封面文章

基于 HIAF 开展高电荷态重离子双电子 复合谱精密测量的模拟研究^{*}

黄厚科¹⁾²⁾ 汶伟强^{1)2)†} 黄忠魁¹⁾ 汪书兴³⁾ 汤梅堂¹⁾ 李杰¹⁾ 冒立军¹⁾ 袁洋¹⁾²⁾ 万梦宇¹⁾²⁾ 刘畅³⁾ 汪寒冰¹⁾ 周晓鹏¹⁾²⁾ 赵冬梅¹⁾ 严凯明¹⁾ 周云斌¹⁾ 原有进¹⁾ 杨建成¹⁾ 张少锋¹⁾ 朱林繁³⁾ 马新文^{1)2)‡}

(中国科学院近代物理研究所,兰州 730000)
 2)(中国科学院大学,北京 100049)
 3)(中国科学技术大学近代物理系,合肥 230026)

(2024年11月12日收到; 2024年11月26日收到修改稿)

高电荷态重离子的双电子复合精密谱实验不仅能够为天体物理、聚变等离子体物理等研究提供诊断和 建模的关键原子物理数据,还可以用于检验强电磁场条件下的量子电动力学(QED)效应、相对论效应以及 电子关联效应等基本物理模型.我国正在建设的"十二五"大科学装置强流重离子加速器(HIAF),其中高精 度环形谱仪(SRing)装备有450 kV电子冷却器和80 kV超冷电子靶装置,能够在宽质心能量范围(从meV到 几十keV)内对高电荷重离子开展双电子复合谱精密测量.本文首先采用分子动力学方法模拟了SRing上超 冷电子靶的电子束温度分布,结果表明,热阴极产生的电子束经过磁场的绝热膨胀和电场加速后,电子束的 横向温度从100 meV降至5 meV以下,而纵向温度则能从100 meV降至0.1 meV以下,这为开展高分辨和高 精度的双电子复合实验提供了独一无二的实验条件.接着分析了SRing上超冷电子靶的电子束温度对双电子 复合实验中共振峰能量分辨的影响,以类锂¹²³Xe⁵¹⁺和²³⁸U⁸⁹⁺重离子为例,模拟了SRing上的双电子复合 共振谱,并与兰州重离子储存环CSRe上的模拟结果进行了比较.结果表明,基于SRing超冷电子靶的双电子 复合精密谱学实验在质心系能量较低的时候具有极高的能量分辨,能够测量更为精细的双电子复合共振结 构.本研究为SRing上开展高电荷态重离子双电子复合谱精密测量检验强场QED效应和提取原子核结构信 息等前沿实验奠定了坚实的基础.

关键词:高电荷态离子,重离子储存环,双电子复合,超冷电子靶,强场量子电动力学
 PACS: 31.15.ac, 52.20.Hv
 CSTR: 32037.14.aps.74.20241589

1 引 言

双电子复合 (dielectronic recombination, DR) 是一种基本的电子-离子复合机制, 决定着各种自

然以及人造等离子体内部的电荷态分布与电离平衡,其反应截面和速率系数是等离子体演化建模的关键数据,对于深入认识宇宙天体以及聚变等离子体具有重要意义^[1-7].目前,双电子复合共振实验已经发展成为一种十分重要的技术手段,可用来研究

© 2025 中国物理学会 Chinese Physical Society

^{*} 国家重点研发计划(批准号: 2022YFA1602500)、国家自然科学基金(批准号: 12393824)和中国科学院青年创新促进会资助的课题.

[†] 通信作者. E-mail: wenweiqiang@impcas.ac.cn

[‡] 通信作者. E-mail: x.ma@impcas.ac.cn

高电荷态离子的能级结构以及双激发态离子的退激通道^[8,9],并检验基本的原子物理理论,如量子电动力学 (quantum electrodynamics, QED)效应^[10]、相对论效应^[11,12],提取原子核结构信息^[13].高电荷态离子的双电子复合过程最早由 Bates 和 Massey^[14]于1943年从理论上提出,随后经 Badnell等^[15]、LaGattuta和 Hahn^[16]的发展而逐步完善,直到1978年才首次在实验上予以证实^[17].

双电子复合过程是一个两步共振过程,其反应 过程可以写成以下形式^[18]:

$$\mathbf{e}^{-} + X^{q+} \xrightarrow{\mathbf{I}} \left[X^{(q-1)+} \right]^{**} \xrightarrow{\mathbf{II}} X^{(q-1)+} + n \cdot h\nu. \quad (1)$$

这两个步骤分别为: I 共振俘获过程, 其对应于俄 歇的逆过程, 即一个自由电子 e-被俘获到离子 X^{q+} 的束缚态, 同时离子 X^{q+} 的一个束缚电子被共振激 发, 形成中间双激发态 $[X^{(q-1)+}]^{**}$, 此过程无任何能 量放出; II 辐射稳定过程, 双激发态离子 $[X^{(q-1)+}]^{**}$ 通过放出一个或者多个光子退激发到低于电离阈 的稳定态. 图 1 是类锂离子双电子复合过程的示意 图, 其中双电子复合共振的条件是 $\Delta E_{core} = E_{rel} + E_{Rydberg}$, 因此通过测量双电子复合共振谱可以提 取高电荷态离子的能级结构信息.

基于重离子冷却储存环的高电荷离子的双电 子复合实验具有多项显著优势,它能够研究单一电 荷态离子的复合过程,具有极高的能量分辨率,允 许大范围精细调节电子与离子的相对能量,并且是 唯一能够精确测量低能碰撞复合绝对截面关键数 据的实验手段^[8].国际上开展双电子复合实验研究 的重离子冷却储存环包括:德国海德堡马克斯·普

