竖直取向 MoS₂ 纳米片复合 Ag 基底的 表面增强拉曼光谱效应及机制^{*}

戴硕 李振 张超 郁菁 赵晓菲 吴阳 满宝元†

(山东师范大学物理与电子科学学院, 济南 250358)

(2024年12月2日收到; 2025年1月6日收到修改稿)

结合金属和二维纳米材料的优点,研究人员提出了多种二维材料/金属复合结构作为表面增强拉曼光谱 (SERS)基底,然而,复合结构中的二维纳米材料通常对总增强的作用较小.本文提出了一种竖直排列的二硫 化钼(MoS₂)纳米片,并将其与银纳米颗粒(Ag NPs)复合,制备MoS₂/Ag基底,用于 SERS 检测.竖直排列MoS₂ 纳米片可有效提高对分子的吸附,增强光吸收,提升电磁和化学双机制增强.实验结果表明,MoS₂/Ag基底表 现出优异的 SERS 性能,其对罗丹明 6G (R6G)分子的检测极限达到了 10⁻¹² mol/L,接近单分子检测水平,增强 因子约为 1.08×10⁹.同时该基底表现出优异的信号重现性,最终实现了对水产品中抗菌剂残留的超灵敏检测.

关键词:表面增强拉曼光谱,竖直排列 MoS₂ 纳米片,银纳米颗粒,电荷转移
PACS: 74.25.nd, 78.67.-n, 81.07.-b
CSTR: 32037.14.aps.74.20241671

1 引 言

表面增强拉曼光谱 (surface enhanced Raman spectroscopy, SERS) 能够提供丰富的分子结构信息,可在单分子水平实现超灵敏、无损、快速检测,已广泛应用于物理、化学、生物医药、环境科学、材料科学等领域^[1-4].目前普遍认可的拉曼信号增强现象主要归功于局域表面等离激元共振效应,即SERS 的电磁场增强机制.具体来说,当激发光波长与金属导带电子的共振频率相匹配时,可在金属纳米结构表面激发表面等离激元共振,基于共振效应,金属纳米结构在间隙区域会产生强局域电磁场,可极大增强处于局域场中分子的拉曼信号,增强因子可达 10⁹ 以上^[5,6]. 然而,电磁机制未能完全阐明不同振动模式之间增强幅度的差异,因此,研

究人员提出基于分子与基底之间由电荷转移引起 的化学增强机制理论^[7].电荷转移可改变分子的电 子密度分布,从而导致更大的极化率,理论上对拉 曼信号的增强可达 10³ 以上.

在目前已报道的众多 SERS 基底类型中,金 (Au)、银 (Ag)、铜 (Cu)等贵金属纳米结构 SERS 基底在灵敏度方面有巨大优势. 然而,纯金属 SERS 基底仍存在信号重现性低,背景荧光强,普适性差 等问题,研究人员利用非金属纳米材料性质稳定、 结构可调、生物相容性好等特点^[8,9],制备了多类型 非金属/金属复合结构作为 SERS 基底,如 Au/Ag-石墨烯^[10,11]、Ag/ZnO^[12]、Au/Ag-TiO₂^[13,14]、Au/ Ag-MoS₂^[15,16]等.研究证明非金属/金属复合结构 SERS 基底在传感领域具备较大的应用潜力^[17-23]. 然而,复合结构中的非金属纳米材料通常对总体拉 曼增强的作用较小.

© 2025 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 12174229, 12474408)、山东省泰山学者计划 (批准号: tsqn202306152)、山东省青创科技计划 (批准 号: 2021KJ006) 和山东省自然科学基金 (批准号: ZR2022YQ02) 资助的课题.

