硅酸锆对 Pb₃O₄/Mg/PTFE 红外诱饵剂 远红外辐射性能影响^{*}

王冰¹⁾²⁾ 陈宗胜²⁾ 时家明^{2)†} 许河秀^{1)‡}

1) (空军工程大学防空反导学院, 西安 710051)

2) (国防科技大学,脉冲功率激光技术国家重点实验室,合肥 230031)

(2024年7月29日收到;2025年1月3日收到修改稿)

传统镁/聚四氟乙烯 (Mg/PTFE) 红外诱饵剂被广泛应用于对抗红外制导武器,但随着红外制导技术发展, 其长波红外辐射不足、燃烧温度过高等缺点令其难以对抗新型红外制导弹药.针对这一问题,提出了采用硅酸 锆 (ZrSiO₄) 作为添加剂来提高传统诱饵剂红外辐射的方法.以四氧化三铅/镁粉/聚四氟乙烯 (Pb₃O₄/Mg/PTFE) 红外诱饵剂作为基础配方,设计了 7 种配方,通过实验研究了不同 ZrSiO₄ 添加量对 Pb₃O₄/Mg/PTFE 红外诱饵 剂效能的影响.首先测试了基础配方 (ZrSiO₄ 添加量为 0) 和 12% ZrSiO₄ 添加量配方的热分解性能,然后用 7.5— 14 µm 远红外热像仪测量了压制成药柱样品的燃烧过程,并计算出每个样品的燃烧时间、燃烧温度、质量燃 速、辐射面积、远红外辐射亮度和辐射强度.结果表明:添加 ZrSiO₄ 后,混合红外诱饵剂反应放热峰值减小,热 效应变差;随着 ZrSiO₄ 添加量增大,样品燃烧时间持续变长,燃烧温度持续降低.当 ZrSiO₄添加比例为 18% 时, 样品反应时间最长达 3.73 s,燃烧温度最低达 765.46 ℃;远红外辐射亮度和辐射强度均随着 ZrSiO₄添加比例升 高先增大后减小,且当 ZrSiO₄ 添加比例为 6% 时分别达到最大值 2461 W/(m²·sr) 和 142 W/sr; 当 ZrSiO₄添加比 例在 18% 以内和 9% 以内时分别对基础配方的远红外辐射亮度和辐射强度有提升作用.

关键词:红外诱饵剂,热分解性能,导温系数,辐射强度 PACS:44.40.+a,42.70.Km,82.33.Vx CSTR:32037.14.aps.74.20241048

DOI: 10.7498/aps.74.20241048

1 引 言

红外制导武器能够对目标实施全方位、多角度 精确打击,已成为战争中进攻利器,发挥着至关重 要的作用.红外诱饵剂作为对抗红外制导武器主要 手段,被广泛应用于保护装备免受敌方红外制导弹 药精确打击^[1-2].然而随着科技不断进步,红外制导 弹药对目标和红外诱饵剂的辨识能力也在不断提 高,传统镁/聚四氟乙烯 (Mg/PTFE) 红外诱饵剂 存在燃烧温度过高以及长波红外辐射不足等缺点, 令其难以对抗新型红外制导弹药.因此,对传统红 外诱饵剂进行改进成为当前研究的热点^[3-6]. Elbasuney 等^[7]将石墨和三氧化二铁 (Fe₂O₃) 纳米颗粒 添加到聚四氟乙烯/镁铝合金/氟橡胶配方中进行 改进,通过实验发现当添加 2% 的 Fe₂O₃ 纳米颗粒 和 6% 的石墨时,改进配方光谱辐射性能表现较 好.金青君等^[8]利用 $\alpha\beta$ 合金作为添加剂对传统 Mg/PTFE 红外诱饵剂进行改进,通过理论计算和 实验研究发现,随 $\alpha\beta$ 合金含量增大,产物中氟化 镁 (MgF₂) 质量比例逐渐减小而辐射强度的主要贡 献源 β -F 和 α -C 质量比例逐渐增大,从而导致混 合诱饵剂辐射强度不断提高,其中 α -C 最高质量 比例接近 50%. 胡亚鹏等^[9]将四氯化钛添加进传

^{*} 国防预研基金 (批准号: HJJ2017-0671) 资助的课题.

[†] 通信作者. E-mail: shijiaming17@nudt.edu.cn

[‡] 通信作者. E-mail: hxxuellen@gmail.com

^{© 2025} 中国物理学会 Chinese Physical Society

统 Mg/PTFE 红外诱饵剂中, 经过一系列工序将 混合配方制成薄片型红外诱饵材料后进行实验测 试, 结果表明该材料平均燃烧温度达到 855 ℃, 单 条该型薄片远红外辐射强度达到 158 W/sr. 杨谦^[10] 在烟火药薄膜中添加乌洛托品、氧化铁、硝化棉、 石墨、硼等5 种添加剂后经实验研究发现, 添加 15% 的硼粉使原始药剂中远红外辐射能量、燃烧温 度、燃速分别提升 144 J/(sr·g), 84 J/(sr·g), 220 ℃, 0.21 g/s, 对药剂 4 项性能的提升作用最明显.