朗克核物理研究所的储存环 (test storage ring, TSR)^[19], 亥姆霍兹重离子研究中心 (GSI) 的实验 储存环 (experimental storage ring, ESR)^[20]; 瑞 典斯德哥尔摩的 CRYRING^[21] (已经搬迁至 GSI, CRYRING@ESR^[13]), 中国科学院近代物理研究 所的储存环 CSRm^[22] 和 CSRe^[23]. 以下几项实验技 术的进步显著提升了实验的分辨率、精确度和应用 范围: 1) CRYRING 通过绝热膨胀技术首次发展 了超冷电子束^[24],极大地提高了双电子复合实验 的精度,这项技术在 TSR 中也得到了应用^[25]; 2) 通过在 TSR 中使用电子冷却器和专用电子靶, 实现了束流冷却和测量的解耦,提高了实验效率 和分辨^[25]: 3) 在 ESR 中通过随机冷却快速冷却热 离子束,而将电子冷却器用作电子靶,拓展了双电 子复合实验的质心系碰撞能量与离子种类[12]. 与 这些改进技术相关的代表性工作包括: 2007年, Schippers 等^[26]在 TSR 上使用双电子复合实验观 测到了 47 Ti ${}^{18+}$ 离子的超精细诱导跃迁 (2s2p ${}^{3}P_{0} \rightarrow$ 2s² ¹S₀); 2008 年, Lestinsky 等^[25] 通过在 TSR 上 引入单独的光阴极电子靶,观测到了 Sc18+离子的 超精细分裂,进一步得到了 2s→2p 跃迁能量,精度 达到 4.6×10⁻⁶, 是迄今为止精度最高的 DR 实验, 如图 2(a) 所示;同年, Brandau 等^[27]在 ESR 上使 用双电子复合的方法测定了¹⁴²Nd⁵⁷⁺和¹⁵⁰Nd⁵⁷⁺的 同位素位移,如图 2(b)所示,从中推算出了原子核 电荷均方根半径.

基于兰州重离子加速器冷却储存环 (CSR)上 自主发展的双电子复合精密谱学实验平台,我们完 成了类铍⁴⁰Ar^{14+[28]},⁴⁰Ca^{16+[29]},类氟⁵⁸Ni^{19+[30,31]}和

图 1 类锂离子的双电子复合过程示意图 (a)→(b)电子共振俘获过程; (b)→(c)辐射稳定过程; (d)双电子复合共振谱示意图 Fig. 1. DR process for Li-like ions: (a)→(b) The resonant electron capture process; (b)→(c) the radiative stabilization process; (d) schematic diagram of measurement for DR spectrum.

类钠⁷⁸Kr^{25+[82,33]}等高电荷态离子的双电子复合精 密谱学实验研究^[23],在高电荷态离子精细结构、实 验室天体物理等方面开展了较为系统的研究工作. 需要说明的是,这些实验的精度受到了离子束品质 和电子束温度等因素的限制;此外,CSR上的电子 冷却器同时用于冷却离子并作为电子靶,这不仅限 制了双电子复合实验的效率,而且无法进行类氢、 类氦和放射性束等高电荷态离子的双电子复合实验.

强流重离子加速器装置 (high intensity heavy ion acceleration facility, HIAF) 是我国正在建设 的中高能量、高束团密度的重离子加速器综合研究 设施^[34]. 该装置中的高精度环形谱仪 (spectrometer ring, SRing) 旨在累积和储存高品质的放射性 次级束流和稳定离子束流,并用于原子物理和核物 理的前沿实验研究.在 HIAF-SRing 上,将安装一 台 450 kV 的电子冷却器和一台 80 kV 的低温电 子靶装置. 电子冷却器通过压缩储存束流的相空间 体积来提升束流品质,而电子靶装置则用于产生能 量快速可调的低温电子束开展电子-离子碰撞实验. 利用绝热膨胀和加速原理可以制备超冷电子靶,其 绝热展开系数高达 30, 实现极低的电子束温度, 从 而可以大幅提高实验的分辨率,为高电荷态离子的 双电子复合精密谱学研究提供极佳的实验环境.此 外,通过电子冷却器与独立电子靶技术的结合,可 以开展质心能量范围内从 meV 到几十 keV 的双 电子复合实验,从而对类氢、类氦以及放射性束的 高电荷态离子进行精密谱测量,这在目前的 CSR 上无法实现[35,36]. 为了深化对实验条件的理解,本 文运用经典分子动力学方法模拟了超冷电子靶的

电子束温度,分析了超冷电子靶的电子束温度对双 电子复合实验中共振峰的半高全宽(能量分辨)的 影响,并选取类锂体系的¹²⁹Xe⁵¹⁺和²³⁸U⁸⁹⁺重离 子作为研究对象,通过双电子复合模拟谱,探讨了 在 SRing 上进行高电荷态重离子双电子复合精密 谱测量所展现的高分辨率特性,为开展强场 QED 效应和提取原子核结构信息等前沿研究提供了重 要支撑.

2 实验和模拟方法

2.1 实验原理

图 3 为基于 HIAF-SRing 装置开展双电子复 合实验的示意图,具体细节可参阅 Huang 等^[36]报 道,此处仅作简要说明.首先使用超导回旋共振离 子源 (SECR) 产生高电荷态离子束, 经由超导直线 加速器 iLinac (Superconducting Linac) 加速后, 离子束被注入 BRing (Booster Ring) 中, 累积加 速后将束流经 HFRS (High Energy Fragment Separator) 注入到高精度环形谱仪 SRing 中开展 实验. 在双电子复合实验过程中, SRing中 450 kV 的电子冷却器专门负责冷却离子束流,提 升束流品质, 而 80 kV 的电子靶提供能量快速可 调的低温电子束用于电子-离子复合实验.在电子 靶的相互作用区域,超冷电子束与运动中的离子束 发生复合反应,复合后的离子被安装在第二块磁铁 之后的复合离子探测器所探测. SRing 上的电子-离子复合共振谱仪具有两种工作模式:1) 电子冷 却器在冷却点负责持续冷却离子束流,电子靶的工

图 3 HIAF-SRing的双电子复合实验装置示意图 Fig. 3. DR experiment setup at HIAF-SRing.

作电压浮置在电子冷却器的高压上,通过精密调节 电子靶的调制电压以开展高精度的双电子复合精 密谱学研究;2)电子冷却器持续在冷却点工作,而 电子靶则在远离冷却点的位置调制高压,从而实现 质心系中大碰撞能量的双电子复合测量,例如进行 类氢和类氦重离子的双电子复合实验研究.