[†] 通信作者. E-mail: byman@sdnu.edu.cn

二硫化钼 (MoS2) 因其独特的电子、光学和机械 性能而受到广泛关注, MoS2 具备优异的分子吸附 和荧光猝灭能力,同时其带隙可调特性和酸碱稳定 性使其在 SERS 领域的应用具有显著优势^[23-25]. 单纯 MoS₂ 薄膜的 SERS 增强因子相对较小, 为了 拓展其应用潜力,研究人员将 MoS2 与金属纳米结 构复合进一步调控其 SERS 性能. 例如, Yuan 等^[23] 制备一种金纳米线 (Au NWs) 复合 MoS₂纳米片 的杂化结构, SERS 增强因子达到 107, 是单纯 Au NPs 的 10⁴ 倍. Yu 等^[24] 在双层 MoS₂ 纳米片上制 备双取向银纳米线 (Ag NWs), 与单纯 Ag NWs 基 底相比, 基于 Ag NWs-MoS₂ 界面热点的倏逝电 场,实现了对 R6G SERS 信号的进一步增强. Zhai 等^[25]提出一种金纳米盘阵列和单层 MoS,构成复 合结构 SERS 基底, 通过电磁增强和化学增强的协 同作用,实现了对水产品中抗菌剂残留的检测[26].然 而,上述 MoS₂皆为二维薄膜形式,适当增大材料 表面粗糙度或引入不同形态的纳米结构可有效增 强光吸收和分子的吸附,进一步提升检测灵敏度.

本工作在钼箔上直接生长了大面积、竖直排列的 MoS₂ 纳米片,并将其与银纳米颗粒 (Ag NPs) 复合,制备 MoS₂/Ag 基底,用于 SERS 检测.竖直 排列的 MoS₂ 纳米片可有效增强基底对分子的吸 附和光吸收,提升电磁和化学双增强机制.实验结 果表明,MoS₂/Ag 基底表现出优异的 SERS 性能, 其对 R6G 分子的检测极限达到了 10⁻¹² mol/L,接 近单分子检测水平,增强因子约为 1.08×10⁹.同时 该基底在超低浓度下对分子表现出优异的信号重 现性,最终实现了对水产品中抗菌剂残留的超灵敏 检测.

2 样品制备与测试手段

2.1 材料

本文所用材料有钼箔 (Mo, 99.98%)、去离子 水、盐酸 (HCl, 99.7%)、丙酮 (CH₃COCH₃, 99.7%)、 乙醇 (C₂H₆O, 99.8%)、硫脲 (CH₄N₂S, 99.0%)、罗 丹明 6G (Rhodamine 6G, R6G).

2.2 MoS₂/Ag 基底的制备

图 1 为 SERS 基底的制备流程示意图. 先利用 水热法在钼箔上直接生长竖直 MoS₂ 纳米片, 具体 步骤如下:将钼箔切成 1.5 cm×3.0 cm 大小的片; 将盐酸加入去离子水中,稀释浓度至1 mol/L; 依次将钼箔在盐酸(1 mol/L)、丙酮、乙醇和去离 子水中超声清洗 10 min, 然后风干; 将 1.6 g 硫脲 (CH₄N₂S) 溶解在 40 mL 去离子水中, 搅拌 0.5 h, 转移至容量为 50 mL 的反应釜中,并将清洗过的 钼箔浸入其中;其后将反应釜加热至 200 ℃ 并保 持 24 h, 待冷却后收集产物, 依次利用去离子水和 乙醇清洗,烘干后即可得到竖直排列的 MoS₂ 纳米 片样品.为进一步优化,在氩气 (Ar)环境中 300 ℃ 下对样品进一步退火 1.5 h, 得到退火后 MoS₂纳 米片. 生长完成的样品使用 0.1 Å/s 的速率, 通过 控制时间,在 MoS₂纳米片表面蒸镀不同厚度的 Ag 膜, 即可得到 MoS₂/Ag SERS 基底 (annealed

Fig. 1. Schematic diagram of the preparation process of the SERS substrate.

MoS₂/Ag). 作为对照,将未经退火处理的 MoS₂ 纳 米片在相同条件下蒸镀上了同样厚度的 Ag.

2.3 测试手段

利用扫描电子显微镜 (scanning electron microscope, SEM, ZEISS, Gemini Sigma 500) 对制备 的样品进行结构表征;使用能量色散 X 射线仪 (energy dispersive spectrometer, EDS, ZEISS, Gemini Sigma 500) 测试样品元素的分布;利用 X 射线光电子能谱仪 (X-ray photo electron spectroscopy, XPS,美国赛默飞, Nexsa G2) 对样品进行 分析;使用紫外-可见-近红外分光光度计 (Shimadzu, SolidSpec-3700 i DUV) 在室温下测得样品的 反射光谱;使用拉曼光谱仪 (Horiba, HR Evolution 800) 记录 50 倍物镜下的 SERS 谱,激发光波长为 532 nm,仪器激光功率为 0.48 mW,光栅 600 gr/mm.

