.3801	2.03594	39.5081	0.0459	$1^{3}\Delta(99.60),2^{3}\Pi(0.31),2^{1}\Pi(0.09)$
(7)1	68401.46	0.31996	250.949	122.777	1.54500	22.1293	0.0319	$3^{3}\Sigma^{-}(99.84),2^{3}\Pi$ (0.14), $1^{3}\Delta(0.02)$
$2^3\Pi_0-$	68495.84	0.32899	187.387	39.4356	1.65368	35.1602	0.0345	$2^{3}\Pi$ (99.92), $1^{1}\Sigma^{-}(0.08)$
(8)1	68496.06	0.35896	153.965	14.4797	1.61808	38.6184	0.0301	$2^{1}\Pi~(83.68),1^{3}\Delta(16.04),3^{3}\Sigma^{-}~(0.16),2^{3}\Pi~(0.12)$
$(5)0^{+}$	68497.37	0.32883	186.692	38.8488	1.65406	35.2124	0.0345	$2^{3}\Pi$ (99.78), $3^{3}\Sigma^{-}$ (0.22)
(5)2	68506.37	0.33050	174.741	46.7308	1.56130	27.0797	0.0286	$2^{3}\Pi$ (98.56), $1^{3}\Delta(1.41)$, $2^{1}\Delta(0.03)$
(9)1	68521.74	0.34815	254.961	99.3048	1.48466	43.6473	0.0326	$2^{3}\Pi$ (74.31) , $2^{1}\Pi$ (25.33), $1^{3}\Delta(0.20),3^{3}\Sigma^{-}(0.16)$
(6)2	68577.04	0.38175	239.914	107.796	1.28460	45.2791	0.0255	$2^{1}\Delta(64.52), 2^{3}\Pi$ (21.84), $1^{3}\Delta(13.64)$
(6)0+第一势阱	69938.22	0.19913	819.249	—	4.57228	—	0.0532	$2^{1}\Sigma^{+}$ (100.00)
(6)0+第二势阱	68372.93	0.33578	170.459		1.64605	—	0.0200	$3^{3}\Sigma^{-}$ (99.80), $2^{3}\Pi$ (0.20)
$(7)0^+$	71244.98	0.23618	1301.75	84.4584	3.19755	17.2462	0.5493	$2^{1}\Sigma^{+}$ (100.00)

表 5 利用 icMRCI+Q/56+SR+CV+SOC 理论获得的 27 个 Ω 态的光谱常数 Table 5 Spectroscopic constants obtained by the icMRCI+Q/56+SR+CV+SOC calculations for the 27 Ω states

(4)2, (6)1, (7)1, (8)1, (5)0⁺, (5)2, (9)1, (6)2, (6)0⁺ 和 (7)0⁺] 出现避免交叉现象, 以致这 22 个 Ω 态势 能曲线的形状发生了变化 (如图 1 和图 2 所示); 其 中 A³П 和 1⁵Σ⁻态势能曲线相交于 R = 0.29026 nm 附近, 远离 A³П 态的 $R_e = 0.11345$ nm, 所以 (1)0⁻ 和 (2)1 态的光谱常数与 A³П 态的光谱常数相比变 化不大; 由表 3 和表 5 可知, 其他 20 个 Ω 态的光 谱常数与相应 A-S 态的光谱常数相比有很大的变 化. 进一步计算表明: (1)2(v' = 0—5) 来自于 a¹ Δ 态; (2)2^{第—势阱} (v' = 0—2), (2)1(v' = 0—9), (1)0⁻ (v' = 0—8) 和 (2)0⁺(v' < 0) 来自于 A³П 态. Hodges 和 Bernath^[29] 报道了 A³П 态的 A_0 和 A_1 值分别为 $1^{1}\Sigma_{0^{-}}^{-}$, $1^{3}\Delta_{3}$ 和 $2^{3}\Pi_{0^{-}}$ 态的势能曲线与其他 Ω 态的势能曲线没有避免交叉现象. 由图 1 和图 2 可知, $1^{1}\Sigma_{0^{-}}^{-}$, $1^{3}\Delta_{3}$ 和 $2^{3}\Pi_{0^{-}}$ 态与相应的 $1^{1}\Sigma_{-}^{-}$, $1^{3}\Delta$ 和 $2^{3}\Pi$ 态势能曲线的形状相同. 由表 3 和表 5 可 知, $1^{1}\Sigma_{0^{-}}^{-}$ 和 $1^{1}\Sigma_{-}^{-}$ 态 T_{e} , R_{e} , ω_{e} 和 D_{e} 差别 仅 为 1.31 cm⁻¹, 0.00002 nm, 0.037 cm⁻¹ 和 0.0002 eV; $1^{3}\Delta_{3}$ 和 $1^{3}\Delta$ 态的 T_{e} , R_{e} , ω_{e} 和 D_{e} 差别仅为 1.09 cm⁻¹, 0.00008 nm, 0.784 cm⁻¹ 和 0.0003 eV; $2^{3}\Pi_{0^{-}}$ 态 的 $T_{\rm e}$, $R_{\rm e}$, $\omega_{\rm e}$ 和 $D_{\rm e}$ 仅分别比 $2^{3}\Pi$ 态的相应值小 4.61 cm⁻¹, 0.00017 nm, 0.294 cm⁻¹ 和 0.0001 eV.

