基于亚多普勒 wm-NICE-OHMS 的¹⁴CO₂ 光谱测量技术理论研究^{*}

李勇1)2) 周晓彬1)2) 赵刚1)2)† 尹润涛1)2) 杨家琪1)2)

闫晓娟¹⁾²⁾ 马维光^{1)2)‡}

(山西大学,光量子技术与器件全国重点实验室,太原 030006)
 2)(山西大学,极端光学协同创新中心,太原 030006)
 (2024年10月22日收到;2024年12月17日收到修改稿)

¹⁴CO₂光谱检测在大气环境学和同位素定年等领域中具有重要应用,但由于其自然丰度极低且光谱重叠 干扰严重,检测难度极大.基于亚多普勒光谱的噪声免疫腔增强光外差分子光谱 (NICE-OHMS)技术因其具 有高的灵敏度和选择性,有望成为下一代¹⁴CO₂检测方法.本文理论分析了亚多普勒 NICE-OHMS 光谱测量 技术.通过模拟真实大气光谱,选择 2209.108 cm⁻¹处的¹⁴CO₂ 跃迁线作为最佳测量目标,建立了¹⁴CO₂ 亚多普 勒饱和吸收 NICE-OHMS 模型,并与多普勒展宽光谱进行对比,验证了波长调制 (wm-) 亚多普勒 NICE-OHMS 技术可有效抑制光谱重叠干扰,实现高分辨率的¹⁴CO₂ 光谱测量.最终,通过数值模拟分析了压强和调制系数 等参数对信号幅度的影响,确定了最佳实验条件,为高灵敏¹⁴CO₂光谱测量提供理论依据.

关键词:噪声免疫腔增强光外差分子光谱,理论仿真,放射性碳同位素检测

DOI: 10.7498/aps.74.20241482

PACS: 42.60.Fc, 42.62.Fi, 95.85.Hp **CSTR:** 32037.14.aps.74.20241482

1 引 言

工业革命以来, 温室气体 (特别是 CO₂) 大量 排放引发的温室效应, 已对地球生态环境造成严重 破坏, 严重威胁着人类的生存. 为应对这一挑战, 各国纷纷提出减碳措施以抑制温室效应. 碳监测是 碳减排的重要前提, 通过实时监测温室气体浓度, 可以精准核算碳排放量. 然而, 温室气体排放源具 有多样性, 包括生物活动 (如动植物呼吸) 和化石 燃料燃烧等, 其中减少化石燃料燃烧是减碳的主要 措施之一. 追踪碳排放来源, 特别是评估煤炭、石油、天然气等化石燃料燃烧对温室气体的贡献, 有助于为碳监测提供数据支持, 推动"碳中和、碳达峰"的精准实施^[1-3]. 然而直接测量¹²CO₂ (CO₂的主要同位素分子, 自然丰度¹²C/C为 98.9%)并不能区分 CO₂ 不同的排放源.

¹⁴C 是碳的放射性同位素,其半衰期约为 5730 年,主要由宇宙射线与大气中的¹⁴N 反应生成^[4].通 过衰变耗散,地球表面¹⁴C 的自然丰度保持在 1.2× 10⁻¹² (1.2 ppt)^[5].由于生态循环,自然界中动植物 体内的¹⁴C 含量等于自然丰度.然而,化石燃料在

^{*} 国家重点研发计划 (批准号: 2023YFF0614000, 2022YFC3703900)、国家自然科学基金 (批准号: 62327813, 62175139, 62375161, 61975103)、山西省留学人员科技活动择优资助项目 (批准号: 20220001) 和江淮前沿技术协同创新中心追梦基金 (批准号: 2023-ZM01C007) 资助的课题.

[†] 通信作者. E-mail: gangzhao@sxu.edu.cn

[‡] 通信作者. E-mail: mwg@sxu.edu.cn

^{© 2025} 中国物理学会 Chinese Physical Society

地下埋藏数百万年,¹⁴C早已消耗殆尽. 化石燃料 燃烧不仅释放大量¹²CO₂,还会导致当地环境中¹⁴C 丰度的降低. 因此,通过测量区域内 CO₂的¹⁴C 同 位素丰度,可以推断化石燃料燃烧对温室气体排放 的贡献⁶.

传统的¹⁴CO₂检测方法主要有加速质谱法 (AMS) 和液体闪烁计数法 (LSC)^[7].其中 AMS 测量仪器 价格昂贵,通常需要数百万美元的投入,故其存在 操作复杂、离线测量、成本高、仪器尺寸大等问题^[8]; 而 LSC 测量仪器虽然成本较低,但还存在测量周 期长以及样品需求量大等问题;因此这两种技术无 法满足¹⁴CO₂ 测量的规模化应用.

1977年以来,由于激光光谱技术具有实时、在 线原位测量和操作简便等优点, 被应用与物质同位 素的在线检测[9-18]. 然而, 激光光谱技术应用于大 气中¹⁴CO₂的测量仍面临两个主要挑战.第一,¹⁴C 的自然丰度极低,要求光谱仪具有极高的灵敏度. 为了提高灵敏度,通常采用基于高精度光学腔的激 光光谱技术,如腔衰荡光谱 (CRDS)^[19,20] 和光反馈 腔增强吸收光谱 (OF-CEAS)^[21] 等, 这些技术通过 光学腔中的高反射镜增大激光与气体的作用路径, 从而提升灵敏度, Galli 等^[22] 采用饱和腔衰荡光谱 技术 (SCAR), 通过长时间平均, 获得了 3×10-15 (即 0.3 pMC (percent modern carbon)) 的探测灵敏度, 但样品测量时间长达4h,限制了其实时性.第二, 杂质气体对14CO。产生了严重的谱线干扰,导致测 量误差大.为解决此问题,低压采样和低温处理能 够有效地减小分子光谱的压力展宽和多普勒展宽, 但低温模块的引入会增加系统成本、体积和操作复 杂度^[23].为此, Jiang 等^[24]提出双共振腔衰荡光谱 技术,以消除光谱的多普勒展宽,实现室温条件下 ¹⁴CO₂光谱的高灵敏度测量,但该技术需要两个激 光器与高精度腔的锁定,增加了系统复杂度.