3 结果与讨论

图 2(a), (b) 为不同放大倍数下退火后大面积 竖直 MoS₂纳米片的 SEM 图, 超薄结构的 MoS₂ 纳米片直接竖直生长在钼箔上, 其形貌在微米级别 上表现出良好的均匀性, 这可为均匀、高重现 SERS 信号的采集提供便利条件.图 2(c) 所示为未经退 火处理的 MoS₂纳米片形貌, 经过退火处理的样品 与未经退火处理的样品相比其形貌基本相同.图 2(d) 为经过退火处理后 MoS₂/Ag SERS 基底的 SEM 图, 对应的 Ag 膜厚度为 25 nm, 可以观察到基底 形貌表现出明显的不同, Ag 膜将 MoS₂ 纳米片均 匀覆盖, 同时在纳米片边缘处形成许多团聚的 Ag NPs. 图 2(e), (f) 展示了退火后 MoS₂ 基底的能量 色散 X 射线谱 (EDS), Mo 元素和 S 元素分布的高 度一致证明 MoS₂ 的成功合成.

图 3(a) 所示为退火前后 MoS₂ 纳米片的拉曼 光谱, 进一步证明 MoS₂ 的顺利合成. 在 377 和 404 cm⁻¹ 处观察到两个不同的振动带, 分别归因 于 MoS_2 的 E^1_{2g} (面内) 和 A_{1g} (面外) 振动, 两个特征 峰之间的波数差可用于判断 MoS₂ 的层数, 在本工 作中合成的 MoS₂ 纳米片超过了 4 层^[26,27]. 然而, 从 拉曼光谱角度并不能看出退火过程对材料的影响. 进一步通过 X 射线光电子能谱 (XPS) 对两种样品 进行表征. XPS 光谱结合能由 C 1s - 284.8 eV 标定. 图 3(b), (c) 分别比较了退火前后样品 Mo和 S 元 素的 XPS 光谱变化. 图 3(b) 中退火后 MoS₂/Ag 的 Mo 3d 在 229.4 和 232.5 eV 出现两个峰, 分别 对应 Mo 3d_{5/2} 和 Mo 3d_{3/2}, 与未复合 Ag 的 MoS₂ 基底相比,结合能上移了约 0.3 eV;而未经退火 MoS₂在蒸镀 Ag 后 Mo 3d 峰位发生了约 0.1 eV 的蓝移. 同样, 在图 3(c) 所示的 S 2p 峰中观察到 结合能的上移.这些结果表明,在 MoS₂/Ag基底 中,电子从 MoS2 向 Ag 转移,而且经过退火处理后 更多的电子从 MoS₂转移到 Ag^[28,29], MoS₂与 Ag 之 间的相互作用变强,这有利于 SERS 的化学增强.

图 2 基底的 SEM 和 EDS 图 (a), (b) 不同放大倍数下退火后大面积竖直 MoS₂ 纳米片 SEM 图; (c) 未退火 MoS₂ 纳米片 SEM 图; (d) 退火后 MoS₂/Ag SERS 基底的 SEM 图; (e), (f) 退火后 MoS₂ SERS 基底上 Mo 元素和 S 元素的 EDS 图

Fig. 2. SEM and EDS images of substrates: (a), (b) SEM images of large-area vertical MoS_2 nanosheets after annealing at different magnifications; (c) SEM image of MoS_2 nanosheets before annealing; (d) SEM image of annealed MoS_2/Ag SERS substrate; (e), (f) EDS images of Mo and S elements on MoS_2 SERS substrate after annealing.

如图 4 所示,首先对 MoS₂和未经退火 MoS₂/ Ag 基底的 SERS 性能进行探究.选用 R6G 为探针 分子,图 4(a) 所示为不同浓度 R6G 分子在竖直 MoS₂ 纳米片基底上的 SERS 光谱,可以清楚地观 察到分子的特征峰.例如,613 cm⁻¹ 处特征峰归因 于芳香族 C—C—C 弯曲,774 和 1183 cm⁻¹ 处的 振动模式对应于芳香族 C—H 弯曲, 1572 cm⁻¹ 为 C=C 拉伸, 1311, 1361, 1507 和 1648 cm⁻¹ 处的峰 为 C—C 拉伸^[30]. MoS₂ 纳米片 SERS 基底对 R6G 分子的检测极限为 10⁻⁷ mol/L. 图 4(b) 为浓度为 10⁻⁶ mol/L 的 R6G 在蒸镀不同厚度 Ag 后未经 退火的 MoS₂ 基底上的 SERS 强度对比. 可以清楚