3.4 跃迁特性

由 3.3 节的讨论可知,其他 Ω 态对 $X^{3}\Sigma_{0^{+}}^{-}$, $X^{3}\Sigma_{1}^{-}$, (1)2(v' = 0—6), (2)2^{第—势阱} (v' = 0—2), (2)1(v' = 0—9), (1)0⁻(v' = 0—8) 的微扰较小.根 据跃迁选择规则, (1)2(v' = 0—6) 衰减到 $X^{3}\Sigma_{1}^{-}$ (v''); (2)2^{第—势阱} (v' = 0—2) 衰减到 $X^{3}\Sigma_{1}^{-}$ (v'') 和 (1)2(v' = 0—6); (2)1(v' = 0—9) 衰减到 $X^{3}\Sigma_{0^{+}}^{-}$ (v''), $X^{3}\Sigma_{1}^{-}$ (v'') 和 (1)2(v' = 0—6); (1)0⁻(v' = 0—8) 衰减到 $X^{3}\Sigma_{1}^{-}$ (v'').本文研究了这7对跃迁 的跃迁特性.其中 (2)1(v' = 0—9, J' = 1, +)– (1)2(v' = 0—6, J' = 2, –) 系统的辐射非常微弱, 最大的 $A_{v'J \rightarrow v''J'} = 4.092 \times 10^{-3} s^{-1}$,发生在 (1, 2) 波带;因此很难测量其光谱,并且此系统对 (2)1(v' = 0—9, J' = 1, +) $\tau_{v'J}$ 的贡献可以忽略不计.表 6表 11 列出了 (1)2($\upsilon' = 0$ —6, J' = 2, +)-X³ Σ_1^- ($\upsilon'', J'' = 1, -$), (2)2^{第—势阱}($\upsilon' = 0$ —2, J' = 2, +)-X³ Σ_1^- ($\upsilon'', J'' = 1, -$)/(1)2($\upsilon' = 0$ —6, J' = 2, -), (2)1($\upsilon' = 0$ —9, J' = 1, +) -X³ $\Sigma_{0^+}^-$ ($\upsilon'', J'' = 1, -$)/ X³ Σ_1^- ($\upsilon'', J'' = 1, -$)和(1)0⁻($\upsilon' = 0$ —8, J' = 0, +) -X³ Σ_1^- ($\upsilon'', J'' = 1, -$)系统一些相对大的振转跃 迁数据($\tilde{\nu}, A_{\upsilon'J' \rightarrow \upsilon''J''}, R_{\upsilon'J' \rightarrow \upsilon''J''}, gf_{\upsilon'J' \leftarrow \upsilon''J''}$ 和 $\lambda_{\upsilon'J' \leftarrow \upsilon''J''}$).表 12列出了(1)2($\upsilon' = 0$ —6, J' = 2,+), (2)2^{第—势阱}($\upsilon' = 0$ —2, J' = 2, +), (2)1($\upsilon' =$ 0—9, J' = 1, +)和(1)0⁻($\upsilon' = 0$ —8, J' = 0, +) 态的 $\tau_{\upsilon'J}$ 和 Γ_r .

由表 6 和表 12 可知, (1)2(v' = 0—6, J' = 2, +) $-X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ 跃迁具有对角化的 $R_{v'J' \rightarrow v''J''}$, 但光子散射速率很慢、 $gf_{v'J' \leftarrow v''J''}$ 很小, $\tau_{v'J'}$ 太长. 由表 7—表 12 可知, (2)2^{第—势阱} (v' = 0—2, J' = 2, +) $-X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$, (2)2^{第—势阱} (v' = 0—2, J' = 2, +)-(1)2(v' = 0—6, J' = 2, -),

表 6 (1)2(v' = 0—6, J' = 2, +) $-X^3\Sigma_1^-(v'', J'' = 1, -)$ 系统一些相对大的振转跃迁数据 Table 6. Some of the relatively large rovibrational transition data of the (1)2(v' = 0—6, J' = 2, +) $-X^3\Sigma_1^-(v'', J'' = 1, -)$ system.

(υ',υ'')	${ ilde v}/{ m cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathbf{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$g\!f_{\upsilon'J'\!\leftarrow\!\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow\upsilon''J''}/\mathrm{nm}$	(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathbf{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$g\!f_{\upsilon'J'\!\leftarrow\!\upsilon''J''}$	$\lambda_{v'J'\leftarrow v''J''}/\mathrm{nm}$
(0, 0)	17290.86	4.697	0.9999	1.178×10^{-7}	578.75	(1, 1)	17325.10	4.805	0.9994	1.200×10^{-7}	577.61
(2, 2)	17364.56	5.000	0.9977	1.243×10^{-7}	576.30	(3, 3)	17409.07	5.370	0.9925	1.328×10^{-7}	574.82
(4, 4)	17458.00	6.227	0.9692	1.532×10^{-7}	573.21	(5, 5)	17507.16	8.971	0.8697	2.194×10^{-7}	571.60
(6, 5)	19754.69	2.405	0.0926	4.619×10^{-8}	506.57	(6, 6)	17525.09	18.652	0.7184	4.552×10^{-7}	571.02
(6, 7)	15420.20	3.590	0.1383	1.132×10^{-7}	648.96	_					

表 7 (2)2^{第-势阱} (v' = 0—2, J' = 2, +)- $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ 系统一些相对大的振转跃迁数据 Table 7. Some of the relatively large rovibrational transition data of the (2)2^{lst well}(v' = 0—2, J' = 2, +)- $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ system.

(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow\upsilon''J''}/\mathrm{nm}$	(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$g\!f_{\upsilon'J'\!\leftarrow\!\upsilon''J''}$	$\lambda_{v'J'\leftarrow v''J''}/\mathrm{nm}$
(0, 0)	27894.61	2.088×10^{5}	0.8501	2.011×10^{-3}	358.75	(0, 1)	24939.11	$3.481{ imes}10^4$	0.1417	4.195×10^{-4}	401.26
(1, 0)	29872.69	$1.578{\times}10^5$	0.6811	1.325×10^{-3}	334.99	(1, 1)	26917.19	$3.754{ imes}10^4$	0.1620	3.883×10^{-4}	371.77
(1, 2)	24118.96	$3.239{ imes}10^4$	0.1398	4.174×10^{-4}	414.91	(2, 0)	31697.63	$7.997{\times}10^4$	0.3651	5.966×10^{-4}	315.71
(2, 1)	28742.14	$1.167{ imes}10^{5}$	0.5328	1.059×10^{-3}	348.17	(2, 3)	23296.47	$1.755{\times}10^4$	0.0801	2.424×10^{-4}	429.55

表 8 (2)2^{第-势阱} (v' = 0—2, J' = 2, +)-(1)2(v'' = 0—6, J'' = 2, -) 系统一些相对大的振转跃迁数据 Table 8. Some of the relatively large rovibrational transition data of the (2)2^{lst well}(v'' = 0—2, J'' = 2, +)-(1)2(v' = 0—6, J' = 2, -) system.

(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \to \upsilon''J''}/{\rm s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow\upsilon''J''}/\mathrm{nm}$	(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow\upsilon''J''}/\mathrm{nm}$
(0, 0)	10603.75	8.289×10^{-1}	0.4227	5.526×10^{-8}	943.73	(0, 1)	7614.01	9.020×10^{-1}	0.4600	1.166×10^{-7}	1314.30
(0, 2)	4776.32	2.229×10^{-1}	0.1137	7.323×10^{-8}	2095.15	(1, 1)	9592.09	7.948×10^{-1}	0.2470	6.475×10^{-8}	1043.27
(1, 2)	6754.40	1.695	0.5268	2.785×10^{-7}	1481.57	(1, 3)	4062.45	$6.954{\times}10^{-1}$	0.2161	3.159×10^{-7}	2463.32
(2, 1)	11417.04	$2.469{ imes}10^{-1}$	0.0522	1.420×10^{-8}	876.51	(2, 2)	8579.35	$3.663{ imes}10^{-1}$	0.0774	3.730×10^{-8}	1166.42
(2, 3)	5887.40	2.393	0.5057	5.176×10^{-7}	1699.75	(2, 4)	3335.98	1.634	0.3453	1.101×10^{-6}	2999.75

表 9 (2)1(v' = 0—9, J' = 1, +)– $X^{3}\Sigma_{0^{+}}^{-}(v'', J'' = 1, -)$ 系统一些相对大的振转跃迁数据

Table 9. Some of the relatively large rovibrational transition data of the $(2)1(\upsilon' = 0 - 9, J' = 1, +) - X^3 \Sigma_{0+}^{-}(\upsilon'', J'' = 1, -)$ system.