根据红外辐射原理,物体发射率越高,其辐射 越强[11]. 红外诱饵剂燃烧过程中会发生一系列复 杂化学反应,燃烧产生火焰由多种状态反应产物组 成^[12],其中固态或液态产物(即凝聚相产物)对红 外辐射贡献最大[11].因此,为提高红外诱饵剂远红 外波段的辐射,可以在红外诱饵剂反应剩余物中增 加远红外波段具有高发射率且反应温度下为凝聚 相的物质. 增加方式包括两种: 第一种是向红外诱 饵剂中添加不参与反应的添加剂,使该添加剂在红 外诱饵剂反应过程中被加热至高温,并在远红外波 段贡献辐射,这种方式要求该添加剂自身具有高远 红外发射率和较高熔点; 第二种是向红外诱饵剂中 添加能参与反应的添加剂,且反应后生成高远红外 发射率产物,使生成产物在远红外波段贡献辐射, 这种方式要求该添加剂能够和红外诱饵剂反应生 成具有高远红外发射率和较高熔点产物. ZrSiO₄ 在远红外波段发射率达到 0.82-0.99 [13], 这表明其 有助于提高红外诱饵剂远红外波段的辐射,同时 ZrSiO₄ 具有 2800 ℃ 的高熔点, 且不会与 Pb₃O₄, Mg和PTFE发生反应,因此ZrSiO₄符合上述第 一种通过添加剂提高远红外波段辐射的方式,结合 前文研究^[14],引入 Pb₃O₄ 后对 Mg/PTFE 红外诱 饵剂产生正向影响, 且质量比 m(Mg): m(PTFE): m(Pb₃O₄)=10:3:7时综合效果最佳,适合作为基 础配方继续进行研究. 所以本文采用 ZrSiO₄ 作为 添加剂,并以质量比 m(Mg): m(PTFE): m(Pb₃O₄)= 10:3:7 的 Pb₃O₄/Mg/PTFE 红外诱饵剂作为基础 配方, 通过改变 ZrSiO₄ 添加量设计了 7 种配方, 制 备了混合红外诱饵剂药柱样品,通过实验研究了 ZrSiO₄对 Pb₃O₄/Mg/PTFE 红外诱饵剂效能影响.

2 实 验

2.1 实验试剂与仪器

实验试剂包括 ZrSiO4 粉、Mg 粉、Pb3O4 粉、

PTFE 粉. 药剂称重选用上海奔普仪器科技有限公司生产的电子天平,精度为 0.01 g; 药柱样品制作选用天津天光光学仪器有限公司的 HY-12 型红外 压片机和直径 30 mm 圆柱型模具,压片机压力设置为 15 MPa; 热分解性能测试选用美国 TA 有限 公司生产的 SDT-Q600 同步热分析仪,天平灵敏 度为 0.1 µg, 温度范围为室温至 1500 ℃,设置加 热速率 20.0 ℃/min,测试气体环境为空气;远红 外辐射测量选用德国 InfraTec 有限公司生产的 VarioCAMHD875sl 红 外 热像仪,拍摄频率为 30 f/s,光谱范围为 7.5—14 µm.

2.2 实验过程

2.2.1 样品制备

本实验采用质量比为 m(Mg): m(PTFE): m(Pb₃O₄) = 10:3:7 的 Pb₃O₄/Mg/PTFE 红外诱 饵剂作为基础配方^[14],通过改变 ZrSiO₄添加量设 计了 7 种配方,具体配方如表 1 所示.每种配方制 作 2 个质量为 16 g 的药柱样品,制作步骤有: 1) 称 重 (按照设计配方计算并称取相应质量试剂粉末); 2) 混合 (将各种试剂人工混合均匀); 3) 压片 (将 混合红外诱饵剂粉末放入模具中,并用红外压片机 进行压片,保压时间 20 s); 4) 退模 (退模取出药柱 样品).按照该方法共制作 14 个药柱样品进行实 验,并取每种配方 2 个样品实验结果的平均值作为 该种配方实验结果.

表 1 7 种不同 ZrSiO₄ 添加量混合红外诱饵剂配 方成分比例

Table 1. Compositional ratios of 7 types of composite infrared decoys with varied $ZrSiO_4$.

Formula	$m (Pb_3O_4)/\%$	m (Mg) / %	m (PTFE) / %	$m (\text{ZrSiO}_4) / \%$
1	35	50	15	0
2	33.95	48.5	14.55	3
3	32.9	47	14.1	6
4	31.85	45.5	13.65	9
5	30.8	44	13.2	12
6	29.75	42.5	12.75	15
7	28.7	41	12.3	18

制作过程存在一定损耗,因此制作成的药柱样 品实际质量可能少于设计质量 16 g. 表 2 列出了 14 个不同 ZrSiO₄ 添加量混合红外诱饵剂药柱样品 实际质量和高度,图 1 所示为 14 个不同 ZrSiO₄ 添 加量混合红外诱饵剂药柱样品实物. 表 2 14 个不同 $ZrSiO_4$ 添加量混合红外诱饵剂药柱样品质量和高度 Table 2. Weight and height of 14 samples of composite infrared decoys with varied $ZrSiO_4$.