图 3 基底的拉曼光谱和 XPS 光谱 (a) 未退火和退火后 MoS₂ 纳米片的拉曼光谱; 退火后 MoS₂/Ag、未退火 MoS₂/Ag 和未退 火 MoS₂ SERS 基底的 (b) Mo 3d 和 (c) S 2p XPS 光谱; (d) 未退火和退火后 MoS₂/Ag SERS 基底的 Ag 3d XPS 光谱

Fig. 3. Raman spectra and XPS spectra of substrates: (a) Raman spectra of MoS_2 nanosheets before and after annealing; (b) Mo 3d and (c) S 2p XPS spectra of annealed MoS_2/Ag , original MoS_2/Ag and unannealed MoS_2 SERS substrate; (d) Ag 3d XPS spectra of MoS_2/Ag SERS substrate before and after annealing.

图 4 MoS₂和MoS₂/Ag 基底的 SERS 性能 (a) 不同浓度 R6G 分子在竖直 MoS₂ 纳米片基底上的 SERS 光谱; (b) R6G 分子 (10⁻⁶ mol/L) 在不同厚度 Ag 复合未退火 MoS₂ 基底上的 SERS 光谱

Fig. 4. SERS performance of MoS_2 and MoS_2/Ag substrates: (a) SERS spectra of different concentrations of R6G molecules on vertically aligned MoS_2 nanosheet substrates; (b) SERS spectra of R6G molecules at a concentration of 10^{-6} mol/L on unannealed MoS_2 substrates composite with Ag of different thicknesses.

地观察到,随着Ag膜厚度的增大,MoS₂/Ag基底 SERS 灵敏度随之增强. 当银膜厚度达到 25 nm 厚 时,基底 SERS 效应达到最强.

如图 5(a) 所示, 对经过退火处理和未经退火 处理的 MoS₂/Ag 基底对 10⁻⁵ mol/L 浓度的 R6G 分子的测试性能进行对比. 与未经退火 MoS₂/Ag 基底相比, R6G 分子的 SERS 信号在经过退火处 理的 MoS₂/Ag 基底上表现出显著增强. 检测极限 是评估 SERS 基底测试能力的另一个重要因素, 图 5(b), (c) 分别为未经退火和退火后 MoS₂/Ag 基底的检测极限测试,从图中可以看出,未经退火 MoS₂/Ag 基底对 R6G 分子的检测极限可以达到 10⁻⁸ mol/L, 经退火处理的 MoS₂/Ag 基底对 R6G 分子的检测极限则进一步降低到 10-12 mol/L,降 低了 4 个数量级. 为了定量地评估 SERS 效应, 使 用以下公式计算基底的增强因子:

其中, N_{SERS}和 N_{bulk}分别表示参与 SERS 和正常 拉曼测试的探针分子数量, ISERS 和 Ibulk 表示 SERS 和正常拉曼信号的强度. 计算得到, 经退火处理的 MoS₂/Ag 基底对 R6G 的增强因子约为 1.08×109, 远远大于未经退火处理 MoS_2/Ag 基底的 5.92×10⁵. 最后,如图 5(d)所示,我们给出了吸附在 MoS₂/Ag 基底上的 R6G 分子在 613 cm⁻¹ 处拉曼峰强度的 对数与 R6G 分子浓度对数的线性关系, R6G 分子 的 SERS 信号强度的对数随着浓度对数的变化呈 现出良好的线性关系, 拟合之后的线性系数为 0.976.

分别从电磁和化学机制角度对 MoS₂/Ag SERS 基底的增强机理进行分析. 首先, 电磁机制 方面,对于二维 MoS₂薄膜,三维竖直 MoS₂纳米 片具有更大的比表面积, 使 Ag 能很好地附着, 为 SERS 测试提供高密度的热点区域. 图 6(a) 展示 了经过退火和未经退火 MoS₂/Ag 基底的紫外-可 见反射光谱, 未退火 MoS₂/Ag 基底在 400-800 nm 波段表现出明显的吸收, 而经过退火处理 MoS₂/

(1)

图 5 MoS₂/Ag 基底的 SERS 性能 (a) 经过退火和未经退火 MoS₂/Ag 基底采集 R6G (10⁻⁵ mol/L) 分子的 SERS 光谱; (b) 不同 浓度 R6G 分子在未退火 MoS₂/Ag 基底上的 SERS 光谱; (c) 不同浓度 R6G 分子在退火后 MoS₂/Ag 基底上的 SERS 光谱; (d) 双 对数坐标下,吸附在退火后 MoS₂/Ag 基底上的 R6G 分子在 613 cm⁻¹ 处的拉曼峰强度与 R6G 分子浓度的关系