(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J'}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow \upsilon''J''}/\mathrm{nm}$	(υ', υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J'}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{v'J'\leftarrow v''J''}/\mathrm{nm}$
(0, 0)	27965.39	$3.506{ imes}10^5$	0.8501	2.016×10^{-3}	357.84	(0, 1)	25009.90	$5.843{ imes}10^4$	0.1417	4.202×10^{-4}	400.13
(1, 0)	29943.66	2.641×10^5	0.6799	1.325×10^{-3}	334.20	(1, 1)	26988.16	$6.325{ imes}10^4$	0.1629	3.905×10^{-4}	370.80
(1, 2)	24189.93	$5.441{\times}10^4$	0.1401	4.182×10^{-4}	413.69	(2, 0)	31764.79	$1.328{ imes}10^5$	0.3643	5.921×10^{-4}	315.04
(2, 1)	28809.30	$1.944{\times}10^5$	0.5331	1.053×10^{-3}	347.36	(2, 3)	23363.62	$2.932{\times}10^4$	0.0804	2.416×10^{-4}	428.32
(3, 0)	33431.51	$5.815{\times}10^4$	0.1711	2.340×10^{-4}	299.33	(3, 1)	30476.01	$1.870{ imes}10^5$	0.5501	9.054×10^{-4}	328.36
(3, 2)	27677.78	$6.990{\times}10^4$	0.2056	4.104×10^{-4}	361.56	(3, 3)	25030.34	$1.005{\times}10^4$	0.0296	$7.214{\times}10^{-5}$	399.80
(4, 0)	34944.02	$2.441{\times}10^4$	0.0780	8.991×10^{-5}	286.38	(4, 1)	31988.52	$1.257{\times}10^5$	0.4015	5.524×10^{-4}	312.83
(4, 2)	29190.29	$1.339{\times}10^5$	0.4276	7.066×10^{-4}	342.82	(4, 4)	24040.36	$1.797{\times}10^4$	0.0574	1.399×10^{-4}	416.26
(5, 0)	36299.50	$1.030{ imes}10^4$	0.0364	$3.517{ imes}10^{-5}$	275.68	(5, 1)	33344.00	$7.281{\times}10^4$	0.2569	$2.945\!\times\!10^{\!-\!4}$	300.12
(5, 2)	30545.77	$1.352{\times}10^5$	0.4771	6.518×10^{-4}	327.61	(5, 3)	27898.33	$5.042{\times}10^4$	0.1779	2.914×10^{-4}	358.70
(5, 5)	23032.70	$1.136{\times}10^4$	0.0401	9.634×10^{-5}	434.47	(6, 1)	34534.85	$3.964{\times}10^4$	0.1588	1.495×10^{-4}	289.77
(6, 2)	31736.61	$1.047{\times}10^5$	0.4196	4.677×10^{-4}	315.32	(6, 3)	29089.18	$8.218{\times}10^4$	0.3292	4.368×10^{-4}	344.01
(7, 1)	35547.78	$2.106{\times}10^4$	0.1003	7.497×10^{-5}	281.51	(7, 2)	32749.55	$7.069{\times}10^4$	0.3367	2.964×10^{-4}	305.56
(7, 3)	30102.11	$8.440{\times}10^4$	0.4020	4.189×10^{-4}	332.44	(7, 4)	27599.61	$2.217{\times}10^4$	0.1056	1.309×10^{-4}	362.58
(8, 1)	36360.64	$1.099{\times}10^4$	0.0676	$3.738{ imes}10^{-5}$	275.22	(8, 2)	33562.40	$4.340{\times}10^4$	0.2669	1.733×10^{-4}	298.16
(8, 3)	30914.97	$6.726{\times}10^4$	0.4135	3.165×10^{-4}	323.70	(8, 4)	28412.47	$3.211{\times}10^4$	0.1974	1.789×10^{-4}	352.21
(9, 2)	34140.09	$2.256{\times}10^4$	0.2208	8.706×10^{-5}	293.12	(9, 3)	31492.65	$4.091{\times}10^4$	0.4004	1.855×10^{-4}	317.76
(9, 4)	28990.16	$2.652{ imes}10^4$	0.2595	1.419×10^{-4}	345.19						

表 10 (2)1(v' = 0—9, J' = 1, +)-X³ Σ_1^- (v'', J'' = 1, -) 系统一些相对大的振转跃迁数据

Table 10. Some of the relatively large rovibrational transition data of the $(2)1(\upsilon' = 0 - 9, J' = 1, +) - X^3 \Sigma_1^- (\upsilon'', J'' = 1, -)$ system.