噪声免疫腔增强光外差分子光谱 (NICE-OHMS) 技术^[25],在腔增强吸收光谱的基础上引入了频率 调制光谱 (FMS),通过抑制低频噪声进一步提高测 量灵敏度.NICE-OHMS 相比 CRDS 和 OF-CEAS, 具有更高的灵敏度,因此有望在¹⁴CO₂ 检测中实现 更高精度的测量.此外,NICE-OHMS 技术通过高 精细度光学腔可以无源放大输入激光功率,在精细 度为 10⁴ 的光学腔中,毫瓦量级的入射激光在腔内 可以达到瓦级,从而激发气体分子的饱和吸收,通 过对亚多普勒光谱的测量,抑制光谱的重叠干扰. 因此, 基于 NICE-OHMS 技术, 能够在室温下高选择 性地测量 ${}^{14}CO_2$ 光谱. 目前尚无基于 NICE-OHMS 测量 ${}^{14}CO_2$ 光谱的相关报道.

本文从理论上分析了 NICE-OHMS 测量¹⁴CO₂ 光谱的方法.首先,通过光谱重叠度分析筛选了目 标光谱谱线,然后利用跃迁参数确定了饱和参数与 光功率之间的关系.接着,通过腔传递函数和频 率调制模型,建立了¹⁴CO₂的 wm-NICE-OHMS 光谱模型.通过模拟证明了亚多普勒光谱能够有效 地提升光谱选择性.最后,分析了不同实验参数对 wm-NICE-OHMS 光谱信号的影响,为大气背景下 高灵敏检测¹⁴CO₂及¹⁴C 自然丰度 (¹⁴C/C) 奠定了 理论基础.

2 谱线选择

吸收线最强的¹⁴CO₂ 光谱位于 2200 cm⁻¹(4.5 μm) 附近,对应分子振转能级的基频带跃迁,由于不对 称拉伸带平行于偶极轴的振动运动产生了强偶极 矩. 但是, 由于周围其他杂质气体的光谱严重干扰了 ¹⁴CO₂光谱,影响浓度反演的准确性.因此,首先模 拟了该区域光谱,分析了光谱重叠干扰,并借此确 定目标¹⁴CO₂ 跃迁线. 本节选取四条典型 2200 cm⁻¹ 附近的14CO。跃迁线为例,对14CO。及杂质气体 (主要为¹³CO₂, ¹²CO₂, N₂O) 进行直接吸收光谱的 仿真,得到的结果如图1所示,图中混合气体的吸 收线为黑线所示,¹⁴CO₂的吸收线为红线所示,且 图 1(a)、图 1(b)、图 1(c)、图 1(d) 分别对应¹⁴CO₂ $\pm 2209.108 \text{ cm}^{-1}$, 2207.309 cm⁻¹, 2212.623 cm⁻¹, 2216.053 cm⁻¹ 处的跃迁线^[26]; 为了模拟真实大气 环境, 仿真中¹⁴CO₂, ¹³CO₂, ¹²CO₂ 的丰度设置为 1.2×10-12, 1.1%, 98.9%, N2O 的浓度设置为 1×10-8, 其中¹³CO₂, ¹²CO₂, N₂O光谱数据来自 Hitran 数据 库,光学系统的模拟参数符合我们实验室装置条件, 包括腔长为 150 cm、压强为 100 mTorr (1 Torr = 133 Pa)、温度为 296 K.

从图 1 可看出, 位于 2209.108 cm⁻¹ 处 (图 1(a)) 的¹⁴CO₂ 受光谱重叠干扰影响最小, 在¹⁴CO₂ 跃迁 线中心处, ¹⁴CO₂ 吸收信号的贡献最大为 99.7%, 其他杂质分子干扰占比仅为 0.3%. 而对于其他跃 迁线, ¹⁴CO₂ 吸收信号在中心频率处的贡献分别为 11.1% (图 1(b))、0.09% (图 1(c))、10.2% (图 1(d)), 造成 ¹⁴CO₂ 吸收信号被完全淹没在干扰光谱中.

图 1 不同波数的¹⁴CO₂, N₂O, ¹²CO₂, ¹³CO₂ 混合气体直接吸收模拟信号 (黑线), 以及不同波数的¹⁴CO₂ 直接吸收模拟信号 (红线) Fig. 1. Directly absorbed analog signals for ¹⁴CO₂, N₂O, ¹²CO₂, ¹³CO₂ gas mixtures with different wave numbers (black line); directly absorbed analog signals for ¹⁴CO₂ with different wave numbers (red line).

综上可知, 位于 2209.108 cm⁻¹ 的¹⁴CO₂ 的跃迁线 受光谱重叠干扰的影响最小, 因此本文选取了位于 该跃迁线进行分析与仿真.