Formula -	Ι			II	Average		
	Weight/g	$\mathrm{Height}/\mathrm{mm}$	Weight/g	$\mathrm{Height}/\mathrm{mm}$	Weight/g	$\mathrm{Height}/\mathrm{mm}$	
1	15.99	12.97	15.98	13.01	15.99	12.99	
2	15.99	12.96	15.98	12.90	15.99	12.93	
3	15.99	12.95	15.99	12.85	15.99	12.90	
4	15.96	12.84	15.96	12.83	15.96	12.84	
5	15.97	12.61	15.97	12.75	15.97	12.68	
6	15.99	12.53	15.95	12.74	15.97	12.64	
7	15.98	12.45	15.98	12.41	15.98	12.43	

图 1 14个不同 ZrSiO₄ 添加量混合红外诱饵剂药柱样品 实物图

Fig. 1. Photograph of 14 samples of composite infrared decoys with varied $\rm ZrSiO_4.$

2.2.2 燃烧实验

红外诱饵剂燃烧测试实验在室外进行,环境温度为 23 ℃,实验场景设置如图 2 所示,其中实验样品放置于红外热像仪正前方 8 m 处.将 14 个不同 ZrSiO₄添加量混合红外诱饵剂药柱样品按序号依次点燃,使用红外热像仪记录每个药柱样品完整燃烧过程,并用配套软件 IRBIS3 将数据和红外图像进行处理.

图 2 药柱样品燃烧实验及测试场景

Fig. 2. Experimental setup and testing scenarios for combustion of samples.

3 结果与讨论

3.1 添加硅酸锆对混合红外诱饵剂热分解 性能的影响

为研究添加 ZrSiO₄ 对 Pb₃O₄/Mg/PTFE 红 外诱饵剂热分解性能的影响,利用 SDT-Q600 型 同步热分析仪分别测试了 1 号配方 (基础配方)和 5 号配方 (ZrSiO₄ 添加比例为 12% 配方) 热分解过 程,测试所得的热分解性能图 (即 TG-DSC 图) 如 图 3 和图 4 所示.

图 3 所示为 1 号配方 (即基础配方)TG-DSC 图,其中棕色曲线代表 DSC 曲线 (即 HeatFlow 曲 线,反映热量变化),绿色曲线代表 TG 曲线 (即 Weight 曲线, 反映质量变化), 蓝色曲线代表 DTG 曲线 (表示质量变化率). 根据 DTG 曲线分析, 样 品在升温过程中出现了5个质量变化较大的反应 过程. 从温度轴开始观察, 在 320.30 ℃ 时, DTG 曲线上出现了第1个峰(正向), DSC曲线呈现出 一个微小吸热峰, 该过程是 PTFE 熔化过程; 从 441.68 ℃ 到 550.13 ℃ 在 DTG 曲线上出现第 2 个 峰(正向), 对应 TG 曲线迅速下降, 显示失重率为 10.84%. 在这一过程中, DSC 曲线呈现出一个放热 峰, 其起始温度为 466.87 ℃, 峰温为 519.84 ℃. 综 合以上现象判断该过程是 PTFE 聚合物连接键 (C-C键)断裂并分解生成 C₂F₄ 过程 (在空气气 氛中, PTFE 解聚为放热反应; 而在惰性气体气氛 中,则为吸热反应^[15].本实验所用气体环境为空气, 因此 PTFE 解聚过程属于放热反应); 从 550.13— 595.64 ℃在 DTG 曲线上出现了第 3 个峰 (正向), 其峰值小于第2个,表明该过程失重速率小于第 2个过程. 对应 TG 曲线显示失重率为 2.38%. 当温 度高于 540 ℃ 时, Pb₃O₄ 开始分解为氧化铅 (PbO) 和氧气 (O₂), 为吸热反应. 而在该阶段仍存在部分 PTFE 未完成分解, 所以, 该阶段在进行 Pb₃O₄ 和

PTFE 这两种物质的分解,两个分解反应热量中和 导致该过程对应 DSC 曲线呈稳定状态; 从 595.64— 680.86 ℃在 DTG 曲线上出现第 4 个峰 (正向), 其峰值小于第3个峰值,即失重速率比第3个过程 小,表明 PTFE 已经完全分解,仅有未分解完的 Pb3O4 在发生分解失重. 对应 TG 曲线显示该过程 失重率为 3.06%. 对应 DSC 曲线上, 从 644.78 ℃ 开始出现一个较大吸热峰,峰温为 651.8 ℃,主要 是由 Mg 熔化吸热引起 (Mg 熔点为 648 ℃, 而图 中所得 Mg 熔点为 644.78 ℃, 测试误差为 0.4%), 同时 Pb₃O₄分解吸热也对该吸热峰有部分贡献; 从 680.86—1012.40 ℃ 在 DTG 曲线上出现第 5 个 峰 (负向), 对应 TG 曲线迅速上升, 显示该过程样 品质量增加 38.02%, 该过程结束后, 样品最终质量 超过初始质量.同时,在DSC曲线上出现了一个 较大放热峰,峰温为888.90℃,放热量较多.综合 分析认为此处进行的是红外诱饵剂中的 Mg 与氧 化剂以及空气氛围中 O₂发生反应^[14],反应比较剧 烈,放热效果明显. 增重主要是因为 Mg 和空气中 O₂反应生成了 MgO 等固体.

图 3 Pb₃O₄/Mg/PTFE 红外诱饵剂基础配方 TG-DSC 曲线 Fig. 3. TG-DSC curve of basic formula of Pb₃O₄/Mg/PT-FE composite infrared decoy.