Fig. 5. SERS performance of MoS₂/Ag substrates: (a) Comparison of SERS spectra of R6G (10⁻⁵ mol/L) molecules collected on annealed and original MoS₂/Ag substrates; (b) SERS spectra of R6G molecules with different concentrations on original MoS₂/Ag substrate; (c) SERS spectra of R6G molecules with different concentrations on annealed MoS₂/Ag substrate; (d) in double logarithmic coordinates, the relationship between the Raman peak intensity of R6G molecules adsorbed on the annealed MoS_2/Ag substrate at 613 cm⁻¹ and the concentration of R6G molecules.

图 6 基底的 SERS 增强机制分析和检测性能 (a) 经过退火和未经退火 MoS₂/Ag 基底的反射光谱; (b) MoS₂/Ag 基底电荷转移 分析; (c) 经过退火和未经退火 MoS₂/Ag 基底上 R6G 分子的电荷转移度 (ρ_{CT}); (d) R6G (10⁻¹² mol/L) 分子在退火后 MoS₂/Ag 基底的多个随机位置上的 SERS 光谱; (e) 不同浓度 CV 分子在 MoS₂/Ag 上的 SERS 光谱; (f) 不同浓度 MB 分子在 MoS₂/Ag 上的 SERS 光谱

Fig. 6. Analysis of SERS enhancement mechanism and detection performance of substrates: (a) Diffuse reflectance spectra of annealed and original MoS_2/Ag substrates; (b) charge transfer analysis of MoS_2/Ag substrate; (c) charge transfer degree (ρ_{CT}) of R6G molecules on annealed MoS_2/Ag and original MoS_2/Ag substrate; (d) SERS spectra of R6G (10^{-12} mol/L) molecules at multiple random positions on annealed MoS_2/Ag substrate; (e) SERS spectra of CV molecules with different concentrations on annealed MoS_2/Ag substrate; (f) SERS spectra of MB molecules with different concentrations on annealed MoS_2/Ag substrate.

为了定量估计电荷转移对 SERS 的贡献, 使 用如下公式计算分子 k 波段的相对电荷转移度 (ρ_{CT})^[36,37]:

$$\rho_{\rm CT}\left(k\right) = \frac{I^k\left({\rm CT}\right) - I^k\left({\rm SPR}\right)}{I^k\left({\rm CT}\right) + I^0\left({\rm SPR}\right)},\tag{2}$$

其中, *I*^k(CT) 是光谱中电荷转移共振对 SERS 强 度有贡献的区域内谱线 (*k*) 的强度, *I*⁰(SPR) 是选 择作为参考的完全对称波段的强度. 如果谱线 (*k*) 完全对称,则*I^k*(SPR) = *I*⁰(SPR);如果它不是 完全对称的,则*I^k*(SPR) 是该谱线在只有表面等离 子体共振对光谱有贡献的区域内的强度,此时 *I^k*(SPR) 通常很小,在许多情况下可以假设为零. 对于 R6G 分子,我们选择 1361 cm⁻¹ 波段的强度 作为*I*⁰(SPR),测算 613 cm⁻¹ 波段的电荷转移度, 结果展示在图 6(c) 中.测得退火 MoS₂/Ag 与未退 火 MoS₂/Ag 基底的电荷转移度 (*ρ*CT) 分别约为 0.60 和 0.56.

信号重现性也是一项对 SERS 性能评估的重 要指标. 如图 6(d) 所示,在 MoS₂/Ag 基底上采集 了多组 R6G (10⁻¹² mol/L)的 SERS 光谱,计算出 相对标准偏差 (relative standard deviation, RSD) 为 15.88%,在超低浓度下具有较高的信号再现性.为 了证明 MoS₂/Ag 基底应用的普适性,对在 532 nm 激光下的非共振增强分子结晶紫 (crystalline violet, CV) 和亚甲基蓝 (methylene blue, MB) 进行测试 (图 6(e), (f)). 结果发现 MoS₂/Ag 基底对 CV 和 MB 的检测限分别低至 10⁻⁸ mol/L 和 10⁻⁵ mol/L, 同样表现出优异的检测性能.