3 NICE-OHMS 理论模型

典型的 NICE-OHMS 原理如图 2 所示. 一束 激光经过两个调制 (ν_{PDH} 和 ν_{m})后耦合进入高精 细度光学腔,通过 ν_{PDH} 解调腔反射光,获取误差 信号,实现激光载频到光学腔的频率锁定;通过 ν_{m} - ν_{PDH} 解调反射光,获取误差信号,实现调制频 率 ν_{m} 到光学腔自由光谱区的锁定;然后基于调制 频率 ν_{m} 对光学腔透射信号的解调获得 fm-NICE-OHMS 信号;最后再对腔长增加一个低频调制信 号 f_{vm} ,然后对 fm-NICE-OHMS 信号解调,获取 wm-NICE-OHMS 信号.

3.1 多普勒展宽 NICE-OHMS 理论模型

根据 Foltynowicz 等^[28] 报道可知, fm-NICE-OHMS 的理论表达式为

$$S^{\text{DB}} = \eta_{\text{fm}} \frac{F}{\pi} P_0 ScPLJ_0(\beta) J_1(\beta) \{ [\chi^{\text{disp}}(\Delta\nu - \nu_{\text{m}}) - 2\chi^{\text{disp}}(\Delta\nu) + \chi^{\text{disp}}(\Delta\nu + \nu_{\text{m}})] \cos\theta_{\text{fms}} + [\chi^{\text{abs}}(\Delta\nu - \nu_{\text{m}}) - \chi^{\text{abs}}(\Delta\nu + \nu_{\text{m}})] \sin\theta_{\text{fms}} \}, (1)$$

式中, $\Delta\nu$ 为激光相对于吸收线中心的频率失谐; η_{fm} 为频率调制的仪器因子; P_0 是入射到探测器上 的光功率; F 为光学腔的精细度; c 为气体浓度; S 为目标吸收线强度; P 为气体总压强; L 为光学腔 的长度; $J_n(\beta)$ 为贝塞尔函数, 其中 β 为调制系数; v_m 为调制频率; θ_{fms} 等于 $\pi/2$ 的奇数倍时, NICE-OHMS 信号只包含吸收项, 称此时的 θ_{fms} 为吸收 相位, 当 θ_{fms} 等于 $\pi/2$ 的偶数倍时, 只包含色散项, 称 θ_{fms} 该为色散相位. χ^{ads} 和 χ^{disp} 分别为谱线的吸 收和色散线型函数 (单位为 cm), 采用 Voigt 线型, 表达式分别为^[29]

$$x^{\rm abs}(x, y, G) = \frac{100C\sqrt{\ln 2}}{\sqrt{\pi}\Gamma_{\rm D}} \frac{1}{\sqrt{1+G}} {\rm Re}[W(x+{\rm i}y)], \quad (2)$$

$$x^{\text{disp}}\left(x, y, G\right) = -\frac{100C\sqrt{\ln 2}}{\sqrt{\pi}\Gamma_D} \text{Im}\left[W\left(x + iy\right)\right], \quad (3)$$

式中 C 为光速 (m/s); W 为复误差函数, 表示为

$$W(z) = e^{-z^{2}} \left(1 + \frac{2i}{\sqrt{\pi}} \int_{0}^{z} e^{s^{2}} ds \right), \qquad (4)$$

其中 $s = \nu_z/u$, ν_z 为光场传播方向上的速度分量,

由于频率 ν 的光场只能与玻尔兹曼分布中特定速度的分子相互作用,所以 $\nu_z = c(\nu - \nu_0)/\nu_0$; G为饱和度.在 Maxwell-Boltzmann分布的情况下,特定温度下最可几速率为 u,表达式为 $u = \sqrt{2k_{\rm B}T/m}$. x为^[30]

$$x = \Delta v \sqrt{\ln 2} / \Gamma_{\rm D}, \tag{5}$$

y 为

$$y = \sqrt{1 + G}\sqrt{\ln 2\Gamma_{\rm L}}/\Gamma_{\rm D},\tag{6}$$

式中 $\Gamma_{\rm D}$ 是多普勒展宽 (Hz). 对于给定温度T(K)与分子质量 $m(kg), \Gamma_{\rm D}$ 表达式为

$$\Gamma_{\rm D} = \frac{v_0}{C} \sqrt{\frac{2\ln\left(2\right)k_{\rm B}T}{m}} \approx 1.07 \times 10^2 \frac{1}{\lambda_0} \sqrt{\frac{T}{M}},\quad(7)$$

其中 $k_{\rm B}$ 为玻尔兹曼常数,等于 1.380×10^{-23} J/K; M 是分子量,单位是 (u); λ_0 是光的波长,单位是 (m).

Γ_L为碰撞展宽的半高全宽,其表达式为

$$\Gamma_{\rm L} = B_{\rm p} p, \tag{8}$$

其中 B_p为压力展宽系数.参考 Foltynowicz 等^[28] 报道,可知 wm-NICE-OHMS 的理论表达式为

$$S_{\rm wm}^{\rm DB} = \eta_{\rm wm} \eta_{\rm fm} \frac{F}{\pi} P_0 ScPLJ_0(\beta) J_1(\beta) \{ [\chi_1^{\rm disp}(\Delta\nu - \nu_{\rm m}, \nu_{\rm a}) - 2\chi_1^{\rm disp}(\Delta\nu, \nu_{\rm a}) + \chi_1^{\rm disp}(\Delta\nu + \nu_{\rm m}, \nu_{\rm a})] \cos\theta_{\rm fms} + [\chi_1^{\rm abs}(\Delta\nu - \nu_{\rm m}, \nu_{\rm a}) - \chi_1^{\rm abs}(\Delta\nu + \nu_{\rm m}, \nu_{\rm a})] \sin\theta_{\rm fms} \}, \quad (9)$$

其中_{ηwm}为波长调制的仪器因子, ν_a为调制幅度, 线性函数下标为1表示第一傅里叶函数.