图 4 所示为 5 号配方 (即添加 ZrSiO₄ 比例为 12% 配方)TG-DSC 图, 与图 3 进行对比发现, 添 加 ZrSiO₄后, 温度低于 700 ℃ 时, 反应物物态变 化温度、失重阶段和失重比例与基础配方基本一 致. 然而当温度高于 700 ℃ 以后, 反应放热峰变为 两个, 峰温分别位于 861.27 ℃ 和 941.49 ℃, 且这 两个峰型和峰值基本一致, 与基础配方只有一个反 应放热峰不同. 但两个反应放热峰峰值相较于基础 配方有所减小, 主要是因为 ZrSiO₄ 不参加反应导 致混合红外诱饵剂中能够反应的成分含量降低, 单 位质量药剂反应放热减小,热效应变差.同时, ZrSiO₄需要吸收部分基础配方反应产生的热量, 因此可以推断,添加 ZrSiO₄可能会降低反应温度.

图 4 ZrSiO₄添加量为 12% 时 Pb₃O₄/Mg/PTFE/ ZrSiO₄ 混合红外诱饵剂 TG-DSC 曲线

Fig. 4. TG-DSC curve of $Pb_3O_4/Mg/PTFE/ZrSiO_4$ composite infrared decoy with 12% addition of $ZrSiO_4$.

对1号(即基础配方)和5号配方(即添加 ZrSiO₄比例为12%配方)测试反应剩余物进行 X射线衍射(XRD)测试,图5所示为得出的反应 剩余物XRD测试图,由图5可知,1号和5号配 方的反应剩余物中均检出C,Mg,MgO,MgF₂,Pb, PbO,Li₂MgCd等物质,其中C,MgO,MgF₂,Pb 为混合红外诱饵反应产物^[15],PbO为Pb₃O₄分解产 生,Mg均为未完全参与反应的剩余物,Li₂MgCd 为所用Mg粉中存在的少量杂质,因为实际应用中

Fig. 5. XRD curve of basic formula of $Pb_3O_4/Mg/PTFE$ composite infrared decoy (No.1) and $Pb_3O_4/Mg/PTFE/ZrSiO_4$ composite infrared decoy with 12% addition of ZrSiO₄ (No.5).

要考虑到成本因素,故所使用的 Mg 粉纯度未达到 最高,其中存在少量 Li₂MgCd 杂质.同时,5 号配 方中检出 ZrSiO₄,而 1 号配方中无相应波峰即未 检出 ZrSiO₄.

3.2 硅酸锆添加量对混合红外诱饵剂燃烧 特性的影响

对药柱样品燃烧实验红外图像进行处理,得出7种不同 ZrSiO₄添加量混合红外诱饵剂配方燃烧时间、燃烧温度和质量燃速数据,具体结果见表3.图6所示为7种不同 ZrSiO₄添加量混合红外诱饵剂配方反应温度.

图 6 7种不同 ZrSiO₄ 添加量混合红外诱饵剂配方反应 温度

Fig. 6. Combustion temperature of 7 types of composite infrared decoys with varied ZrSiO_4 .

根据图 6 显示,随着 ZrSiO₄ 添加比例升高,样 品反应温度持续降低,当添加比例小于 18% 时,反 应温度均低于基础配方.这是因为 ZrSiO₄ 不参与 基础配方的反应,并且其添加方式为等质量替代 基础配方.由于基础配方在反应中产生热量,在 ZrSiO₄ 含量增大的过程中,基础配方比例减小,从 而产生热量也减小.同时, ZrSiO₄ 需要吸收热量以 提升自身温度, 又消耗部分药剂产生的热量.因此, 从1号到7号配方,随着 ZrSiO₄ 添加比例升高, 混 合红外诱饵剂产生热量不断减小,导致反应温度持 续降低.

图 7 所示为 7 种混合红外诱饵剂配方燃烧时间和质量燃速图,分析图中数据变化规律可知,随着 ZrSiO₄ 添加比例升高 (1号—7号配方),样品燃烧时间持续增加,质量燃速持续减小,主要受导温系数影响^[14,16].导温系数越大,热量传导越快,而药柱样品燃烧是粒状扩散燃烧,属于层状燃烧^[17],燃烧第 1 步是反应物由固态融化气化变为可反应状态,这也是最重要一步,热量传导越快,未反应区越快过渡为反应区,反应进程就越快.

图 7 7种不同 ZrSiO₄添加量混合红外诱饵剂配方燃烧 时间和质量燃速

Fig. 7. Combustion time and burning rate of 7 types of composite infrared decoys with varied ZrSiO_4 .

可采用最简单的模型 (即把 Pb₃O₄, Mg, PTFE, ZrSiO₄ 这 4 种物质的混合物看作沿热流传递方向 串联排列) 来计算 Pb₃O₄/Mg/PTFE/ZrSiO₄ 混合 红外诱饵剂导热系数^[18],则其导热系数:

表 3 7种不同 ZrSiO4 添加量混合红外诱饵剂配方燃烧时间、温度和燃速

Table 3.	Combution time, temperature, as	d burning rate of 7	types of composite infrared	decoys with varied $ZrSiO_4$
----------	---------------------------------	---------------------	-----------------------------	------------------------------