(υ',υ'')	$ ilde{v}/\mathrm{cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J'}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{\upsilon'J'\leftarrow \upsilon''J''}/\mathrm{nm}$	(v',v'')	${ ilde v}/{ m cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/s^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J'}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{v'J' \leftarrow v''J''}/\mathrm{nm}$
(1, 2)	24188.98	14.520	0.4462	1.116×10^{-7}	413.71	(1, 3)	21541.54	11.472	0.3525	1.112×10^{-7}	464.55
(2, 3)	23362.68	14.495	0.2927	1.194×10^{-7}	428.34	(2, 4)	20860.18	22.383	0.4519	2.313×10^{-7}	479.72
(3, 5)	20163.77	31.625	0.4455	3.498×10^{-7}	496.29	(3, 6)	17934.17	20.553	0.2895	2.874×10^{-7}	557.99
(4, 6)	19446.68	32.540	0.3270	3.870×10^{-7}	514.59	(4, 7)	17341.78	37.885	0.3807	5.666×10^{-7}	577.05
(4, 8)	15355.11	16.627	0.1671	3.172×10^{-7}	651.71	(5, 7)	18697.26	20.944	0.1501	2.694×10^{-7}	535.22
(5, 8)	16710.59	53.996	0.3871	8.697×10^{-7}	598.85	(5, 9)	14841.43	38.644	0.2770	7.891×10^{-7}	674.27
(5, 10)	13079.78	13.397	0.0960	3.522×10^{-7}	765.08	(6, 9)	16032.28	52.569	0.2677	9.199×10^{-7}	624.19
(6, 10)	14270.63	69.718	0.3551	1.540×10^{-6}	701.24	(6, 11)	12614.35	38.853	0.1979	1.098×10^{-6}	793.31
(6, 12)	11057.45	11.896	0.0606	4.376×10^{-7}	905.01	(7, 8)	18914.37	15.055	0.0540	1.893×10^{-7}	529.07
(7, 10)	15283.56	21.802	0.0782	4.198×10^{-7}	654.76	(7, 11)	13627.29	82.287	0.2950	1.993×10^{-6}	734.34
(7, 12)	12070.38	84.988	0.3047	2.624×10^{-6}	829.06	(7, 13)	10610.41	45.344	0.1626	1.811×10^{-6}	943.14
(7, 14)	9242.54	16.140	0.0579	8.498×10^{-7}	1082.72	(8, 10)	16096.42	21.461	0.0525	3.725×10^{-7}	621.70
(8, 12)	12883.24	36.235	0.0886	9.819×10^{-7}	776.75	(8, 13)	11423.27	$1.084{ imes}10^2$	0.2652	3.737×10^{-6}	876.03
(8, 14)	10055.40	$1.167{ imes}10^2$	0.2854	5.190×10^{-6}	995.20	(8, 15)	8775.90	72.526	0.1774	4.235×10^{-6}	1140.29
(8, 16)	7582.30	28.761	0.0704	2.250×10^{-6}	1319.80	(9, 12)	13460.92	25.783	0.0457	6.400×10^{-7}	743.42
(9, 14)	10633.08	18.148	0.0322	7.219×10^{-7}	941.13	(9, 15)	9353.58	84.526	0.1499	4.345×10^{-6}	1069.87
(9, 16)	8159.98	$1.224{ imes}10^2$	0.2171	8.269×10^{-6}	1226.36	(9, 17)	7049.23	$1.066{ imes}10^2$	0.1892	9.652×10^{-6}	1419.60
(9, 18)	6018.46	75.084	0.1332	9.323×10^{-6}	1662.74	(9, 19)	5065.82	51.744	0.0918	9.068×10^{-6}	1975.42
(9, 20)	4190.19	32.125	0.0570	8.229×10^{-6}	2388.22	(9, 21)	3390.23	14.439	0.0256	5.650×10^{-6}	2951.75

表 11 (1)0⁻(v' = 0—8, J' = 0, +)- $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ 系统一些相对大的振转跃迁数据 Table 11. Some of the relatively large rovibrational transition data of the (1)0⁻(v' = 0—8, J' = 0, +)- $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ system.

(υ',υ'')	${ ilde v}/{ m cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{v'J' \rightarrow v''J''}$	$gf_{\upsilon'J'\leftarrow\upsilon''J''}$	$\lambda_{v'J'\leftarrow v''J''}/\mathrm{nm}$	(v', v'')	${ ilde v}/{ m cm}^{-1}$	$A_{\upsilon'J' \rightarrow \upsilon''J''}/\mathrm{s}^{-1}$	$R_{\upsilon'J' \rightarrow \upsilon''J''}$	$gf_{v'J'\leftarrow v''J''}$	$\lambda_{\upsilon'J' \leftarrow \upsilon''J''}/\mathrm{nm}$
(0, 0)	28055.26	$3.529{ imes}10^5$	0.8487	6.722×10^{-4}	356.69	(0, 1)	25099.04	$5.942{ imes}10^4$	0.1429	1.414×10^{-4}	398.71
(1, 0)	30035.40	$2.672{ imes}10^5$	0.6811	4.440×10^{-4}	333.18	(1, 1)	27079.17	$6.332{ imes}10^4$	0.1614	1.294×10^{-4}	369.55
(1, 2)	24280.23	$5.498{ imes}10^4$	0.1401	1.398×10^{-4}	412.15	(2, 0)	31855.40	$1.351{\times}10^5$	0.3658	1.995×10^{-4}	314.14
(2, 1)	28899.17	1.964×10^{5}	0.5320	3.526×10^{-4}	346.28	(2, 3)	23452.11	$2.954{\times}10^4$	0.0800	8.052×10^{-5}	426.70
(3, 0)	33520.87	$5.900{ imes}10^4$	0.1716	7.871×10^{-5}	298.53	(3, 1)	30564.65	$1.891{\times}10^5$	0.5499	3.034×10^{-4}	327.41
(3, 2)	27765.71	$7.060{ imes}10^4$	0.2053	1.373×10^{-4}	360.41	(3, 3)	25117.59	$1.016{\times}10^4$	0.0296	2.415×10^{-5}	398.41
(4, 0)	35033.48	$2.459{\times}10^4$	0.0779	3.004×10^{-5}	285.64	(4, 1)	32077.25	$1.268{\times}10^5$	0.4014	1.847×10^{-4}	311.97
(4, 2)	29278.31	$1.351{\times}10^5$	0.4277	2.362×10^{-4}	341.79	(4, 4)	24127.03	$1.819{ imes}10^4$	0.0576	4.684×10^{-5}	414.77
(5, 0)	36389.76	$1.031{ imes}10^4$	0.0361	1.167×10^{-5}	275.00	(5, 1)	33433.53	$7.329{\times}10^4$	0.2567	9.829×10^{-5}	299.31
(5, 2)	30634.59	$1.363{ imes}10^5$	0.4774	2.178×10^{-4}	326.66	(5, 3)	27986.47	$5.080{ imes}10^4$	0.1779	9.723×10^{-5}	357.57
(5, 5)	23119.53	$1.149{ imes}10^4$	0.0402	3.222×10^{-5}	432.84	(6, 1)	34625.09	$3.990{ imes}10^4$	0.1586	4.989×10^{-5}	289.01
(6, 2)	31826.15	$1.057{\times}10^5$	0.4199	1.564×10^{-4}	314.43	(6, 3)	29178.03	$8.285{\times}10^4$	0.3293	1.459×10^{-4}	342.97
(7, 1)	35638.53	$2.122{ imes}10^4$	0.1002	2.505×10^{-5}	280.79	(7, 2)	32839.59	$7.141{\times}10^4$	0.3370	9.927×10^{-5}	304.73
(7, 3)	30191.47	$8.521{\times}10^4$	0.4021	1.401×10^{-4}	331.45	(7, 4)	27688.31	$2.233{\times}10^4$	0.1054	4.367×10^{-5}	361.42
(8, 1)	36451.92	$1.110{ imes}10^4$	0.0674	1.253×10^{-5}	274.53	(8, 2)	33652.98	$4.397{\times}10^4$	0.2671	5.821×10^{-5}	297.36
(8, 3)	31004.86	6.811×10^{4}	0.4137	1.062×10^{-4}	322.76	(8, 4)	28501.70	$3.247{ imes}10^4$	0.1972	5.992×10^{-5}	351.11

表 12 (1)2($\upsilon' = 0$ —6, J' = 2, +), (2)2^{第一势阱} ($\upsilon' = 0$ —2, J' = 2, +), (2)1($\upsilon' = 0$ —9, J' = 1, +) 和 (1)0⁻($\upsilon' = 0$ —8, J' = 0, +) 态的辐射寿命 ($\tau_{\upsilon'J'}$) 和辐射宽度 (Γ_{r})