根据储存环电子-离子合并束实验的原理,测 量到的双电子复合速率系数 α 为电子速度分布 f(v_d, v)和双电子复合共振截面 σ 的卷积^[37]:

$$\alpha = \int \sigma(v) v f(v_0, v) d^3 v, \qquad (2)$$

其中 f (v₀, v) 是电子靶电子束的温度分布; 电子靶 上电子束温度分布则需根据电子靶的物理设计参 数进行模拟计算, 见 2.2 节, 最终电子束的温度分 布呈现扁平的麦克斯韦分布:

$$f(v_0, v) = \left(\frac{m_{\rm e}}{2\pi k_{\rm B} T_{//}}\right)^{1/2} \frac{m_{\rm e}}{2\pi k_{\rm B} T_{\perp}} \times \exp\left[-\frac{m_{\rm e} (v_{//} - v_0)^2}{2k_{\rm B} T_{//}} - \frac{m_{\rm e} v_{\perp}^2}{2k_{\rm B} T_{\perp}}\right], \quad (3)$$

其中 $k_{\rm B}T_{\perp}, k_{\rm B}T_{//}$ 分别为电子束的横向温度、纵向 温度,而 $k_{\rm B}$ 为玻尔兹曼常数, $v_{\perp}, v_{//}$ 分别表示电子 束的横向、纵向速度.而双电子复合共振截面呈现 洛伦兹峰型:

$$\sigma(E) = \widehat{\sigma}_{\rm d} L^{\rm d}(E) = \widehat{\sigma}_{\rm d} \frac{\Gamma_{\rm d}}{2\pi} \frac{1}{\left(\Gamma_{\rm d}/2\right)^2 + \left(E - E_{\rm d}\right)^2}, \quad (4)$$

其中 E_d 为共振能量; Γ_d 为自然线宽; $\hat{\sigma}_d$ 为共振截 面对能量的积分, 即共振强度. 当双电子复合共振 截面是 δ 型函数, 可以得到单个共振峰形的解析表 达式^[37]:

$$\alpha (E_0) = \frac{\widehat{\sigma}_{\mathrm{d}} v_{\mathrm{d}}}{m_{\mathrm{e}} \sigma_{\perp}^2 \xi} \exp\left(-\frac{v_{\mathrm{d}}^2 - v_0^2 \xi^{-2}}{\sigma_{\perp}^2}\right) \times \left[\operatorname{erf}\left(\frac{v_{\mathrm{d}} \xi^2 + v_0}{\sigma_{//} \xi}\right) + \operatorname{erf}\left(\frac{v_{\mathrm{d}} \xi^2 - v_0}{\sigma_{//} \xi}\right) \right], \quad (5)$$

其中,

$$\begin{split} \sigma_{/\!/,\perp} &= (2k_{\rm B}T_{/\!/,\perp}/m_{\rm e})^{1/2}, \ \xi = (1-T_{/\!/}/T_{\perp})^{1/2}, \\ \upsilon_{\rm d} &= (2E_{\rm d}/m_{\rm e})^{1/2}, \end{split}$$

误差函数为

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) \mathrm{d}t.$$

因此双电子复合速率系数不仅与双电子复合共振 位置和强度有关,还与电子束温度相关.在本工作 的模拟中,为了快速而准确地模拟双电子复合共 振谱,误差函数 erf(x)的数值计算通过文献 [38] 中 的算法实现,而双电子复合共振结构的位置和强度 则通过全相对论组态相互作用程序 FAC (flexible atomic code) 计算,具体的计算细节可参考文献 [39, 40].

2.2 超冷电子靶上的电子束温度模拟

HIAF-SRing 上双电子复合实验终端配备的

超冷电子靶主要在其加速管区使用绝热膨胀和加速的原理获得极低的电子束温度^[24,41],如图 4 所示.超冷电子靶的主要物理设计参数详见表 1.该电子靶使用热阴极电子枪,电子束发射最大流强约为 0.2 A.电子束的半径约为 r = 4 mm,初始温度约为 $k_{\text{B}}T_{\text{cath}} = 0.1 \text{ eV}$,速度分布遵循麦克斯韦分

图 4 (a) 超冷电子靶装置设计的绝热磁场 B_z 和绝热参数 ξ 的分布图; (b) 超冷电子靶的电子束从热阴极发射后, 通过绝热磁场膨胀的示意图. 在引导磁场的作用下,电子 进行拉莫尔进动并经历绝热膨胀. 绿色箭头表示电子的运 动轨迹

Fig. 4. (a) Designed adiabatic magnetic field B_z and adiabatic parameter ξ of ultracold electron-target as a function of position in the electron-target; (b) schematic illustration of an electron beam emitted from a thermionic cathode within an ultracold electron-target as it traverses the magnetic field. Under the influence of the guiding magnetic field, the electrons undergo Larmor precession and adiabatic expansion. The green arrows indicate the direction of electron motion.

表 1	超冷电子靶的主要物理设计参数

 Table 1.
 Main physical design parameters of the ultracold electron-target.

物理量	参数
	4
电子束能量/keV	10—80
相互作用区电子束密度/(10 ⁶ cm ⁻³)	2
电子束最大流强/A	0.2
电子枪区最大磁场强度/T	1.2
相互作用段最大磁场强度/T	0.04
最大绝热参数	0.2
最大绝热展开因子	30
最大加速电场/(kV·cm ⁻¹)	2.3

布.为了降低横向温度,我们设计了绝热膨胀磁场 来约束和引导电子运动,实现绝热降温.磁场由超 导线圈产生,形成一个轴对称的绝热磁场,最高场 强可达 B_{cath} = 1.2 T,而电子靶相互作用段的磁场约 为 B = 0.04 T.绝热展开因子 α 定义为 B_{cath}/B, 其值最大可达 30.通常用绝热参数 ξ 来表征绝热展 开过程磁场变化的快慢:

$$\xi = \frac{\mathrm{d}B}{\mathrm{d}z}\frac{\lambda}{B}, \qquad \lambda = \left(\frac{8\pi^2 m_{\mathrm{e}}U}{qB}\right)^{\frac{1}{2}}, \qquad (6)$$

其中 λ 为电子的拉莫尔波长,即电子在 z 方向运动 一个拉莫周期的距离,其中 U 为加速电压, q 为电 子的电荷量. 绝热条件要求 $\xi \ll 1$,设计中通常要 求绝热参数 $\xi < 0.2$,如图 4(a)中红色曲线所示. 电 子的横向动能为

$$W_{\perp} = \frac{1}{2}m_{\rm e}\left(v_x^2 + v_y^2\right) = \frac{1}{2}mv_{\perp}^2.$$
 (7)

磁矩为

$$\iota = W_{\perp}/B. \tag{8}$$

当电子从一个高磁场区域 B_{cath} 绝热地运动到低磁场区域 B时, 磁矩是个守恒量, 因此电子的横向动能 W_{\perp} 变为原来的 $1/\alpha$. 电子束的横向温度的统计定义为

$$k_{\rm B}T_{\perp} = m_{\rm e}\left(\left\langle v_{\perp}^2 \right\rangle - \left\langle v_{\perp} \right\rangle^2\right),\tag{9}$$

其中符号 $\langle \cdots \rangle$ 代表取平均. 因此, 根据 (7) 式—(9) 式, 可以推导出横向温度将从 $k_{\rm B}T_{\perp} = 100$ meV 降 低到 $k_{\rm B}T_{\perp}/\alpha \approx 3.3$ meV.