	Ι				II			Average		
Formula	$T/^{\circ}\mathbb{C}$	Combustion time/s	$\begin{array}{c} \text{Burning} \\ \text{rate}/(\textbf{g}{\cdot}\textbf{s}^{-1}) \end{array}$	$T/^{\circ}\mathbb{C}$	Combustion time/s	${ m Burning} \over { m rate}/({ m g}{ m \cdot}{ m s}^{-1})$	$T/^{\circ}$ C	Combustion time/s	$\frac{\rm Burning}{\rm rate/(g{\cdot}s^{-1})}$	
1	857.00	3.01	5.32	823.90	3.06	5.23	840.50	3.03	5.27	
2	822.58	3.09	5.18	852.19	3.07	5.21	837.39	3.08	5.19	
3	830.89	3.16	5.06	834.05	3.11	5.14	832.47	3.14	5.10	
4	817.44	3.37	4.75	824.39	3.25	4.92	820.91	3.31	4.84	
5	809.42	3.44	4.65	798.71	3.53	4.53	804.06	3.49	4.59	
6	782.70	3.71	4.31	788.54	3.62	4.42	785.62	3.67	4.37	
7	761.32	3.77	4.24	769.59	3.69	4.34	765.46	3.73	4.29	

- $\lambda = \lambda_{\rm Pb_3O_4} \lambda_{\rm Mg} \lambda_{\rm PTFE} \lambda_{\rm ZrSiO_4} / \left(\varPhi_{\rm Pb_3O_4} \lambda_{\rm Mg} \lambda_{\rm PTFE} \lambda_{\rm ZrSiO_4} \right)$
 - $+ \Phi_{Mg} \lambda_{Pb_3O_4} \lambda_{PTFE} \lambda_{ZrSiO_4}$
 - $+ \Phi_{ ext{PTFE}} \lambda_{ ext{Pb}_3 ext{O}_4} \lambda_{ ext{Mg}} \lambda_{ ext{ZrSiO}_4}$

$$+ \varphi_{\mathrm{ZrSiO}_4} \lambda_{\mathrm{Pb}_3\mathrm{O}_4} \lambda_{\mathrm{Mg}} \lambda_{\mathrm{PTFE}}), \qquad (1)$$

比热容为

$$c = \zeta_{\mathsf{Pb}_3\mathsf{O}_4} c_{\mathsf{Pb}_3\mathsf{O}_4} + \zeta_{\mathsf{Mg}} c_{\mathsf{Mg}} + \zeta_{\mathsf{PTFE}} c_{\mathsf{PTFE}}$$

$$+\zeta_{\rm ZrSiO_4}c_{\rm ZrSiO_4},\tag{2}$$

导温系数为

$$\alpha = \lambda / (\rho c). \tag{3}$$

(1) 式—(3) 式中, Φ 为体积分数, ζ 为质量分数, ρ
 为密度; Pb₃O₄, Mg, PTFE 和 ZrSiO₄ 物理性质^[19,20]
 如表 4 所示.

图 8 所示为计算所得 7 种不同 ZrSiO₄ 添加量 混合红外诱饵剂配方的导温系数. 由图 8 可知, 随 着 ZrSiO₄ 添加量增大 (1 号—7 号配方), 导温系数 持续减小, 因此 1 号—7 号配方质量燃速也持续减 小, 和导温系数变化趋势—致, 这表明添加 ZrSiO₄ 可以延长混合红外诱饵剂作用时间.

图 8 7种不同 $ZrSiO_4$ 添加量混合红外诱饵剂配方导温系数 Fig. 8. Thermal Diffusivity of 7 types of composite infrared decoys with varied $ZrSiO_4$.

表 4 Pb_3O_4 , Mg, PTFE 和 $ZrSiO_4$ 物理性质 Table 4. Physical properties of Pb_3O_4 , Mg, PTFE, and $ZrSiO_4$.

Material	$\lambda/(\mathrm{J}{\cdot}\mathrm{m}^{-1}{\cdot}\mathrm{s}^{-1}{\cdot}\mathrm{K}^{-1})$	$c/(\mathbf{J}{\cdot}\mathbf{kg}^{-1}{\cdot}\mathbf{K}^{-1})$	$ ho/(\mathrm{kg}^{-1}\cdot\mathrm{m}^{-3})$
Mg	165.1	1000	1745
PTFE	0.24	1050	2150
$\mathrm{Pb}_{3}\mathrm{O}_{4}$	0.288	226	9100
ZrSiO_4	5.1	800	4560

3.3 硅酸锆添加量对混合红外诱饵剂红外 辐射特性的影响

对药柱样品燃烧实验红外图像进行处理,并计 算出辐射面积 (S) 和辐射亮度 (L) 的数值 (图像中 温度超过 400 ℃ 范围内),根据辐射强度 I= L·S^[11], 算出辐射强度 I. 图 9 所示为 7 种不同 ZrSiO₄ 添加 量混合红外诱饵剂配方远红外辐射强度最大时红 外热像图.表 5 为根据热像仪所拍摄图像计算得出 的 7 种混合红外诱饵剂配方红外辐射特性表.

图 9 7种不同 ZrSiO₄ 添加量混合红外诱饵剂配方燃烧红 外热像图

Fig. 9. Infrared thermal image of 7 types of composite infrared decoys with varied $\rm ZrSiO_4.$

图 10 所示为 7 种混合红外诱饵剂配方远红外 辐射特性,分析图中数据变化规律可知,药柱样品 远红外辐射亮度和辐射强度随着 ZrSiO₄添加量

	表 5	7 种不同 ZrSiO4	·添加量》	昆合红外诱	饵剤配フ	方辐射特	性	
Table 5.	Radiation	characteristics of 7	' types of	composite	infrared	decoys w	with varied	$ZrSiO_4$.