3.2 亚多普勒展宽 NICE-OHMS 理论模型

在高精细度光学腔内, 不仅存在往返的载频及 调制边带三联体, 同时激光功率被有效放大, 致使 分子吸收形成了泵浦-探测结构, 沿透射方向的三 联体会观察到高功率反向传播三联体的饱和吸收 信号, 因此会在 fm-NICE-OHMS 信号上出现 5 个 亚多普勒结构, 其中相对幅度依赖于频率 ν_m 的调 制系数, 相对于多普勒展宽线型, 亚多普勒光谱具 有窄线宽结构^[30]. 当调制系数 β小于 0.1 时, 可以 近似为只有谱线中心亚多普勒结构, 且只有在色散 相位时才存在, 该亚多普勒光谱 fm-NICE-OHMS 信号可以表示为^[30]

$$S^{\rm DF} = \eta_{\rm fms} \frac{F}{\pi} P_t \mathbf{J}_0(\beta_1) \mathbf{J}_1(\beta_1)$$
$$\times ScpLx_0 \Phi(G) \,\overline{\chi}_{\rm L}^{\rm disp}(\Delta\nu, \Gamma_{\rm L}), \qquad (10)$$

式中, x_0 为面积归一化高斯函数的峰峰值; 与饱和 度 G 相关的参数 $\Phi(G)$ 决定了亚多普勒信号的幅 度, 可以表示为

$$\Phi(G) = 0.45 \frac{8}{\omega^2} \int_0^\infty \frac{G \mathrm{e}^{-4(r/\omega)^2}}{1 + 2G \mathrm{e}^{-4(r/\omega)^2}} r \mathrm{d}r, \quad (11)$$

其中, ω为高斯光束光斑半径.

亚多普勒光谱线型近似为洛伦兹函数的色散 部分,可以表示为

$$\overline{\chi}_{\rm L}^{\rm disp}\left(\Delta\nu, \Gamma_{\rm L}\right) = -\frac{1}{\Gamma_{\rm L}}\frac{\Delta\nu}{\left(\Delta\nu\right)^2 + \Gamma_{\rm L}^2}.$$
 (12)

再者, wm-NICE-OHMS 信号可表示为

$$S_{\rm wm}^{\rm DF} = \eta_{\rm wm} \eta_{\rm fms} \frac{F}{\pi} P_t \mathbf{J}_0(\beta_1) \mathbf{J}_1(\beta_1) \times ScpLx_0 \Phi(G) \,\overline{\chi}_{\rm L,1}^{\rm disp}(\Delta\nu,\nu_{\rm a},\Gamma_{\rm L}(p)) \,, \quad (13)$$

式中

$$\begin{split} \overline{\chi}_{\mathrm{L},1}^{\mathrm{disp}}\left(\Delta\nu,\nu_{\mathrm{a}},\Gamma_{\mathrm{L}}\right) \\ &= \frac{2}{\tau} \int_{0}^{\tau} \frac{\Gamma_{\mathrm{L}}\left[\Delta\nu+\nu_{\mathrm{a}}\cos\left(2\pi\nu_{\mathrm{m}}t\right)\right]}{\left[\Delta\nu+\nu_{\mathrm{a}}\cos\left(2\pi\nu_{\mathrm{m}}t\right)\right]^{2}+\Gamma_{\mathrm{L}}^{2}} \cos\left(2\pi\nu_{\mathrm{m}}t\right) \mathrm{d}t, \end{split}$$
(14)

其中, ν_a为调制幅度, τ 为积分时间.

3.3 饱和参数的理论计算

(2) 式中的关键参数为饱和度 G, 该值对于利 用亚多普勒谱准确反演待测气体浓度至关重要, 可 以表示为^[20]

$$G = I_{\rm c}/I_{\rm sat},\tag{15}$$

$$I_{\text{sat}} = \frac{3C\varepsilon_0\hbar^2}{2\mu^2}(\gamma_{\text{tt}} + B_{\text{p}}P)^2, \qquad (16)$$

式中, I_c 为腔内激光强度; I_{sat} 为饱和光强; ε_0 为介 电常数; \hbar 为普朗克常数; B_p 为压力展宽系数; μ 为跃迁偶极矩; γ_{tt} 为飞行时间, 其表达式为

$$\gamma_{\rm tt} = \pi u / (4\omega), \tag{17}$$

$$P_{\rm sat} = I_{\rm sat} \pi \omega^2, \qquad (18)$$

其中, P_{sat} 为饱和功率.

为了获得跃迁偶极矩,从吸收线强度 S 出发, 其表达式为^[31]

$$S = \frac{A}{8\pi C\sigma^2} \frac{g_2 e^{-c_2 E''/T} \left(1 - e^{-c_2 \sigma/T}\right)}{Q}, \qquad (19)$$

式中, g_2 为下能级简并度; c_2 为第二辐射常数, 值 为 1.4387769 cm·K; E'' 为下能级能量; T 为温度; σ 为波数; Q 为待测分子的总配分函数; A 为爱因 斯坦自发辐射系数,其表达式为

$$A = \frac{64\pi^4}{3h} \sigma^3 \frac{g_2}{g_1} R \times 10^{-36}, \qquad (20)$$

其中, h为普朗克常量, R为加权跃迁偶极矩的平方, R与偶极矩 μ 的关系为 $\mu^2 = R$.