为了验证上述理论推导并获得更精确的数值 结果,采用经典分子动力学方法模拟了超冷电子靶 的电子束横向温度经过绝热膨胀后的变化情况.电 子在磁场中的运动方程为

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma m_{\mathrm{e}} \frac{\mathrm{d}x}{\mathrm{d}t} \right) = eE_{x} + e \left(B_{z} \frac{\mathrm{d}y}{\mathrm{d}t} - B_{y} \frac{\mathrm{d}z}{\mathrm{d}t} \right), \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma m_{\mathrm{e}} \frac{\mathrm{d}y}{\mathrm{d}t} \right) = eE_{y} + e \left(B_{x} \frac{\mathrm{d}z}{\mathrm{d}t} - B_{z} \frac{\mathrm{d}x}{\mathrm{d}t} \right), \quad (10) \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma m_{\mathrm{e}} \frac{\mathrm{d}z}{\mathrm{d}t} \right) = eE_{z} + e \left(B_{y} \frac{\mathrm{d}x}{\mathrm{d}t} - B_{x} \frac{\mathrm{d}y}{\mathrm{d}t} \right), \end{cases}$$

其中γ是电子的相对论洛伦兹因子, *E_{x,y,z}*是所加的加速电场.我们采用四阶龙格库塔方法求解这些方程^[42].单个电子经过加速管后横向动能随电子束能量变化的关系如图 5(a) 黑色点线所示, 而 红色曲线代表了 10⁵ 个电子的横向温度, 即统计 意义上的温度.模拟结果表明,当电子束的能量低于 80 keV 时,电子束在磁场中保持绝热运动,横向温度小于 5 meV 的设计指标.然而,当电子束的能量超过 80 keV 时,电子束的运动从绝热转变为非绝热,横向温度急剧增大,因此实验时调制电压应避免超出 80 kV.

图 5 (a) 单个电子横向动能、电子束横向温度随着电子束 能量的变换关系. 黑色点线表示单个电子的横向动能, 红 色曲线代表电子束的横向温度. 当电子束的能量低于 80 keV 时, 电子束在磁场中保持绝热运动状态. (b) 电子束纵向温 度随着电子束能量的变换关系

Fig. 5. (a) Transverse kinetic energy of the individual electron and transverse temperature of the electron beam as a function of electron beam energy. The black dashed line indicates the transverse kinetic energy of individual electrons, while the red curve represents the transverse temperature of the electron beam. The electron beam maintains adiabatic motion within the magnetic field when the energy of the electron beam is below 80 keV. (b) The longitudinal temperature of the electron beam as a function of electron beam energy.

对于纵向温度, 从阴极发射的电子具有初始纵向温度 $k_{\rm B}T_{//} = 0.1 \text{ eV}$. 通过施加加速电压 U, 电子获得动能 $E_{\rm k}$. 由于动能与速度平方成正比, 速度展宽随之减小, 导致纵向电子温度降低至 $k_{\rm B}T_{//} = \frac{(k_{\rm B}T_{\rm cath})^2}{(\gamma+1)E_{\rm k}} \sim \mu eV$, 基本可以忽略不计. 此外, 高压

纹波 $\Delta U/U \sim 2 \times 10^{-5}$ 对纵向温度的贡献也很小. 纵向温度的增加主要由纵-纵弛豫引起,即加速中 由于电子束密度分布的变化,使得电子之间将通过 静电库仑场建立新的平衡态,这将引起纵向温度的 增加,其大小为 $C \frac{e^2}{4\pi\varepsilon_0} n^{1/3}$,其中常数 $C \leq 1.9$, 与绝热加速因子、磁场相关^[43], *n*为加速后的电子 束密度.当加速时间快于弛豫过程的时间,即绝热 加速,此时纵向温度的增长将会得到抑制^[43].最终 纵向温度的表达式为

$$k_{\rm B}T_{//} = \frac{\left(k_{\rm B}T_{\rm cath}\right)^2}{(\gamma+1)E_{\rm k}} + C\frac{e^2}{4\pi\varepsilon_0}n^{1/3} + \frac{E_{\rm k}}{\gamma+1}\left(\frac{\Delta U}{U}\right)^2.$$
(11)

图 5(b) 展示了纵向温度随电子束能量的变换关系, 当电子束的能量低于 80 keV 时,纵向温度不超过 0.1 meV.

3 结果与讨论

3.1 电子靶的电子束温度对实验能量分辨 的影响

实验能量分辨又称能量展宽,指在给定能量下 探测器响应的半高全宽值,即双电子复合共振峰的 半高全宽.为了得到能量分辨与电子束温度、电子 离子相对能量的关系的定量的表达式,对单个共振 的双电子复合速率系数 (5)式或 (2)式分别取极限 $k_{\rm B}T_{//}, k_{\rm B}T_{\perp} \rightarrow 0$,将会导致双电子复合共振峰型有 不同的线型,从而得到能量分辨^[37].

$$\operatorname{erf}\left(\frac{\upsilon_{\mathsf{d}}\xi^2 \pm \upsilon_0}{\sigma_{//}\xi}\right) \to \pm 1.$$
 (12)

因此代入(5)式可得:

$$\alpha\left(v_{0}\right) = \frac{\widehat{\sigma}_{\mathrm{d}}v_{\mathrm{d}}}{m_{\mathrm{e}}\sigma_{\perp}^{2}\xi} \exp\left(-\frac{v_{\mathrm{d}}^{2} - v_{0}^{2}\xi^{-2}}{\sigma_{\perp}^{2}}\right) \times [1 + (-1)] = 0.$$
(13)