	I			II			Average		
Formula	$egin{array}{c} { m Radiance}/ \ { m (W{\cdot}m^{-2}{\cdot}sr^{-1})} \end{array}$	$\begin{array}{c} {\rm Radiation} \\ {\rm area}/{\rm mm}^2 \end{array}$	$egin{array}{c} { m Radiation} \ { m intensity}/ \ { m (W\cdot sr^{-1})} \end{array}$	$egin{array}{l} { m Radiance}/ { m (W{\cdot}m^{-2}{\cdot}sr^{-1})} \end{array}$	$\frac{\rm Radiation}{\rm area/mm^2}$	$\begin{array}{c} {\rm Radiation} \\ {\rm intensity} / \\ {\rm (W\cdot sr^{-1})} \end{array}$	$egin{array}{l} { m Radiance}/ { m (W{\cdot}m^{-2}{\cdot}sr^{-1})} \end{array}$	$\frac{\rm Radiation}{\rm area/mm^2}$	$egin{array}{c} { m Radiation} \ { m intensity}/ \ { m (W\cdot sr^{-1})} \end{array}$
1	2134	54957	117	2071	46744	97	2103	50851	107
2	2067	50508	104	2329	51714	120	2198	51111	112
3	2452	59449	146	2470	55706	138	2461	57577	142
4	2240	43043	96	2410	59574	144	2325	51308	120
5	2317	41358	96	2277	40256	92	2297	40807	94
6	2256	39882	90	2290	39050	89	2273	39466	90
7	2228	38302	85	2248	36888	82	2238	37595	84

增大均先增大,且当 $ZrSiO_4$ 添加比例为 6% 时,达 到最大值 2461 W/(m²·sr) 和 142 W/sr. 然后随着 $ZrSiO_4$ 添加量继续增大,而药柱样品辐射亮度和 辐射强度均开始减小,且当 $ZrSiO_4$ 添加比例为 18% 以内和 9% 以内时,药柱样品辐射亮度和辐射强度 均大于基础配方.

图 10 7种不同 ZrSiO₄ 添加量混合红外诱饵剂配方辐射特性 Fig. 10. Radiation characteristics of 7 types of composite infrared decoys with varied ZrSiO₄.

根据前文研究^[14], Pb₃O₄/Mg/PTFE 红外诱饵 剂主要由 Mg 与 Pb₃O₄, PTFE 反应生成 C, MgO, Pb和 MgF2来贡献辐射,其中 C 因红外发射率 较高而为辐射主要贡献源.由 ZrSiO4 光谱发射率 数据可知^[13],其在远红外波段内发射率大于 MgO (0.15-0.45), Pb(0.05) 和 MgF₂(0.72), 并且接近 于C发射率值 (0.85-0.9). 2号样品辐射亮度比 1号样品大,可以从反应产物和反应温度两个方面 进行分析. 在反应产物方面: 由表1可知, 2号样品 和1号样品区别是质量比例 3% 基础配方被等质 量替换为 ZrSiO₄, 对被替换这部分基础配方进行 平衡产物理论计算,可得其原本参与反应能生成质 量比例为3%的产物,C只占其中一部分,另外部 分为 MgO, Pb, MgF₂等, 而被 ZrSiO₄ 替换后, 由 于 ZrSiO₄ 不参与反应, 产物中变为质量比例为 3% 的 ZrSiO₄, 远多于质量比例 3% 基础配方参与反应 生成 C 的量, 尽管 ZrSiO₄ 发射率略低于 C, 但由 于 ZrSiO₄ 量多, 所以用 ZrSiO₄ 替换基础配方导致 产物的改变对辐射具有提升作用. 在反应温度方 面:2号配方反应温度虽然有所下降,但下降幅度 并不明显,因此温度下降对辐射的减小作用没有产 物改变对辐射的提升作用大,从而导致最终2号配 方远红外辐射亮度增大.同理,3号配方远红外辐 射亮度继续增大.3号以后,由于基础配方比例减

小导致产物中由基础配方生成的 C 等固体物质继 续减少,而 ZrSiO₄ 含量则继续增大,然而根据表 3 所示,温度降低幅度变大,这导致温度下降对辐射 的减小作用比产物改变对辐射的提升作用大,因 此,远红外辐射亮度开始不断减小,即 4 号到 7 号 样品远红外辐射亮度呈减小趋势,不过降低幅度相 对平缓,并且始终高于基础配方远红外辐射亮度, 这表明添加 ZrSiO₄ 比例在 18% 以内均能提升基 础配方远红外辐射亮度.

远红外辐射强度变化趋势和辐射亮度基本一致,但只有 ZrSiO₄ 添加比例小于 9% 时辐射强度 比基础配方有所增强.

4 结 论

经过对 7 种不同 ZrSiO₄ 添加量混合红外诱饵 剂配方实验数据分析发现, 添加 ZrSiO₄ 后, 样品热 分解过程放热峰值变小, 热效应变差. 随着 ZrSiO₄ 添加比例升高, 样品燃烧温度持续降低, 均低于基 础配方; 质量燃速也逐渐减小, 从而使燃烧时间延 长. 远红外辐射性能则受反应温度和反应后剩余物 影响, 当 ZrSiO₄ 添加比例为 18% 以内和 9% 以内 时分别对基础配方远红外辐射亮度和辐射强度有 提升作用, 且当 ZrSiO₄ 添加比例为 6% 时, 样品远 红外辐射亮度和强度均达到最大值. 因此, 添加 ZrSiO₄ 比例为 6% 时, 对 Pb₃O₄/Mg/PTFE 红外 诱饵剂远红外辐射性能提升最显著, 同时燃烧温度 有所降低, 对作用时间也有所延长, 经综合考虑较 适合作为 Pb₃O₄/Mg/PTFE 红外诱饵剂改进配方.