将 (20) 式代入 (19) 式中可得跃迁线偶极矩的 表达式为

$$\mu = \sqrt{\frac{3hCQS}{8\pi^3 g_2 \sigma e^{-c_2 E''/T} \left(1 - e^{-c_2 \sigma/T}\right)}} \times 10^{18}, \quad (21)$$

式中

$$g_2 = (2J'' + 1) g_i g_s, \tag{22}$$

其中, *J*"为低态量子数, *g*_i和 *g*_s分别是状态相关和 状态无关的核自旋统计权重.

对于 2209.108 cm⁻¹ 处¹⁴CO₂ 的跃迁线^[26], 其光 谱参数 J'' 为 19, B_p 为 0.073 cm⁻¹/atm, S 为 2.83× 10⁻¹⁸ cm⁻¹/(molecule·cm⁻²), E''为 163.8828 cm⁻¹, g_ig_s 为 7, Q 为 2033.395^[26]. 根据 (21) 式可得 ¹⁴CO₂ 的 下能级简并度为 273, 进一步由 (20) 式可得其偶极 矩为 225.3 mD, 得到在压力 100 mTorr 下, 饱和 功率是 2.8 mW, 当腔内功率为 6.33 W 时, ¹⁴CO₂ 的饱和度为 2211. 此外, 对于本课题组搭建的中红 外 NICE-OHMS 测量系统中, 精细度为 28000, 调 制系数 (β) 为 0.1.

4 NICE-OHMS 信号仿真

4.1 大气¹⁴CO₂的 NICE-OHMS 光谱模拟

基于以上¹⁴CO₂光谱参数以及 NICE-OHMS 理论模型,本文对大气提纯的 CO₂样品的光谱进 行了仿真.在 2209.108 cm⁻¹ 附近包含的主要大气 光谱跃迁线及其参数如表 1 所列^[26].仿真中,考虑了 丰度为 98.9% 的¹²CO₂,以及丰度为 1.1% 的¹³CO₂ 和丰度为 1.2×10^{-12} 的 ¹⁴CO₂. 同时由于在位于 2209.108 cm⁻¹ 的 ¹⁴CO₂ 附近有 N₂O 的强吸收线, 尽管使用催化燃烧等手段可以除去一部分 N₂O, 但仍会有少量残余杂质存在, 故在模拟过程中加入 浓度为 1.0×10^{-8} 的 N₂O.

利用光谱参数仿真获得的 fm-NICE-OHMS 光谱如图 3 所示, 频率调制系数约为 0.1. 首先从 图 3 可以看出, NICE-OHMS 是零背景技术, 当激 光频率远离分子跃迁线时,解调得到的信号为0. 这是促进 NICE-OHMS 具有超高灵敏度特性的原 因之一. 另外, 可以很明显地分辨出 N₂O, ¹³CO₂ 和 ¹²CO₂的吸收信号 (如蓝色箭头标识所示), 每一个 单一的光谱呈现奇对称形状,其宽度主要受到多普 勒展宽影响,光谱的半高全宽约为120 MHz;在光 谱中心还可以看到窄线宽的结构,这是由于饱和吸 收造成的亚多普勒光谱信号,但由于受到背景多普 勒光谱的影响,很难从该信号中准确提取出亚多普 勒光谱.同时¹⁴CO₂吸收信号(如红色箭头标识所 示) 较弱, 波束为 2209.08543 cm⁻¹, 2209.11444 cm⁻¹ 的 N₂O 信号最大幅值分别是¹⁴CO₂ 的 11.6 倍和 2.25 倍, 故在混合气体 NICE-OHMS 信号中¹⁴CO₂ 信号难以观察. 此外¹⁴CO₂信号在混合气体信号 2209.108 cm⁻¹ 处受到 N₂O 等杂气的多普勒尾翼影 响,¹⁴CO₂信号不能有效的分离.因此,无法准确地 分离出¹⁴CO₂吸收光谱.

图 4 是频率调制系数为 0.1 时的 wm-NICE-OHMS 信号, 该过程波长调制幅度设置为 0.01 MHz, 使得亚多普勒信号幅度达到最大值, 远小于多普勒展宽的最佳调制幅度, 多普勒展宽被有效抑制. 图 4 中插图为放大的 ¹⁴CO₂亚多普勒光谱, ¹⁴CO₂谱线展宽仅约为 4 MHz. 通过图 4 中混合气体光谱的零背景可以分析出 wm-NICE-OHMS 消除了杂质气体的光谱干扰, 因此可以准确提取出

表 1 ${}^{14}CO_2$, N₂O, ${}^{12}CO_2$ 和 ${}^{13}CO_2$ 光谱的其他参数 Table 1. Other parameters of ${}^{14}CO_2$, N₂O, ${}^{12}CO_2$ and ${}^{13}CO_2$ spectra.

	波数/ ${ m cm}^{-1}$	线强 /(cm ⁻¹ ·molecule ⁻¹ ·cm ⁻²)	跃迁底态能量/cm ⁻¹	总配分函数
¹⁴ CO ₂	2209.107679	$2.83{ imes}10^{-18}$	163.8828	2033.395
$^{12}\mathrm{CO}_2$	2209.124896	$1.802{ imes}10^{-29}$	5785.2772	286.09
${\rm ^{13}CO_2}$	2209.115876	$4.23{ imes}10^{-27}$	3394.9427	576.64
$^{13}\mathrm{CO}_2$	2209.11747	$1.54{ imes}10^{-27}$	3648.8668	576.64
N_2O	2209.08543	$3.41{ imes}10^{-21}$	1282.3324	4984.9
N_2O	2209.11444	$6.61{ imes}10^{-22}$	654.1553	4984.9

¹⁴CO₂的光谱信号,通过拟合其亚多普勒光谱可以 准确地反演出¹⁴CO₂的浓度以及其丰度.