而当 $E_0 \leq E_d$ 时,即 $v_0 \leq v_d$:

$$\operatorname{erf}\left(\frac{\upsilon_{\mathsf{d}}\xi^2 \pm \upsilon_0}{\sigma_{/\!/}\xi}\right) \to 1. \tag{14}$$

因此由 (5) 式可得:

$$\alpha(v_0) = \frac{\widehat{\sigma}_{\mathrm{d}} v_{\mathrm{d}}}{m_{\mathrm{e}} \sigma_{\perp}^2 \xi} \exp\left(-\frac{v_{\mathrm{d}}^2 - v_0^2 \xi^{-2}}{\sigma_{\perp}^2}\right) \times (1+1) \propto \exp\left(-\frac{E_{\mathrm{d}} - E_0}{k_{\mathrm{B}} T_{\perp}}\right).$$
(15)

综上,双电子复合共振峰型为

$$\alpha (E_0) \propto \begin{cases} \exp\left(-\frac{E_{\rm d} - E_0}{k_{\rm B}T_{\perp}}\right) & E_0 \leqslant E_{\rm d}, \\ 0, & E_0 > E_{\rm d}. \end{cases}$$
(16)

该共振峰型为不对称峰型,因此横向温度导致的半 高全宽为

$$\Delta E_{\perp} = \ln\left(2\right) k_{\rm B} T_{\perp}.\tag{17}$$

2) 当 $k_{\rm B}T_{\perp} \rightarrow 0$, 即 $T_{\perp} \rightarrow 0$ 时, 由 δ 函数的极限表达式:

$$\delta\left(x\right) = \lim_{T_{\perp} \to 0} \frac{1}{2T_{\perp}} \exp\left(-\frac{x}{T_{\perp}}\right), \qquad (18)$$

其中 $x = m_e v_\perp^2 / (2k_B)$,代入 $f(v_0, v) d^3 v$,然后积分,有

$$f(v_0, v_{//}) dv_{//} = \left(\frac{m_e}{2\pi k_B}\right)^{1/2} \frac{2}{T_{//}^{1/2}} \\ \times \exp\left[-\frac{m_e(v_{//} - v_0)^2}{2k_B T_{//}}\right] dv_{//}.$$
(19)

再根据 (2) 式容易得到双电子复合共振峰型为高 斯型:

图 6 SRing (红色实线)和 CSRe (蓝色实线)上双电子复 合实验的能量分辨率与电子-离子碰撞能量之间的关系. 图 中分别标出了横向温度 ($k_{\rm B}T_{\perp}$)、纵向温度 ($k_{\rm B}T_{//}$)对实验 分辨的贡献. SRing 在低能电子离子碰撞区域 (meV 级)展 现出极高的能量分辨

Fig. 6. Energy resolution of DR experiments as a function of electron-ion collision energy at the storage SRing (red solid line) and CSRe (blue solid line). The figure also shows the contributions of transverse temperature $(k_{\rm B}T_{\perp})$ and longitudinal temperature $(k_{\rm B}T_{//})$ to the experimental resolution. The DR experiment demonstrates ultra-high energy resolution in the low-energy electron-ion collision region (meV-level).

因此纵向温度导致的半高全宽为

$$\Delta E_{//} = 4\sqrt{\ln(2) E_{\rm d} k_{\rm B} T_{//}}.$$
 (21)

综上,双电子复合的实验能量分辨 ΔE 为

$$\Delta E = \sqrt{\left[\ln\left(2\right)k_{\rm B}T_{\perp}\right]^2 + 16\ln\left(2\right)E_{\rm d}k_{\rm B}T_{//}}.$$
 (22)

图 6 展示了 SRing 和 CSRe 上的双电子复合 实验能量分辨随碰撞能量的关系.与 CSRe 相比, SRing 上的双电子复合实验在能量分辨上实现了 1—2 个量级的显著提升,并且在低能电子离子碰撞 (meV 级) 区域展现出极高的能量分辨,约 3.5 meV. 因此,实验的能量分辨在低碰撞能量区域达到最 高,这主要受横向温度的影响,此时共振结构表现 为非对称峰型.随着碰撞能量的增加,能量分辨率 下降,主要受纵向温度和碰撞能量的共同影响,此 时共振结构表现为对称峰型.

3.2 电子靶的电子束温度对双电子复合 共振峰的影响

图 7(a) 和图 7(b) 展示了不同的电子束温度对 双电子复合共振峰型和速率系数的影响,其中模拟 选取的共振峰的能量 $E_d = 20 \text{ meV}$,强度 $S = 1 \times 10^{-18} \text{ cm}^2 \cdot \text{eV}$.当电子束的纵向温度 $k_{\text{B}}T_{//} = 0.1 \text{ meV}$ 不变,横向温度 $k_{\text{B}}T_{\perp} = 5 \text{ meV}$ 增大到为 10 和 20 meV 时,共振峰的展宽将逐渐变宽,峰值逐渐 下降;当电子束的横向温度 $k_{\text{B}}T_{\perp} = 5 \text{ meV}$ 不变,纵 向温度 $k_{\text{B}}T_{//} = 0.1 \text{ meV}$ 增大到 0.5 和 1 meV 时,共 振峰的展宽将逐渐变宽,峰值逐渐下降.图 7(c)展 示了 SRing 与 CSRe 在特定共振位置上的峰值对 比.结果显示,由于 SRing 双电子复合实验的能量 分辨比 CSRe 提升了 1—2 个数量级,因此在 SRing 上能够清晰地观察到共振峰,而 CSRe 无法观测到 这一现象.这一对比突显了 SRing 在能量分辨率 方面的巨大优势.