Table 12. Spontaneous radiative lifetimes $(\tau_{v'J'})$ and radiation widths $(\Gamma_{\mathbf{r}})$ for the $(1)2(\upsilon' = 0-6, J' = 2, +), (2)2^{1 \text{ st well}}(\upsilon' = 0-2, J' = 2, +), (2)1(\upsilon' = 0-9, J' = 1, +), \text{ and } (1)0^{-}(\upsilon' = 0-8, J' = 0, +) \text{ states.}$

v'	(1)2(J')	= 2, +)	(2)2 ^{第一势防}	$^{\ddagger}(J'=2,+)$	(2)1(.	I' = 1, +)	$(1)0^{-}(J'=0,+)$		
	$ au_{\upsilon'J'}/{ m s}$	$\Gamma_{ m r}/{ m cm}^{-1}$	$ au_{\upsilon'J'}/\mu { m s}$	$\Gamma_{ m r}/{ m cm}^{-1}$	$\tau_{\upsilon'J'}\!/\!\mu \mathrm{s}$	$\Gamma_{ m r}/{ m cm}^{-1}$	$\tau_{\upsilon'J'}\!/\mu \mathrm{s}$	$\Gamma_{ m r}/{ m cm}^{-1}$	
0	$2.129{ imes}10^{-1}$	$2.494{ imes}10^{-11}$	4.071	1.304×10^{-6}	2.425	$2.189{ imes}10^{-6}$	2.405	$2.207{ imes}10^{-6}$	
1	2.080×10^{-1}	$2.553{ imes}10^{-11}$	4.317	$1.230\! imes\!10^{-6}$	2.575	$2.062{ imes}10^{-6}$	2.549	$2.083{ imes}10^{-6}$	
2	1.995×10^{-1}	$2.661{\times}10^{-11}$	4.566	$1.163 imes 10^{-6}$	2.742	$1.936\! imes\!10^{-6}$	2.709	$1.960 imes 10^{-6}$	
3	1.848×10^{-1}	$2.872{ imes}10^{-11}$			2.941	1.805×10^{-6}	2.908	1.826×10^{-6}	
4	$1.556{ imes}10^{-1}$	3.411×10^{-11}			3.193	$1.663 imes 10^{-6}$	3.166	$1.677{ imes}10^{-6}$	
5	$9.695 imes 10^{-2}$	$5.476 imes 10^{-11}$			3.527	$1.505 imes 10^{-6}$	3.502	$1.516{ imes}10^{-6}$	
6	$3.852{ imes}10^{-2}$	$1.378 { imes} 10^{-10}$			4.003	$1.326\! imes\!10^{-6}$	3.975	$1.336 imes 10^{-6}$	
7					4.756	1.116×10^{-6}	4.719	$1.125 imes 10^{-6}$	
8					6.133	$8.656 imes 10^{-7}$	6.074	$8.740 imes 10^{-7}$	
9					9.732	$5.455 imes 10^{-7}$			

(2)1($\upsilon' = 0$ —9, J' = 1, +)-X³ $\Sigma_{0^+}^-$ (υ'' , J'' = 1, -), (2)1($\upsilon' = 0$ —9, J' = 1, +) -X³ Σ_1^- (υ'' , J'' = 1, -) 和 (1)0⁻($\upsilon' = 0$ —8, J' = 0, +)-X³ Σ_1^- (υ'' , J'' = 1, -) 1, -) 这 5 对跃迁的 $R_{\upsilon'J \to \upsilon''J''}$ 都不具有对角化. 因此, 这 6 对跃迁都不满足激光冷却 OH+离子的准则.

由表 6 可知, (1)2(v' = 0—6, J' = 2, +)– $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ 跃迁分别有 1 条和 8 条辐 射, 其 $A_{v'J' \rightarrow v''J'}$ 的数量级分别为 1 和 0, 并且这些弱 辐射在可见光区域, $g_{f_{v'J' \leftarrow v''J''}}$ 和 $\lambda_{v'J \leftarrow v''J''}$ 范围分别 为 4.619×10⁻⁸—4.552×10⁻⁷和 506.57—648.96 nm. 由表 7 可知, (2)2^{第一势阱} ($\upsilon' = 0$ —2, J' = 2, +)- $X^{3}\Sigma_{1}^{-}(\upsilon'', J'' = 1, -)$ 分別有 3 条和 5 条强辐 射,其 $A_{\upsilon'J' \rightarrow \upsilon''J'}$ 的数量级分别为 5 和 4, $gf_{\upsilon'J' \leftarrow \upsilon''J''}$ 的数量级分别为-3 和-4,并且这些强辐射在紫外 和可见光区域, $\lambda_{\upsilon'J' \leftarrow \upsilon''J''}$ 范围为 315.71—429.55 nm, 本文获得的 (0, 0) 和 (1, 0) 带的 $\lambda_{\upsilon'J' \leftarrow \upsilon''J''}$ 分别比 实验值^[29]大 0.37 nm(0.10%) 和 0.29 nm(0.088%). 由表 8 可知, (2)2^{第一势阱} ($\upsilon' = 0$ —2, J' = 2, +)-(1)2($\upsilon' = 0$ —6, J' = 2, -) 分别有 3 条和 7 条辐 射,其 $A_{v'J' \rightarrow v''J''}$ 的数量级分别为 0 和-1,并且这些 弱辐射的光谱范围从中红外延伸到近红外光区域, $gf_{v'J' \leftarrow v''J''}$ 和 $\lambda_{v'J' \leftarrow v''J''}$ 范围分别为 1.420×10⁻⁸— 1.101×10⁻⁶和876.51—2999.75 nm. 因此, (2)2^{第—势阱} (v' = 0—2, J' = 2, +)-X³ Σ_1^- (v'', J'' = 1, -) 跃 迁是 (2)2^{第—势阱} (v' = 0—2, J' = 2, +) 态 $\tau_{v'J'}$ 的 主要贡献者.