图 3 ¹⁴CO₂, N₂O, ¹²CO₂ 和¹³CO₂ 混合气体的亚多普勒模 拟信号

Fig. 3. Sub-Doppler analog signal for gas mixtures such as ¹⁴CO₂, N₂O, ¹²CO₂, ¹³CO₂.

图 4 ¹⁴CO₂, N₂O, ¹²CO₂和 ¹³CO₂混合气体的 wm-NICE-OHMS 模拟信号

Fig. 4. wm-NICE-OHMS analog signal for gas mixtures such as ¹⁴CO₂, N₂O, ¹²CO₂, ¹³CO₂.

此外,由 (13) 式可知, wm-NICE-OHMS 信号 幅度受调制系数 (β) 和压强的影响. 下面将分别进 行分析讨论.

4.2 调制系数 (β) 对 ¹⁴CO₂ 的 wm-NICE-OHMS 信号的影响

图 5(a) 中的黑线、红线、蓝线分别是调制系数 β为 0.5, 1, 1.5 时¹⁴CO₂ 的 wm-NICE-OHMS 仿真信号.调制系数 β主要会影响载波幅度 (正比于 0 阶贝塞尔函数) 以及调制边带幅度 (正比于 1 阶贝塞尔函数) 的比值,因此会改变信号的幅度, 但是这种改变并不是单调的.图 5(b) 为模拟不同 调制系数 β下¹⁴CO₂ 信号幅度.可以看出,随着调 制系数 β 的增加,信号幅度呈先上升后下降的趋势,在本模拟系统中,调制系数 β 为 1.07 时信号幅度达到最大,相较于调制为 0.1 时,幅度增大了 6.8 倍,因此在同等探测系统噪声下,可以获得最大的¹⁴CO₂ 光谱的信噪比.

图 5 (a) $\beta = 0.5, 1, 1.5$ 时¹⁴CO₂ wm-NICE-OHMS 信号; (b) ¹⁴CO₂ wm-NICE-OHMS 信号幅度随调制系数 β 的变化 Fig. 5. (a) ¹⁴CO₂ wm-NICE-OHMS signal when $\beta = 0.5, 1$,

1.5; (b) variation of ${}^{14}\text{CO}_2$ wm-NICE-OHMS signal amplitude with β .

4.3 不同压强对¹⁴CO₂ wm-NICE-OHMS 信号的影响

图 6(a) 中黑线、红线、蓝线分别对应压强为 100, 200, 300 mTorr 的 ¹⁴CO₂ wm-NICE-OHMS 仿真信号. 压强对光谱信号存在三方面影响, 首先 压强越大, 分子密度越大, 光谱吸收系数也越大; 其次亚多普勒光谱的饱和度会随着压强的增加而 降低; 最后压力增大, 压力展宽会增加, 导致亚多 普勒光谱幅度减小. 图 6(b) 为模拟得到的不同压 强下¹⁴CO₂ wm-NICE-OHMS 信号幅度的变化. 可 以看出, 随着压强的变化信号幅度呈先上升后下降 的趋势, 这是三种影响相互平衡的结果, 在 42 mTorr 时, 信号幅度达到最大, 是最佳的光谱测量气压.

图 6 (a) 压强为 100, 200, 300 mTorr 时¹⁴CO₂ wm-NICE-OHMS 信号; (b) ¹⁴CO₂ wm-NICE-OHMS 信号幅度随压强 的变化

Fig. 6. (a) $^{14}\rm{CO}_2$ wm-NICE-OHMS signal when pressure is 100, 200, 300 mTorr; (b) variation of $^{14}\rm{CO}_2$ wm-NICE-OHMS signal amplitude with pressure.

5 结 论

相较于传统的 AMS, NICE-OHMS 技术可以 实现对¹⁴C进行高精度实时原位检测,并且其成本 相对较低,可以满足大规模检测需求.故本文基 于 NICE-OHMS 技术对模拟实验条件下的¹²CO₂, ¹³CO₂, ¹⁴CO₂和 N₂O 的混合样本进行理论仿真, 仿真后得出结论¹⁴CO₂的多普勒光谱信号被其他 气体的信号淹没,且幅度极低,不利于¹⁴CO₂测量. 为了去除多普勒展宽信号的线性斜率,并且进一步 提高信噪比,我们提出使用波长调制 NICE-OHMS 进行¹⁴CO₂光谱测量. 通过模拟可以看出谱线被有效 地分离,极大地提高了14C/C值的检测精度.之后本 文分析了压强与调制系数 (β) 对¹⁴CO₂ wm-NICE-OHMS 的影响,得出压强为 42 mTorr、调制系数 β为 1.07 时¹⁴CO₂ wm-NICE-OHMS 信号幅度最 大,为后续大气本底下的¹⁴CO₂高精度检测奠定了 理论基础. 尽管本文在理论上验证了 wm-NICE-OHMS 可以有效抑制气体光谱之间的干扰, 但是

我们需要指出如果杂质气体在¹⁴CO₂光谱处吸收 太强, 会影响 NICE-OHMS 中的频率锁定, 从而影 响信号的获取. 通过结合低温测量, 可以有效解决 这个问题, 同时进一步提升光谱分辨率.