参考文献

- Shao X G 2019 Guidance Fuze 40 020012 (in Chinese) [邵晓 光 2019 制导与引信 40 020012]
- [2] Lu X, Liang X G, Jia X H 2021 Infrared Laser Eng. 50 29 (in Chinese) [卢晓, 梁晓庚, 贾晓洪 2021 红外与激光工程 50 29]
- [3] Zhou Z N 2017 Fundermentals of Electro-optical Countermeasure Materials (Beijing: Beijing Institute of Technology Press) (in Chinese) [周遵宁 2017 光电对抗材料基础 (北京: 北京理工大学出版社)
- [4] Li Z J, Li Z Y, Zhan M M, Zhang B, Yao K, Li Q Y, Zhang D H 2024 J. Solid Rocket Technol. 47 15 (in Chinese) [李泽 军, 李志勇, 占明明, 张波, 姚鲲, 李秋怡, 张定宏 2024 固体火箭 技术 47 15]
- [5] Zhao L, Ju X Z 2019 Aerospace Electron. Warfare 35 50 (in Chinese) [赵亮, 巨秀芝 2019 航天电子对抗 35 50]
- [6] Ye S Q, Zhu C G, Lin H X, Ouyang D H, Pan G P 2017 Infrared Laser Eng. 46 90 (in Chinese) [叶淑琴, 朱晨光, 林红 雪, 欧阳的华, 潘功配 2017 红外与激光工程 46 90]

- [7] Elbasuney S, Elmotaz A A, Sadek M A 2020 J. Mater. Sci. Mater. El. 31 6130
- [8] Jin Q J, Wu Y, Shi H X, Ren X J, Zhao J F 2020 Initiators Pyrotechn. 3 41 (in Chinese) [金青君, 吴昱, 史红星, 任秀娟, 赵建锋 2020 火工品 3 41]
- [9] Hu Y P, Wang H, Nie X H, Sun H T, Jiang J Z, Guo P H, Qiang W X 2023 *Initiators Pyrotechn.* 5 34 (in Chinese) [胡亚 鹏, 王虎, 聂学辉, 孙宏涛, 姜建增, 郭鹏宏, 强文学 2023 火工品 5 34]
- [10] Yang Q 2021 M. S. Thesis (Nanjing: Nanjing University of Science & Technology) (in Chinese) [杨谦 2021 硕士学位论文 (南京: 南京理工大学)]
- [11] Zhang J Q, Fang X P 2011 Infrared Physics (Xian: Xidian University Press) (in Chinese) [张建奇, 方小平 2011 红外物理 (西安: 西安电子科技大学出版社)]
- [12] Yu Z L 1994 Electro-Opt. Technol. Appl. 2 12 (in Chinese)
 [于志良 1994 光电技术应用 2 12]
- [13] Lu K W 1983 Infrared Radiation Heating Technology (Shanghai: Shanghai Scientific & Technical Publishers) (in Chinese) [卢为开 1983 远红外辐射加热技术 (上海: 上海科学技 术出版社)]
- $\left[14\right]$ Wang B, Chen Z S, Liu Y, Wang J C, Shi J M2018

Initiators Pyrotechn. **3** 13 (in Chinese) [王冰, 陈宗胜, 刘洋, 汪家春, 时家明 2018 火工品 **3** 13]

- [15] Griffiths T T, Robertson J, Hall P G 1985 16th International Annual ICT Conference, Germany, 1985 p19
- [16] Shilov (translated by Ma Y L) 1959 Flame Radiation of Fire Works Composition (Beijing: National Defence Industry Press) (in Chinese) [希洛夫著 (马永利译) 1959 烟火药火焰的 发光 (北京: 国防工业出版社)]
- [17] Wang B X, Feng Z G 1997 Theory of Gunpowder Combustion (Beijing: BeiJing Institute Of Technology Press) (in Chinese)
 [王伯羲, 冯增国 1997 火药燃烧理论 (北京:北京理工大学出版 社)]
- [18] Tu C J 1992 Infrared Physics (Beijing: Higher Education Press) (in Chinese) [屠传经 1992 热传导 (北京: 高等教育出版 社)]
- [19] Liu G Q, Ma L X, Xiang S G 2013 Chemical and Chemical Data Sheet (Beijing: Chemical Industry Press) (in Chinese) [刘光启,马连湘,项曙光 2013 化学化工物性数据手册·无机卷 (北京:化学工业出版社)]
- [20] James G Speight 2005 Lange's Handbook of Chemistry (16th Ed.) (New York: Mc Graw-Hill, Inc)

Effect of $ZrSiO_4$ on far-infrared radiation characteristics of $Pb_3O_4/Mg/PTFE$ infrared decoy^{*}

WANG Bing $^{1)2}$ CHEN Zongsheng $^{2)}$ SHI Jiaming $^{2)\dagger}$ XU Hexiu $^{1)\ddagger}$