由表 9 可知, (2)1(v' = 0—9, J' = 1, +)-X³ $\Sigma_{0+}^{-}(v'', J'' = 1, -)$ 分别有 9 条和 26 条强辐射, 其 $A_{v'J' \rightarrow v''J'}$ 的数量级分别为 5 和 4, 并且这些强辐射在紫外和可见光区域, $gf_{v'J' \leftarrow v''J''}$ 和 $\lambda_{v'J' \leftarrow v''J''}$ 范围分别为 3.517×10⁻⁵—2.016×10⁻³ 和 275.22—434.47 nm, 本文获得的 (0,0) 和 (1,0) 带的 $\lambda_{v'J' \leftarrow v''J''}$ 仅分别比实验值^[29]大 0.13 nm(0.035%) 和 0.08 nm (0.023%). 由表 10 可知, (2)1(v' = 0—9, J' = 1, +)-X³ $\Sigma_{1-}^{-}(v'', J'' = 1, -)$ 分别有 4 条和 34 条辐射, 其 $A_{v'J' \rightarrow v''J''}$ 的数量级分别为 2 和 1, 并且这些弱辐射的光谱范围从中红外延伸到可见光区域, $gf_{v'J' \leftarrow v''J''}$ 范围分别为 1.112×10⁻⁷—9.652×10⁻⁶和413.71—2951.75 nm. 因此, (2)1(v' = 0—9, J' = 1, +)-X³ $\Sigma_{0+}^{-}(v'', J'' = 1, -)$ 是 (2)1(v' = 0—9, J' = 1, +)-X³ $\Sigma_{0+}^{-}(v'', J'' = 1, -)$ 是 (2)1(v' = 0—9, J' = 1, +) Σ_{0+}

由表 11 可知, (1)0⁻(v' = 0—8, J' = 0, +)— X³ Σ_1^- (v'', J'' = 1, -)分别有 9条和 23条强辐 射,其 $A_{v'J' \rightarrow v''J''}$ 的数量级分别为 5和 4,并且这些 强辐射在紫外和可见光区域, $gf_{v'J' \leftarrow v''J''}$ 和 $\lambda_{v'J' \leftarrow v''J''}$ 范围分别为 1.167×10⁻⁵—6.722×10⁻⁴和 274.53— 432.84 nm,本文获得的 (0,0)和 (1,0)带的 $\lambda_{v'J' \leftarrow v''J''}$ 分别比实验^[29]稍大 0.16 nm (0.044%)和 0.14 nm (0.042%).

目前没有理论和实验报道 (1)2(v' = 0 - 6, J' = 2, +), (2)2^{第—势阱} (v' = 0 - 2, J' = 2, +), (2)1(v' = 0 - 9, J' = 1, +) 和 (1)0⁻(v' = 0 - 8, J' = 0, +) 的 $\tau_{v'J'}$. 为了与实验^[17,18] 和理论^[35,39] 相比较,本文也 计算了 A³П(v' = 0) 态的 $\tau_{v'=0}$,本文的计算值为 2.425 µs,可见与实验值^[17,18] 和理论值^[35,39] 符合得 很好. 由表 12 可知, (1)2(v' = 0 - 6, J' = 2, +) 的 $\tau_{v'J'}$ 在 3.852×10⁻² - 2.129×10⁻¹ s 之间, Γ_r 在 2.494× 10⁻¹¹ - 1.378×10⁻¹⁰ cm⁻¹ 之间,并且 $\tau_{v'J'}$ 随着 v'的 增大而逐渐缩短, Γ_r 随着 v'的增大而逐渐增宽; (2)2^{第—势阱} (v' = 0 - 2, J' = 2, +), (2)1(v' = 0 - 9, J' = 1, +) 和 (1)0⁻(v' = 0 - 8, J' = 0, +) 的 $\tau_{v'J'}$

都约为几微秒,并且这3个态的 *τ_{v'}*,都是随着 *v*'的 增大而逐渐增长, *Γ*_r 随着 *v*'的增大而逐渐变窄,这 意味着从较低能级产生的辐射比从较高能级产生 的辐射更容易发生.

本文简要研究了 $(2)2^{\text{第}-\text{$^{\text{$^{\text{B}}$}\text{$^{\text{B}}$}}}$ (v' = 0—2, +), (2)1(v' = 0—9, +)和 (1)0⁻(v' = 0—8, +)态的 $\tau_{v'J}$ 随 J'的变化关系,如图 4—图 6 所示.这 3 个态 的 $\tau_{v'J}$ 都是随着 J'的增大而逐渐增长;并且对于 (2)2^{第—势阱}(v' = 0—2, +)态,当 $v' = 0, J' \leq 19, v' =$ 1, $J' \leq 15$ 和 $v' = 2, J' \leq 9$ 时, $\tau_{v'J}$ 随 J'的变化 分别小于 9.8, 7.1和 4.6 µs; 对于 (2)1(v' = 0—9, +) 态, $\tau_{v'J}$ 随 J'的变化为十几纳秒到十几微秒; 对于 (1)0-(v' = 0—8, +)态, $\tau_{v'J}$ 随 J'的变化为几百纳秒 到几十微秒.本文所有数据集可在科学数据银行 数据库 https://www.doi.org/10.57760/sciencedb. j00213.00058中访问获取,包括 14个 A-S 态和

图 4 (2)2 第一势阱 (v' = 0-2, +) 态的辐射寿命随转动 量子数 J'的分布

Fig. 4. Distributions of the radiative lifetime varying as the J' of the (2)2 1st well ($\upsilon' = 0-2, +$) state.

图 5 (2)1(v' = 0-9, +)态的辐射寿命随转动量子数 J'的 分布

Fig. 5. Distributions of the radiative lifetime varying as the J' of the $(2)1(\upsilon' = 0-9, +)$ state.

27 个 Ω 态的势能曲线; 6 个 Ω 态 $[X^{3}\Sigma_{0+}^{-}, X^{3}\Sigma_{1}^{-}, (1)2, (2)2, (2)1 和 (1)0^{-}] 之间的 7 对跃迁偶极距;$ (2)2^{第—势阱} (v' = 0 - 2, +), (2)1(v' = 0 - 9, +) 和 (1)0⁻(v' = 0 - 8, +)态的辐射寿命随转动量子数 J'的分布.

图 6 $(1)0^{-}(v' = 0^{-8}, +)$ 态的辐射寿命随转动量子数 Jⁿ的分布

Fig. 6. Distributions of the radiative lifetime varying as the J' of the $(1)0^-(v' = 0-8, +)$ state.

4 结 论

本文利用优化的 icMRCI+Q和动力学方法深 入研究了 OH+前 5 个离解极限对应的 14 个 A-S 态和相应的 27 个 Ω 态精确的电子结构、振动-转 动结构和辐射跃迁特性,获得的光谱和跃迁数据与 现有实验值符合得很好,意味着本文对电子结构和 振动-转动结构性质的计算水平是可靠的,可为红 外、可见光和紫外观测提供重要的数据支撑.另外, 研究了 OH 自由基的光电离,确定了 $X^{3}\Sigma^{-}/a^{1}\Delta/b^{1}\Sigma^{+}/A^{3}\Pi/c^{1}\Pi(OH^{+}) \leftarrow X^{2}\Pi(OH)$ 精确的垂直电离能和 绝热电离能,主要研究结论如下.

1) (1)2(v' = 0—6, J' = 2, +)的 $\tau_{v'J}$ 随着 v'的增大而逐渐缩短, Γ_{r} 随着 v'的增大而逐渐增宽; (1)2(v' = 0—6, J' = 2, +)- $X^{3}\Sigma_{1}^{-}(v'', J'' = 1, -)$ 自发辐射较弱.