3.3 类锂重离子的双电子复合模拟谱

下面以类锂重离子 ${}^{129}_{54}$ Xe⁵¹⁺和 ${}^{238}_{92}$ U⁸⁹⁺为例, 探讨 SRing 上进行的双电子复合实验所展现的高 分辨率特性. 类锂高电荷态离子的 $\Delta n = 0$ 的双电 子复合反应通道为

$$\mathbf{e}^{-} + A^{q+} (2\mathbf{s}) \to \begin{cases} A^{(q-1)+} \left(2\mathbf{p}_{1/2} n l_j \right)_J^{**}, \\ A^{(q-1)+} \left(2\mathbf{p}_{3/2} n l_j \right)_J^{**}. \end{cases}$$
(23)

图 7 (a) 电子束纵向温度 $k_{\rm B}T_{//} = 0.1$ meV 不变,不同的电子束横向温度 $k_{\rm B}T_{\perp} = 5, 10, 20$ meV 对双电子复合峰型和速率系数 的影响,其中共振峰的能量 $E_{\rm d} = 20$ meV,强度 $S = 1 \times 10^{-18}$ cm²·eV. (b) 电子束横向温度 $k_{\rm B}T_{\perp} = 5$ meV 不变,不同的电子束 纵向温度 $k_{\rm B}T_{//} = 0.1, 0.5, 1$ eV 对双电子复合峰型和速率系数的影响,其中共振峰的能量 $E_{\rm res} = 20$ meV,强度 $S = 1 \times 10^{-18}$ cm²·eV. (c) SRing 和 CSR 在相同共振位置上的共振峰,其中 SRing 上的电子束温度为 $k_{\rm B}T_{\perp} = 5$ meV, $k_{\rm B}T_{//} = 0.1$ meV,而 CSR 上的电子束温度为 $k_{\rm B}T_{\perp} = 5$ meV, $k_{\rm B}T_{//} = 0.1$ meV,而 CSR 上的电子束温度为 $k_{\rm B}T_{\perp} = 80$ meV, $k_{\rm B}T_{//} = 1$ meV

Fig. 7. (a) Effect of different transverse temperatures of the electron beam, $k_{\rm B}T_{\perp} = 5, 10, 20 \text{ meV}$, on the DR peak shape and rate coefficient when the longitudinal temperature $k_{\rm B}T_{//} = 0.1 \text{ meV}$ is constant, with the resonance energy $E_{\rm d} = 20 \text{ meV}$ and strength $S = 1 \times 10^{-18} \text{ cm}^2 \cdot \text{eV}$. (b) Effect of different longitudinal temperatures of the electron beam, $k_{\rm B}T_{//} = 0.1, 0.5, 1 \text{ meV}$, on the DR peak shape and rate coefficient when the transverse temperature $k_{\rm B}T_{\perp} = 5 \text{ meV}$ is constant, with the resonance energy $E_{\rm d} = 20 \text{ meV}$ and strength $S = 1 \times 10^{-18} \text{ cm}^2 \cdot \text{eV}$. (c) Simulation peaks of SRing and CSRe at the same resonance energy, the temperatures used for SRing and CSRe are $k_{\rm B}T_{\perp} = 5 \text{ meV}$, $k_{\rm B}T_{//} = 0.1 \text{ meV}$, $k_{\rm B}T_{//} = 1 \text{ meV}$, respectively.

图 8 双电子复合实验模拟谱 (a) 类锂 ¹²⁹₅₄ Xe⁵¹⁺ 离子; (b) 类锂 ²³⁸₉₂ U⁸⁹⁺ 离子.图中红色实线代表 SRing 的模拟结果, 蓝色实 线代表 CSRe 的模拟结果, 而黑色竖线表示由 FAC 程序计算得出的双电子复合共振位置和强度

Fig. 8. DR experimental simulation spectra: (a) Li-like ${}^{129}_{54}$ Xe⁵¹⁺ ions; (b) Li-like ${}^{238}_{92}$ U⁸⁹⁺ ions. The red solid line represents the simulation results at SRing, the black solid line represents the simulation results at CSRe, and the black vertical lines represent the positions and strengths of DR resonances calculated by the FAC code.

在我们的模拟计算中,双电子复合共振结构的位置 和强度是通过程序 FAC 计算获得的,然后与 SRing 上的电子靶和 CSRe 上的电子冷却器的电子束温 度进行卷积,得到双电子复合速率系数模拟谱.对 于类锂¹²⁹Xe⁵¹⁺离子,如图 8(a)所示,低能区的双电 子复合共振峰是双激发态 (2p_{1/2}18*l_j*)_J.由于 SRing 的双电子复合实验预计在低能区具有极高的能量 分辨率,能够分辨 CSRe 上无法识别的一些精细结 构,如双电子复合共振精细结构 18s_{1/2},18p_{1/2.3/2}, $18d_{3/2}$. 对于类锂 $\frac{238}{92}U^{89+}$ 离子的对比如图 8(b) 所 示, 类锂 $\frac{238}{92}U^{89+}$ 离子低能区的双电子复合共振峰是 双激发态 $(2p_{1/2}20l_j)_J$. 同样, 其双电子复合谱能比 CSRe 上观测到更多的精细结构, 如 $(2p_{1/2}20f_j)_J$.

基于 HIAF-SRing 上超冷电子靶的双电子复 合精密谱学实验具有高分辨的特点,为类氢、类 氦、类锂等少电子体系高电荷态离子的双电子复合 精密测量带来了新的机遇.图 9(a)展示了类锂离 子 2s_{1/2}—2p_{1/2}能级跃迁中的各种效应贡献以及相

图 9 (a) 类锂离子 2s_{1/2}—2p_{1/2} 能级跃迁中的各种效应贡献及相关实验测量结果. 使用 SRing 电子靶可以在高精度下测量类锂 ²³⁸U⁸⁹⁺离子的 2s_{1/2}—2p_{1/2} 跃迁能, 从而为严格检验强场下的高阶 QED 效应提供可能. (b) 类锂^{238, 234}U⁸⁹⁺同位素离子对应的双 电子复合谱

Fig. 9. (a) Contributions of various effects to the transition energy of $2s_{1/2}-2p_{1/2}$ and the results of current experimental measurements. By utilizing the electron-target of SRing, we can measure the $2s_{1/2}-2p_{1/2}$ transition energy in ${}^{238}U^{89+}$ ions with high-precision, which provides an opportunity for a stringent test of higher-order QED effects in strong-field. (b) DR spectrum for lithium-like ${}^{238}, {}^{234}U^{89+}$ isotopes.