1) (Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China)

2) (State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230031, China)

(Received 29 July 2024; revised manuscript received 3 January 2025)

Abstract

Traditional composite infrared decoy, magnesium/teflon (Mg/PTFE), has been widely used in countering infrared guided weapons since its advent. However, with the development of infrared guidance technology, its drawbacks such as insufficient far-infrared radiation and high combustion temperature emerge, making it difficult to counter novel infrared guided weapons. To address this issue, a strategy of utilizing zirconium silicate $(ZrSiO_4)$ as an additive is proposed to improve the infrared radiation of infrared decoy. Therein, seven formulations with different ratios of $ZrSiO_4$ are designed based on the basic formula of trilead tetraoxide/ magnesium/teflon ($Pb_3O_4/Mg/PTFE$) mixed powder. And the effect of $ZrSiO_4$ serving as an additive on the performance of Pb₃O₄/Mg/PTFE infrared decoy is analyzed through experiments. First, initial experiments are conducted on the thermal decomposition characteristics of the basic formula $(\text{ZrSiO}_4 \text{ addition ratio is } 0\%)$ and its variant counterpart with 12% ZrSiO₄. Subsequently, the combustion behaviors of the compacted formulation samples are examined using an infrared thermal imager operating within the $7.5-14 \,\mu\text{m}$ range, subsequently, the combution time, combution temperature, burning rate, radiation area, radiance, and radiation intensity of individual samples are computed. These results show that incorporation of $ZrSiO_4$ reduces the intensity of the primary exothermic peak during the reactions with a mixed infrared decoy agent, yielding suboptimal thermal efficiencies. Furthermore, the combustion durations of the samples progressively increase with $ZrSiO_4$ addition increasing, accompanied by consistent reductions in their combustion temperatures. Specifically, the sample reaction time peaks at 3.73 s at a ZrSiO_4 addition ratio of 18%, while the combution temperature drops to a minimum value of 765.46 °C. Moreover, the far-infrared radiance and radiation intensity demonstrate an initialincrease-then-decrease trend with $ZrSiO_4$ addition increasing, thereby achieving the maximum values of 2461 $W/(m^2 \cdot sr)$ and 142 W/sr, respectively at a ZrSiO₄ addition ratio of 6%. Furthermore, the far-infrared radiance and radiation intensity of the base formulation are enhanced when $ZrSiO_4$ addition ratios are kept within 18% and 9% respectively. Based on the comprehensive analysis of the experimental data and considering the requirements for the infrared decoy in practical applications, a formulation with a $ZrSiO_4$ addition ratio of 6% is adopted as an improved formulation for the Pb₃O₄/Mg/PTFE infrared decoy.

Keywords: infrared decoy, thermal decomposition, thermal diffusivity, radiation intensity

PACS: 44.40.+a, 42.70.Km, 82.33.Vx

DOI: 10.7498/aps.74.20241048

CSTR: 32037.14.aps.74.20241048

^{*} Project supported by the National Defense Pre-Research Foundation of China (Grant No. HJJ2017-0671).

[†] Corresponding author. E-mail: shijiaming17@nudt.edu.cn

[‡] Corresponding author. E-mail: hxxuellen@gmail.com

Institute of Physics, CAS

硅酸锆对 $Pb_3O_4/Mg/PTFE红外诱饵剂远红外辐射性能影响$

王冰 陈宗胜 时家明 许河秀

Effect of ZrSiO₄ on far-infrared radiation characteristics of Pb₃O₄/Mg/PTFE infrared decoy

WANG Bing CHEN Zongsheng SHI Jiaming XU Hexiu

引用信息 Citation: Acta Physica Sinica, 74, 084401 (2025) DOI: 10.7498/aps.74.20241048 CSTR: 32037.14.aps.74.20241048 在线阅读 View online: https://doi.org/10.7498/aps.74.20241048

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

铁磁异质结的远红外脉冲辐射及其光热调控研究

Pulsed far-infrared radiation of ferromagnetic heterojunction and its photothermal regulation 物理学报. 2023, 72(15): 157801 https://doi.org/10.7498/aps.72.20230543

红外光谱辐射计探测器高阶非线性响应校正方法

High-order nonlinear response correction method for infrared radiation detector 物理学报. 2021, 70(6): 060701 https://doi.org/10.7498/aps.70.20201530

氧化钪(Sc2O3)的热漫散射强度解析

Analysis of thermal diffuse scattering intensity of scandium oxide (Sc_2O_3)

物理学报. 2024, 73(6): 063401 https://doi.org/10.7498/aps.73.20231241

近红外二区长波发射硅酸盐及多格位占据光谱展宽

Long wavelength near-infrared II emitting Na₃YSi₃O₉:x Cr³⁺ silicate and spectral broadening by multi-site occupancy 物理学报. 2024, 73(15): 157803 https://doi.org/10.7498/aps.73.20240663

静态强磁场对临近空间飞行器中天线辐射性能的影响

Influence of static strong magnetic field on antenna radiation in hypersonic vehicle 物理学报. 2022, 71(8): 085202 https://doi.org/10.7498/aps.71.20212044

高温热辐射输运模拟的蒙特卡罗全局降方差方法

Global variance reduction method for Monte Carlo simulation of thermal radiation transport 物理学报. 2023, 72(13): 139501 https://doi.org/10.7498/aps.72.20230218