4 结 论

本文成功制备了竖直纳米片 MoS₂/Ag 复合结构 SERS 基底,并通过对 MoS₂ 的退火处理增强了 Ag 与 MoS₂ 之间的相互作用, SERS 效果得到极大的增强.例如, SERS 信号可以放大到 10 倍,检测极限可以进一步降低 4 个数量级.对其增强机理分析发现,经退火处理的 MoS₂/Ag 基底有利于更多的电荷从 MoS₂向 Ag 转移,进一步增强了化学机制在 SERS 中的作用.同时,我们也对基底 SERS 信号的重现性和普适性进行了证明.该研究工作有助于更好地理解分子/金属-半导体杂化体系中的SERS 机理,也会为设计制备其他金属-半导体功能性 SERS 基底提供重要参考.

参考文献

- Brosseau C L, Colina A, Perales-Rondon J V, Wilson A J, Joshi P B, Ren B, Wang X 2023 Nat. Rev. Methods Primers 3 79
- [2] Hu H F, Tian Y, Chen P P, Chu W G 2024 Adv. Mater. 36 2303001
- [3] Peng Y S, Lin C L, Li Y Y, Gao Y, Wang J, He J, Huang Z R, Liu J J, Luo X Y, Yang Y 2022 Matter 5 694
- [4] Logan N, Cao C, Freitag S, Haughey S A, Krska R, Elliott C T 2024 Adv. Mater. 36 2309625
- [5] Itoh T, Prochazka M, Dong Z C, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev. 123 1552
- [6] Li L H, Jiang R T, Shan B B, Lu Y X, Zheng C, Li M 2022 Nat. Commun. 13 5249
- [7] Jensen L, Aikens C M, Schatz G C 2008 Chem. Soc. Rev. 37 1061
- [8] Feng E D, Zheng T T, He X X, Chen J Q, Gu Q Y, He X, Hu F H, Li J H, Tian Y 2023 Angew. Chem. Int. Ed. 62 e202309249
- [9] Tang X, Fan X C, Zhou J, Wang S, Li M Z, Hou X Y, Jiang K W, Ni Z H, Zhao B, Hao Q, Qiu T 2023 Nano Lett. 23 7037
- [10] Yang L, Kim T H, Cho H Y, Luo J, Lee J M, Chueng S T D, Hou Y N, Yin P T T, Han J Y, Kim J H, Chung B G, Choi J W, Lee K B 2021 Adv. Funct. Mater. 31 2006918
- [11] Jiang Y, Wang X C, Zhao G, Shi Y Y, Wu Y, Yang H L, Zhao F Y 2024 Water Res. 255 121444
- [12] Hao N J, Liu P Z, Bachman H, Pei Z C, Zhang P R, Rufo J, Wang Z Y, Zhao S G, Huang T J 2020 ACS Nano 14 6150