参考文献

- Zhao X, Ma X, Chen B, Shang Y, Song M 2022 Resour. Conserv. Recycl. 176 105959
- [2] Kong W, Wan F, Lei Y, Wang C, Sun H, Wang R, Chen W G 2024 Anal. Chem. 96 15313
- [3] Ge H, Kong W P, Wang R, Zhao G, Ma W G, Chen W G, Wan F 2023 Opt. Lett. 48 2186
- [4] Hou X L 2018 J. Radioanal. Nucl. Chem. 318 1597
- [5] Hua Q 2009 Quat. Geochronol. **4** 378
- [6] Levin I, Naegler T, Kromer B, Diehl M, Francey R, Gomez-Pelaez A J, Steele P, Wagenbach D, Weller R, Worthy D 2010 Tellus B: Chem. Phys. Meteorol. 62 26
- [7] Povinec P 2018 J. Radioanal. Nucl. Chem. **318** 1573
- [8] Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388
- [9] Lehmann B, Wahlen M, Zumbrunn R, Oeschger H, Schnell W 1977 Appl. Phys. 13 153
- [10] Labrie D, Reid J 1981 Appl. Phys. A 24 381
- [11] McCartt A, Jiang J 2022 ACS Sensors 7 3258
- [12] Zhang Z, Peng T, Nie X Y, Agarwal G S, Scully M O 2022 Light Sci. Appl. 11 274
- [13] Chen W P, Qiao S D, Lang Z, Jiang J C, He Y, Shi Y W, Ma Y F 2023 Opt. Lett. 48 3989
- [14] Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R, Ideguchi T 2023 Light Sci. Appl. 12 48
- [15] Ma Y F, Liang T T, Qiao S D, Liu X N, Lang Z T 2023 Ultrafast Sci. 3 0024
- [16] Qiao S D, Ma P Z, Tsepelin V, Han G W, Liang J X, Ren W, Zheng H D, Ma Y F 2023 *Opt. Lett.* 48 419
- [17] Zhang C, Qiao S D, He Y, Zhou S, Qi L, Ma Y F 2023 Appl. Phys. Lett. 122 241003
- [18] Lang Z T, Qian S D, Ma Y F 2023 Light Adv. Manuf. 4 233
- [19] Galli I, Pastor P C, Di Lonardo G, Fusina L, Giusfredi G, Mazzotti D, Tamassia F, De Natale P 2011 Mol. Phys. 109 2267
- [20] Terabayashi R, Saito K, Sonnenschein V, Okuyama Y, Iwamoto K, Mano K, Kawashima Y, Furumiya T, Tojo K, Ninomiya S, Yoshida K, Tomita H 2022 J. Appl. Phys. 132 083102
- [21] Jiao K, Gao J, Yang J Q, Zhao G, Shi Z, Wang X P, Zhu D, He H Y, Qing J, Yan X J, Ma W G, Jia S T 2024 *Microwaves Opt. Technol. Lett.* 66 33946
- [22] Galli I, Bartalini S, Ballerini R, Barucci M, Cancio P, De Pas M, Giusfredi G, Mazzotti D, Akikusa N, De Natale P 2016 *Optica* 3 385
- [23] Qi R B, He S K, Li X T, Wang X Z 2015 Spectrosc. Spect. Anal. 35 172 (in Chinese) [齐汝宾, 赫树开, 李新田, 汪献忠 2015 光谱学与光谱分析 35 172]
- [24] Jiang J, McCartt A D 2022 International Symposium on Molecular Spectroscopy Champaign-Urbana, Illinois, USA, June 20-24, 2022 p1
- [25] Zhou X B, Zhao G, Li Y, Cheng Z W, Jiao K, Zhang B F, Zhang Z H, Li Y K, Yan X J, Ma W G, Jia S T 2024 Opt.

Lett. 49 202

- [26] Zak E J, Tennyson J, Polyansky O L, Lodi L, Zobov N F, Tashkun S A, Perevalov V I 2017 J. Quant. Spectrosc. Radiat. Transfer 189 267
- [27] Gagliardi G, Loock H-P 2014 Cavity-Enhanced Spectroscopyand Sensing (Vol. 179) (Berlin: Springer Berlin Heidelberg) p231
- [28] Foltynowicz A, Ma W, Schmidt F M, Axner O 2009 J. Opt.

Soc. Am. B: Opt. Phys. 26 1384

- [29] Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 1144
- [30] Foltynowicz A 2009 Ph. D. Dissertation (Sweden: Umeå University)
- [31] Šimečková M, Jacquemart D, Rothman L, Gamache R, Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130

Theoretical study of ¹⁴CO₂ spectrum measurement technology based on sub-Doppler wm-NICE-OHMS^{*}

LI Yong¹⁾²⁾ ZHOU Xiaobin¹⁾²⁾ ZHAO $\operatorname{Gang}^{1)2}^{\dagger}$ YIN Runtao¹⁾²⁾

YANG Jiaqi¹⁾²⁾ YAN Xiaojuan¹⁾²⁾ MA Weiguang^{1)2) \ddagger}

1) (State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China)

2) (Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China)

(Received 22 October 2024; revised manuscript received 17 December 2024)