2) (2)2^{第—势阱}(v' = 0—2, J' = 2, +), (2)1(v' = 0—9, J' = 1, +) 和 (1)0⁻(v' = 0—8, J' = 0, +) 的 $\tau_{v'J}$ 都是随着 v'的增大而逐渐增长, Γ_r 随着 v'的增大而逐渐变窄; (2)2^{第—势阱}(v' = 0—2, J' = 2, +)- $X^3\Sigma_1^-(v'', J'' = 1, -$), (2)1(v' = 0—9, J' = 1, +)- $X^3\Sigma_{0^+}^-(v'', J'' = 1, -$) 和 (1)0⁻(v' = 0—8, J' = 0, +)- $X^3\Sigma_1^-(v'', J'' = 1, -$) 的 自发辐射很 强,并且这 3 个系统的强辐射都在波长为 274.53434.47 nm 的紫外和可见光区域; (2)2^{第一势阱} (v' = 0—2, J' = 2, +)-(1)2(v' = 0—6, J' = 2, -)和 (2)1(v' = 0—9, J' = 1, +)-X³ $\Sigma_1^-(v'', J'' = 1$, -)的自发辐射非常弱,它们对 (2)2^{第一势阱} (v' = 0—2, J' = 2, +)和 (2)1(v' = 0—9, J' = 1, +)态的 $\tau_{v'J'}$ 贡献较小.

3) (2)2^{第-势阱}($\upsilon' = 0$ -2, +), (2)1($\upsilon' = 0$ -9, +) 和 (1) $0^-(\upsilon' = 0$ -8, +) 态的 $\tau_{\upsilon'J'}$ 都是随着 J'的增 大而逐渐增长.

参考文献

- Wyrowski F, Menten K M, Güsten R, Belloche A 2010 Astron. Astrophys. 518 A26
- [2] Gupta H, Rimmer P, Pearson J C, Yu S, Herbst E, Harada N, Bergin E A, Neufeld D A 2010 Astron. Astrophys. 521 L47
- [3] Van der Tak F F S, Nagy Z, Ossenkopf V, Makai Z, Black J H, Faure A, Gerin M, Bergin E A 2013 Astron. Astrophys. 560 A95
- [4] Barlow M J, Swinyard B M, Owen P J, Cernicharo J, Gomez H L, Ivison R J, Krause O, Lim T L, Matsuura M, Miller S, Olofsson G, Polehampton E T 2013 *Science* 342 1343
- [5] Aleman I, Ueta T, Ladjal D, Exter K M, Kastner J H, Montez Jr R, Tielens A G G M, Chu Y H, Izumiura H, McDonald I, Sahai R, Siódmiak N, Szczerba R, van Hoof P A M, Villaver E, Vlemmings W, Wittkowski M, Zijlstra A A 2014 Astron. Astrophys. 566 A79
- [6] Zhao D, Galazutdinov G A, Linnartz H, Krełowski J 2015 Astrophys. J. Lett. 805 L12
- [7] Rodebush W H, Wahl M H 1933 J. Chem. Phys. 1 696
- [8] Katsumata S, Lloyd D R 1977 Chem. Phys. Lett. 45 519
- [9]~ Van Lonkhuyzen H, De Lange C A 1984 $Mol.~Phys.~{\bf 51}~551$
- [10] Wiedmann R T, Tonkyn R G, White M G, Wang K, McKoy V 1992 J. Chem. Phys. 97 768
- [11] Cutler J N, He Z X, Samson J A R 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4577
- [12] Barr J D, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright T G 1999 J. Chem. Phys. 110 345
- [13] Garcia G A, Tang X F, Gil J F, Nahon L, Ward M, Batut S, Fittschen C, Taatjes C A, Osborn D L, Loison J C 2015 J. Chem. Phys. 142 164201
- [14] Helm H, Cosby P C, Huestis D L 1984 Phys. Rev. A 30 851
- [15] Levin J, Hechtfischer U, Knoll L, Lange M, Saathoff G, Wester R, Wolf A, Schwalm D, Zajfman D 2000 Hyperfine Interact. 127 267
- [16] Hechtfischer U, Levin J, Lange M, Knoll L, Schwalm D, Wester R, Wolf A, Zajfman D 2019 J. Chem. Phys. 151 044303
- [17] Curtis L J, Erman P 1977 J. Opt. Soc. Am. 67 1218
- [18] Möhlmann G R, Bhutani K K, De Heer F J, Tsurubuchi S 1978 Chem. Phys. 31 273
- [19] Bekooy J P, Verhoeve P, Meerts W L, Dymanus A 1985 J. Chem. Phys. 82 3868
- [20] Gruebele M H W, Müller R P, Saykally R J 1986 J. Chem. Phys. 84 2489
- [21] Varberg T D, Evenson K M, Brown J M 1994 J. Chem. Phys. 100 2487

- [22] Crofton M W, Altman R S, Jagod M F, Oka T 1985 J. Phys. Chem. 89 3614
- [23] Rehfuss B D, Jagod M F, Xu L W, Oka T 1992 J. Mol. Spectrosc. 151 59
- [24] Markus C R, Hodges J N, Perry A J, Kocheril G S, Müller H S P, McCall B J 2016 Astrophys. J. 817 138
- [25] Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215
- [26] Rodgers D J, Sarre P J 1988 Chem. Phys. Lett. 143 235
- [27] Rodgers D J, Batey A D, Sarre P J 2007 Mol. Phys. 105 849
- [28] Merer A J, Malm D N, Martin R W, Horani M, Rostas J 1975 Can. J. Phys. 53 251
- [29] Hodges J N, Bernath P F 2017 Astrophys. J. 840 81
- [30] Hodges J N, Bittner D M, Bernath P F 2018 Astrophys. J. 855 21
- [31] Meyer W 1974 Theoret. Chim. Acta 35 277
- [32] Hirst D M, Guest M F 1983 Mol. Phys. 49 1461
- [33] Saxon R P, Liu B 1986 J. Chem. Phys. 85 2099
- [34] de Vivie R, Marian C M, Peyerimhoff S D 1987 Chem. Phys. 112 349
- [35] Merchán M, Malmqvist P Å, Roos B O 1991 Theoret. Chim. Acta 79 81
- [36] Yarkony D R 1993 J. Phys. Chem. 97 111
- [37] Li X, Paldus J 2000 J. Mol. Struct. (Theochem) 527 165
- [38] Spirko J A, Mallis J T, Hickman A P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2395
- [39] Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J