关实验测量结果,当前的实验主要集中于低 Z元 素,具有较高的测量精度,而针对高 Z元素的实 验相对较少且精度较低^[11], SRing 上的超冷电子靶 为开展类锂高电荷态离子精密谱测量提供了新的 实验平台,其开展类锂²³⁸U⁸⁹⁺离子双电子复合实验 的精度如图 9(a) 所示, 精确测量 2s_{1/2}—2p_{1/2}等 跃迁过程中从低激发态至里德伯态的系列双电子 复合共振峰,可获得高精度的跃迁能量.通过与 国际最先进的理论计算结果对比,提取出兰姆位 移,从而研究量子电动力学效应[13].此外,理论计算表 明[44], 类锂的高电荷态离子 232, 230 Th 87+, 238, 236 U 89+ 和^{238, 234}U⁸⁹⁺的 2s_{1/2}—2p_{1/2}跃迁能级同位素位移 分别为-111.9 meV, -114.3 meV和-225.6 meV, 由于双电子复合共振结构对原子核均方根半径高 度敏感, SRing 上的双电子复合精密谱学方法特别 适合于这些放射性重离子的同位素位移测量.基 于 SRing 超冷电子靶开展类锂 238, 234U89+同位素离 子双电子复合的模拟谱如图 9(b) 所示,结果表明, 尽管两个同位素的原子核均方根半径差仅为 0.028 fm,但 DR 共振峰的位移达到了-225.6 meV, DR 谱上能够显著观测到这一位移. 因此, SRing 能够开展发射线核素重离子的双电子复合精密谱 实验,并结合精确理论计算,提取核电荷分布等重 要核结构信息[45].

4 结果和展望

我国正在建设的"十二五"大科学装置强流重 离子加速器 HIAF, 配备了高精度冷却储存环 SRing, 该储存环上装备有 450 kV 电子冷却器和 80 kV 超冷电子靶装置, 能够在宽质心能量范围 (从 meV 到几十 keV) 内对高电荷重离子的双电子复合谱进 行精密测量.本文结合理论推导和模拟分析对基 于 HIAF-SRing 超冷电子靶开展高电荷态离子双 电子复合精密谱实验测量进行了比较系统的研究 和讨论, 主要结论如下.

1) 基于经典分子动力学方法的模拟结果表明, 高精度环形谱仪 SRing 上配备的独立超冷电子靶 10—80 kV 工作范围内其电子束的横向温度不超 过 5 meV, 纵向温度不超过 0.1 meV.

2) 实验的能量分辨在低碰撞能量区域达到最高约 3.5 meV, 主要受横向温度的影响, 导致共振结构呈现出非对称峰型. 随着碰撞能量的增加, 能量分辨降低, 这主要受纵向温度和碰撞能量的共同影响, 此时共振结构表现为对称峰型.

3) 以类锂 ¹²⁹₅₄ Xe⁵¹⁺ 和 ²³⁸U⁸⁹⁺ 重离子为例, 模 拟了储存环 HIAF-SRing 与 CSRe 上低能区的双 电子复合谱.结果表明, 更高的能量分辨能使我们 观测到更精细的双电子复合共振结构, 可以在更高 精度上检验强场 QED 效应, 并通过测量放射性重 离子的同位素位移提取原子核电荷均方根半径等 原子核结构信息.

本文对 HIAF-SRing 上独立电子靶的电子束 温度分布、双电子复合实验能量分辨和模拟谱的研 究,将为未来 SRing 电子-离子复合共振谱仪开展 高电荷态离子双电子复合精密测量提供重要的支 持和参考.

参考文献

- Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115
- [2] Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337
- [3] Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275
- [4] Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421
- [5] Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687
- [6] Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098
- [7] Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157
- [8] Larsson M 1995 Rep. Prog. Phys. 58 1267
- [9] Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143
- [10] Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027
- [11] Brandau C, Kozhuharov C, Müller A, et al. 2003 Phys. Rev. Lett. 91 073202
- [12] Wang S X, Brandau C, Fritzsche S, Fuchs S, Harman Z, Kozhuharov C, Müller A, Steck M, Schippers S 2024 Eur. Phys. J. D 78 122
- [13] Brandau C, Kozhuharov C, Lestinsky M, Müller A, Schippers S, Stöhlker T 2015 *Phys. Scr.* 2015 014022
- [14] Bates D R, Massey H S W 1943 Philos. Trans. R. Soc. London, Ser. A 239 269
- [15] Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441
- [16] LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785
- [17] Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107
- [18] Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599
- Schippers S 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 350 61
- [20] Shevelko V, Tawara H 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283–306

- [21] Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002
- [22] Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 *Phys. Scr.* **T166** 014023
- [23] Huang Z K, Wang S X, Wen W Q, Wang H B, Ma W L, Chen C Y, Zhang C Y, Chen D Y, Huang H K, Shao L, Liu X, Zhou X P, Mao L J, Li J, Ma X M, Tang M T, Yang J C, Yuan Y J, Zhang S F, Zhu L F, Ma X W 2023 *Chin. Phys. B* 32 073401
- [24] Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 *Phys. Rev. Lett.* 72 3775
- [25] Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 *Phys. Rev. Lett.* **100** 033001
- [26] Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 *Phys. Rev. Lett.* **98** 033001
- [27] Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201
- [28] Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2
- [29] Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2
- [30] Wang S X, Huang Z K, Wen W Q, et al. 2019 Astron. Astrophys. 627 A171
- [31] Wang S X, Huang Z K, Wen W Q, et al. 2022 Phys. Rev. A 106 042808
- [32] Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 *Phys. Rev. A* 102 062823
- [33] Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402 (in Chinese) [邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 物理学报 73 123402]
- [34] Ma Y G, Zhao H W 2020 Sci. Sin. Phys. Mech. Astron. 50
 112001 (in Chinese) [马余刚,赵红卫 2020 中国科学: 物理学 力学 天文学 50 112001]
- [35] Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin. Phys. Mech. Astron. 50 112008 (in Chinese) [马 新文,张少锋, 汶伟强,杨杰,朱小龙,钱东斌,闫顺成,张鹏鸣, 郭大龙,汪寒冰,黄忠魁 2020 中国科学:物理学 力学 天文学 50 112008]
- [36] Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135
- [37] Danared H 1995 *Phys. Scr.* **T59** 121
- [38] Zaghloul M R 2017 ACM Trans. Math. Softw. 44 22
- [39] Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128
- [40] Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin.