Abstract

The massive emission of greenhouse gases, particularly CO_2 , has led to severe damage to the Earth's ecological environment and poses a threat to human health. Many countries have therefore proposed policies to curb the greenhouse effect. Carbon monitoring is a critical prerequisite for realizing these goals, and tracking carbon emission sources can support the precise implementation and advancement of related policies more effectively. The contribution of fossil fuel combustion to greenhouse gas emissions can be inferred by detecting the abundance of ${}^{14}C$ in carbon dioxide in a specific region. Conventional ${}^{14}CO_2$ detection methods have significant drawbacks, including complicated operation, high cost and large equipment size. Laser absorption spectroscopy (LAS) offers advantages such as real-time, online *in-situ* measurement and simple operation, making it suitable for the online detection of isotopes. Among the various LAS techniques, noise immunity cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is the most sensitive. This method integrates frequency modulation spectroscopy (FMS) into cavity enhanced spectroscopy (CES) to suppress the low-frequency noise while increasing the absorption paths, providing a minimum detectable absorption coefficient as low as 10^{-13} . Additionally, the accumulation of high intracavity laser power in NICE-OHMS can stimulate saturation absorption, which has a narrow spectral width that can mitigate spectral overlap. In this work, we model the spectral signals of ${}^{14}CO_2$ at different locations and select the transition line of ${}^{14}CO_2$ at 2209.108 cm⁻¹ as an optimal measurement target based on the principles of high-intensity and well-resolution. The theoretical analysis of the NICE-OHMS technique is then carried out, and theoretical simulations of a mixed sample of ¹⁴CO₂ and its nearby interfering gases (¹³CO₂, ¹²CO₂, and N₂O), are performed under the simulated experimental conditions. The results of the simulation show that the Doppler broadened spectral signal of ${}^{14}CO_2$ is covered by the other gases' signals with a very low amplitude, which is adverse to the

^{*} Project supported by the National Key R&D Program of China (Grant Nos. 2023YFF0614000, 2022YFC3703900), the National Natural Science Foundation of China (Grant Nos. 62327813, 62175139, 62375161, 61975103), the Shanxi Province Science and Technology Activities for Returned Overseas Researcher, China (Grant No. 20220001), and the Dreams Foundation of Jianghuai Advance Technology Center, China (Grant No. 2023-ZM01C007).

[†] Corresponding author. E-mail: gangzhao@sxu.edu.cn

[‡] Corresponding author. E-mail: mwg@sxu.edu.cn

detection of ¹⁴CO₂. To eliminate the linear slope of the Doppler broadened signal and to further improve the signal-to-noise ratio, we perform ¹⁴CO₂ spectral measurements by using wavelength-modulated NICE-OHMS (wm-NICE-OHMS). The results of the simulation show that the spectral lines are effectively separated, and the detection accuracy of the ¹⁴CO₂ ratio is greatly improved. Finally, the effects of pressure and modulation index on the ¹⁴CO₂ wm-NICE-OHMS signal are analyzed. The results show that when the pressure is 42 mTorr and the modulation index is 1.07, the signal amplitude of wm-NICE-OHMS reaches its maximum. This work lays a theoretical foundation for the high precision detection of ¹⁴CO₂ in real-time environmental monitoring. The potential for large-scale application of wm-NICE-OHMS in carbon emission tracking is highlighted, providing a more cost-effective alternative to traditional detection methods. Furthermore, the technology is able to suppress spectral interference from other gases and achieve high resolution in ¹⁴CO₂ measurements, which will greatly help monitor and reduce greenhouse gas emissions.

Keywords: noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, theoretical simulation, radiocarbon isotope detection

PACS: 42.60.Fc, 42.62.Fi, 95.85.Hp

DOI: 10.7498/aps.74.20241482

CSTR: 32037.14.aps.74.20241482

Institute of Physics, CAS

基于亚多普勒wm-NICE-OHMS的¹⁴CO₂光谱测量技术理论研究 李勇 周晓彬 赵刚 尹润涛 杨家琪 闫晓娟 马维光 Theoretical study of ¹⁴CO₂ spectrum measurement technology based on sub-Doppler wm-NICE-OHMS LI Yong ZHOU Xiaobin ZHAO Gang YIN Runtao YANG Jiaqi YAN Xiaojuan MA Weiguang 引用信息 Citation: Acta Physica Sinica, 74, 064209 (2025) DOI: 10.7498/aps.74.20241482 CSTR: 32037.14.aps.74.20241482 在线阅读 View online: https://doi.org/10.7498/aps.74.20241482 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

二维冰相I的电子和光学性质

Electronic and optical properties of two-dimensional ice I 物理学报. 2021, 70(13): 133101 https://doi.org/10.7498/aps.70.20210708

多微管阵列结构腔-原子吸收光谱测量Rb同位素比

Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity 物理学报. 2023, 72(5): 053201 https://doi.org/10.7498/aps.72.20221963

基于标准样品回归算法和腔增强光谱的NO。检测方法

 NO_2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy

物理学报. 2021, 70(5): 050702 https://doi.org/10.7498/aps.70.20201322

激光烧蚀-吸收光谱测量铀同位素比实验研究 Measurement of uranium isotope ratio by laser ablation absorption spectroscopy 物理学报. 2021, 70(16): 163201 https://doi.org/10.7498/aps.70.20210193

基于激光外差探测的大气N₂O吸收光谱测量与廓线反演

Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection

物理学报. 2021, 70(21): 217801 https://doi.org/10.7498/aps.70.20210710

腔增强热里德伯原子光谱

Cavity-enhanced spectra of hot Rydberg atoms

物理学报. 2023, 72(8): 087801 https://doi.org/10.7498/aps.72.20230039