R, Etxaluze M, Cernicharo J 2014 Astrophys. J. 794 33

- [40] Xavier F G D, Martínez-González M, Varandas A J C 2018 Chem. Phys. Lett. 691 421
- [41] Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559
- [42] MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2024-9-7]
- [43] Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101 (in Chinese)
 [朱宇豪, 李瑞 2024 物理学报 73 053101]
- [44] Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101 (in Chinese) [邢伟, 李胜周, 孙金锋, 李文 涛, 朱遵略, 刘锋 2022 物理学报 71 103101]
- [45] Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101 (in Chinese) [邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 物 理学报 72 163101]
- [46] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
- [47] Wilson A K, van Mourik T, Dunning Jr T H 1996 J. Mol. Struct. (Theochem) 388 339
- [48] Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572
- [49] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
- [50] Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317
- [51] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
- [52] Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167

DATA PAPERS

Theoretical investigation on spectroscopic characteristics of 14 Λ -S and 27 Ω states of OH⁺ cation^{*}

Xing Wei^{1)†} Li Sheng-Zhou¹⁾ Zhang Fang¹⁾ Sun Jin-Feng²⁾ Li Wen-Tao³⁾ Zhu Zun-Lüe²⁾

1) (College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China)

2) (School of Physics, Henan Normal University, Xinxiang 453000, China)

3) (Weifang University of Science and Technology, Shouguang 262700, China)

(Received 15 September 2024; revised manuscript received 11 October 2024)

Abstract

Based on the selection of appropriate active space and basis sets, and consideration of various physical effects such as scalar relativistic effect, core-valence electron correlation, complete basis set limit and spin-orbit coupling effect, the precise ionization energy of $X^{3}\Sigma^{-}/a^{1}\Delta/b^{1}\Sigma^{+}/A^{3}\Pi/c^{1}\Pi(OH^{+}) \leftarrow X^{2}\Pi(OH)$, and the potential energy curves of 14 A-S and 27 Ω states of OH⁺ are obtained by using the optimized icMRCI + Q method. The transition dipole moments between six Ω states $[X^3\Sigma_{0^+}^-, X^3\Sigma_1^-, (1)2, (2)2, (2)1, \text{ and } (1)0^-]$ are obtained by using the all electron icMRCI/cc-pCV5Z + SOC theory. The ionization energy, spectroscopic and vibrationalrotational transition data obtained in this work are in good agreement with the existing measurements. The findings in this work are as follows. 1) The radiation lifetimes of $(1)2(\upsilon'=0-6, J'=2, +)$ gradually decrease with v' increasing, while the radiation widths correspondingly increase; the spontaneous emissions of (1)2(v' = $0-6, J' = 2, +)-X^{3}\Sigma_{1}^{-}(\upsilon'', J'' = 1, -)$ are weak. 2) The radiation lifetimes of $(2)2^{1st well}(\upsilon' = 0-2, J' = 2, +),$ (2)1(v' = 0-9, J' = 1, +), and $(1)0^{-}(v' = 0-8, J' = 0, +)$ all gradually increase as v' increases, while their radiation widths narrow with υ' increasing; the spontaneous emissions of $(2)2^{1st \text{ well}}(\upsilon' = 0-2, J' = 2, +)-X^{3}\Sigma_{1}^{-1}$ $(v'', J'' = 1, -), (2)1(v' = 0-9, J' = 1, +) - X^{3}\Sigma_{0+}^{-}(v'', J'' = 1, -), \text{ and } (1)0^{-}(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (2)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (2)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v'', J'' = 1, -), (3)1(v' = 0-8, J' = 0, +) - X^{3}\Sigma_{1-}^{-}(v', J'' = 1, +) -$ (v'', J'' = 1, -) are strong. 3) The radiation lifetimes of $(2)2^{1\text{st well}}(v' = 0-2, +), (2)1(v' = 0-9, +), \text{ and } (1)0^{-}(v' = 0-2, +), (2)1(v' = 0-9, +)$ (0-8, +) all gradually increase with J' increasing. The datasets presented in this work, including the potential energy curves of 14 A-S and 27 Ω states, 7 pairs of transition dipole moments between the 6 Ω states $[X^3\Sigma_{0+}^-,$ $X^{3}\Sigma_{1}^{-}$, (1)2, (2)2, (2)1, (1)0⁻], and distributions of the radiative lifetime varying with the J' of the (2)2^{1st well}(v' = $(0-2, +), (2)1(v' = 0-9, +), \text{ and } (1)0^{-}(v' = 0-8, +) \text{ states may be available at https://www.doi.org/10.57760/$ sciencedb.j00213.00058. (Data private access link https://www.scidb.cn/s/B7buIr).

Keywords: potential energy curves, spin-orbit coupling, transition dipole moments, spectroscopic and transition data

PACS: 31.50.Df, 31.15.aj, 95.30.Ky, 33.70.Ca

DOI: 10.7498/aps.73.20241301

CSTR: 32037.14.aps.73.20241301

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097, 12074328), the Natural Science Foundation of Henan Province, China (Grant No. 242300420263), the Foundation of Henan Educational Committee (Grant Nos. 21A140023, 25B140003), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.

[†] Corresponding author. E-mail: wei19820403@163.com

物理学报Acta Physica Sinica

Institute of Physics, CAS

OH⁺离子14个Λ-S态和27个Ω态光谱性质的理论研究 那伟 李胜周 张昉 孙金锋 李文涛 朱遵略

Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH⁺ cation Xing Wei Li Sheng-Zhou Zhang Fang Sun Jin-Feng Li Wen-Tao Zhu Zun-Lüe 引用信息 Citation: Acta Physica Sinica, 73, 223101 (2024) DOI: 10.7498/aps.73.20241301 在线阅读 View online: https://doi.org/10.7498/aps.73.20241301 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

AIH分子10个 Λ-S态和26个 Ω态光谱性质的理论研究 Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule 物理学报. 2023, 72(16): 163101 https://doi.org/10.7498/aps.72.20230615

BH分子8个 Λ -S态和23个 Ω 态光谱性质的理论研究

Theoretical study on spectroscopic properties of 8 Λ -S and 23 Ω states for BH molecule 物理学报. 2022, 71(10): 103101 https://doi.org/10.7498/aps.71.20220038

 $SiH^+(X^1\Sigma^+)$ 的势能曲线、光谱常数、振转能级和自旋--轨道耦合理论研究

Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin–orbit coupling interaction on SiH⁺($X^1 \Sigma^+$) ion

物理学报. 2021, 70(15): 153301 https://doi.org/10.7498/aps.70.20210450

考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质 Spectroscopic and transition properties of SeH anion including spin-orbit coupling 物理学报. 2021, 70(3): 033101 https://doi.org/10.7498/aps.70.20201413

两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变

Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction 物理学报. 2021, 70(8): 083401 https://doi.org/10.7498/aps.70.20201456

自旋-轨道耦合系统的电子涡旋

Electron vortices in spin-orbit coupling system 物理学报. 2022, 71(21): 210301 https://doi.org/10.7498/aps.71.20220751