59 6044 (in Chinese) [李传莹, 刘晓菊, 孟广为, 王建国 2010 物 理学报 59 6044]

- [41] Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397
- [42] Zhang P W, Li T J 2007 Numerical Analysis (Beijing: Beijing University Press) p161 (in Chinese) [张平文, 李铁军 2007 数 值分析 (北京: 北京大学出版社) 第 161 页]
- [43] Danared H 1998 Hyperfine Interact. 115 61
- [44] Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I,

Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 *Phys. Rev. A* **90** 062512

[45] Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 *Nucl. Phys. Rev.* 35 196 (in Chinese) [啜嗟亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文 2018 原子核物理评论 35 196]

COVER ARTICLE

Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF^{*}

HUANG Houke¹⁾²⁾ WEN Weiqiang^{1)2)†} HUANG Zhongkui¹⁾ WANG Shuxing³⁾ TANG Meitang¹⁾ LI Jie¹⁾ MAO Lijun¹⁾ YUAN Yang¹⁾²⁾
WAN Mengyu¹⁾²⁾ LIU Chang³⁾ WANG Hanbing¹⁾ ZHOU Xiaopeng¹⁾²⁾
ZHAO Dongmei¹⁾ YAN Kaiming¹⁾ ZHOU Yunbin¹⁾ YUAN Youjin¹⁾
YANG Jiancheng¹⁾ ZHANG Shaofeng¹⁾ ZHU Linfan³⁾ MA Xinwen^{1)2)‡}

1) (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

3) (Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China)

(Received 12 November 2024; revised manuscript received 26 November 2024)

Abstract

Dielectronic recombination (DR) experiments of highly charged ions not only provide essential atomic benchmark data for astrophysical and fusion plasma research but also serve as a stringent test for strong-field quantum electrodynamics (QED) effects, relativistic effects, and electron correlation effects. High-intensity heavy-ion accelerator facility (HIAF), currently under construction at Huizhou, China, will have a highprecision spectrometer ring (SRing) equipped with a 450 kV electron-cooler and an 80 kV ultracold electrontarget. This advanced setup facilitates precise measurements of the DR process for highly charged ions in a broad range of center-of-mass energy, from meV to tens of keV. In this work, we carry out the molecular dynamics simulation of the electron beam temperature distribution of the ultracold electron-target at the SRing. The simulation results indicate that after treatment by the designed adiabatic magnetic field and acceleration field, the transverse and longitudinal electron beam temperature generated by the thermionic electron gun can be reduced from 100 meV to below 5 meV and 0.1 meV, respectively. Furthermore, we analyze the influence of this ultracold electron beam temperature on the resonance peak and energy resolution in DR experiment. The

^{*} Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12393824), and the Youth Innovation Promotion Association of the Chinese Academy of Science.

[†] Corresponding author. E-mail: wenweiqiang@impcas.ac.cn

[‡] Corresponding author. E-mail: x.ma@impcas.ac.cn

resolution gain at the SRing electron-target is particularly pronounced at small electron-ion collision energy, which provides unique experimental conditions for the DR experiments. Taking lithium-like ${}^{129}_{54}$ Xe⁵¹⁺ and ${}^{238}_{92}$ U⁸⁹⁺ ions for example, we simulate the DR resonance spectra at the SRing and compare them with the simulated results from the experimental cooler storage ring CSRe. The results reveal that the SRing experiments can resolve fine DR resonance structures with ultra-high energy resolution compared with those from the CSRe. This work lays a solid foundation for precise DR spectroscopy of highly charged ions at the SRing to stringent test of strong field QED effect and extraction nuclear structure information.

Keywords: highly charged ions, storage ring, dielectronic recombination, ultracold electron-target, strong-field quantum electrodynamics effect

PACS: 31.15.ac, 52.20.Hv

DOI: 10.7498/aps.74.20241589

CSTR: 32037.14.aps.74.20241589

物理学报Acta Physica Sinica

Institute of Physics, CAS

基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究

黄厚科 汶伟强 黄忠魁 汪书兴 汤梅堂 李杰 冒立军 袁洋 万梦宇 刘畅 汪寒冰 周晓鹏 赵冬梅 严凯明 周云斌 原有进 杨建成 张少锋 朱林繁 马新文

Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF

HUANG Houke WEN Weigiang HUANG Zhongkui WANG Shuxing **TANG Meitang** LI Jie MAO Lijun YUAN Yang WAN Mengyu **ZHOU Xiaopeng** ZHAO Dongmei LIU Chang WANG Hanbing YAN **ZHOU Yunbin** YUAN Youjin YANG Jiancheng ZHANG Shaofeng ZHU Linfan MA Xinwen Kaiming 引用信息 Citation: Acta Physica Sinica, 74, 043101 (2025) DOI: 10.7498/aps.74.20241589

71用信息 Citation: Acta Physica Sinica, 74, 043101 (2023) DOI: 10.7498/aps.74.2 CSTR: 32037.14.aps.74.20241589

在线阅读 View online: https://doi.org/10.7498/aps.74.20241589

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

重离子储存环CSRe上类钠Kr²⁵⁺离子的双电子复合精密谱学实验研究 Dielectronic recombination experiment of Na-like Kr²⁵⁺ at heavy ion storage ring CSRe 物理学报. 2024, 73(12): 123402 https://doi.org/10.7498/aps.73.20240211

高电荷态Ar⁸⁺离子与He原子碰撞中双电子俘获量子态选择截面实验研究

Experimental measurement of state selective double electron capture in collision between 1.420 keV/u Ar⁸⁺ with He 物理学报. 2024, 73(24): 240701 https://doi.org/10.7498/aps.73.20241290

近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置

Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region 物理学报. 2023, 72(13): 133401 https://doi.org/10.7498/aps.72.20230214

高电荷态离子阿秒激光光谱研究展望

Prospect for attosecond laser spectra of highly charged ions 物理学报. 2023, 72(19): 193201 https://doi.org/10.7498/aps.72.20230986

电子束离子阱光谱标定和Ar¹³⁺离子M1跃迁波长精密测量

Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar¹³⁺ 物理学报. 2022, 71(3): 033201 https://doi.org/10.7498/aps.71.20211663

高电荷态类硼离子²P_{3/2}一²P_{1/2}跃迁的实验和理论研究进展

Experimental and theoretical research progress of ${}^{2}P_{1/2} {}^{2}P_{3/2}$ transitions of highly charged boron-like ions 物理学报. 2024, 73(20): 203102 https://doi.org/10.7498/aps.73.20241190