- [13] Butmee P, Samphao A, Tumcharern G 2022 J. Hazard. Mater. 437 129344
- [14] Zhou L, Zhou J, Lai W, Yang X D, Meng J, Su L B, Gu C J, Jiang T, Pun E Y B, Shao L Y, Petti L, Sun X W, Jia Z H, Li Q X, Han J G, Mormile P 2020 Nat. Commun. 11 1785
- [15] Pan H M, Dong Y, Gong L B, Zhai J Y, Song C Y, Ge Z L, Su Y, Zhu D, Chao J, Su S, Wang L H, Wan Y, Fan C H 2022 Biosens. Bioelectron. 215 114553
- [16] Zhou P Y, Cheng S Y, Li Q, Pang Y F, Xiao R 2023 Chem. Eng. J. 471 144514
- [17] Jalali M, Mata C D, Montermini L, Jeanne O, Hosseini, II, Gu Z L, Spinelli C, Lu Y, Tawil N, Guiot M C, He Z, Wachsmann-Hogiu S, Zhou R H, Petrecca K, Reisner W W, Rak J, Mahshid S 2023 ACS Nano 17 12052
- [18] Wang X Y, Zhang Y Q, Yu J H, Xie X, Deng R P, Min C J, Yuan X C 2022 ACS Nano 16 18621
- [19] Choi J H, Kim T H, El-said W A, Lee J H, Yang L T, Conley B, Choi J W, Lee K B 2020 Nano Lett. 20 7670
- [20] Lin C L, Liang S S, Peng Y S, Long L, Li Y Y, Huang Z R, Long N V, Luo X Y, Liu J J, Li Z Y, Yang Y 2022 Nanomicro Lett. 14 75
- [21] Son W K, Choi Y S, Han Y W, Shin D W, Min K Y H, Shin J, Lee M J, Son H, Jeong D H, Kwak S Y 2023 Nat. Nanotechnol. 18 205
- [22] Ge Y C, Yang Y, Zhu Y J, Yuan M L, Sun L B, Jiang D F, Liu X H, Zhang Q W, Zhang J Y, Wang Y 2024 Small 20 2302410
- [23] Yuan H, Yu S, Kim M, Lee J E, Kang H, Jang D, Ramasamy M S, Kim D H 2022 Sens. Actuators B Chem. 371 132453
- [24] Yu L L, Lu L, Zeng L H, Yan X H, Ren X F, Wu J 2021 J. Phys. Chem. C 125 1940
- [25] Zhai Y J, Yang H, Zhang S N, Li J H, Shi K X, Jin F J 2021 J. Mater. Chem. C 9 6823
- [26] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385
- [27] Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, de Vasconcellos S M, Bratschitsch R, De Lara D P, Rohlfing M, Castellanos-Gomez A 2018 Nanomaterials 8 725
- [28] Liu H Q, Yao C B, Li J, Sun W J, Jiang C H 2022 Appl. Surf. Sci. 571 151176
- [29] Yu D H, Yu X D, Wang C H, Liu X C, Xing Y 2012 ACS Appl. Mater. Interfaces 4 2781
- [30] Wang P, Liang O, Zhang W, Schroeder T, Xie Y H 2013 Adv. Mater. 25 4918
- [31] Jones L A H, Xing Z D, Swallow J E N, Shiel H, Featherstone T J, Smiles M J, Fleck N, Thakur P K, Lee T L, Hardwick L J, Scanlon D O, Regoutz A, Veal T D, Dhanak V R 2022 J. Phys. Chem. C 126 21022
- [32] Choi S, Shaolin Z, Yang W 2014 J. Korean Phys. Soc. 64 1550
- [33] Dieringer J A, Wustholz K L, Masiello D J, Camden J P, Kleinman S L, Schatz G C, Van Duyne R P 2009 J. Am. Chem. Soc. 131 849
- [34] Kaushik A, Singh J, Soni R, Singh J P 2023 ACS Appl. Nano Mater. 6 9236
- [35] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803
- [36] Chenal C, Birke R L, Lombardi J R 2008 ChemPhysChem 9 1617
- [37] Lombardi J R, Birke R L 2008 J. Phys. Chem. C 112 5605

Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS_2 nanosheet composite with Ag substrate^{*}

DAI Shuo LI Zhen ZHANG Chao YU Jing ZHAO Xiaofei WU Yang MAN Baoyuan[†]

(School of Physics and Electronics, Shandong Normal University, Ji'nan 250358, China)

(Received 2 December 2024; revised manuscript received 6 January 2025)

Abstract

Surface enhanced Raman spectroscopy (SERS) can provide rich molecular structure information about ultra-sensitive, non-destructive, and rapid detection, with accuracy down to the single-molecule level. It has been widely applied to physics, chemistry, biomedicine, environmental science, materials science and other fields. Combining the advantages of metals and two-dimensional (2D) nanomaterials, various 2D metal composite structures have been proposed for SERS. However, the contribution of 2D nanomaterials in Raman enhancement is often limited. In this work, vertically aligned MoS₂ nanosheet composite with silver nanoparticles (Ag NPs) is proposed for SERS detection. Large-area vertically aligned MoS₂ nanosheets, which are grown directly on molybdenum (Mo) foil by using hydrothermal method, can effectively enhance molecular adsorption, light absorption, and provide dual electromagnetic and chemical enhancement. Furthermore, annealing treatment of the MoS₂ nanosheets significantly improves the efficiency of charge transfer between Ag NPs and MoS_2 , thereby increasing the chemical contribution to SERS. The results demonstrate that the annealed MoS₂/Ag substrate exhibits outstanding SERS performance, with a detection limit for R6G molecules as low as 10^{-12} mol/L, which is four orders of magnitude lower than that of the unannealed substrate. The enhancement factor (EF) is calculated to be approximately 1.08×10^9 , approaching the sensitivity required for single-molecule detection. Additionally, the substrate has high signal reproducibility at low concentrations, enabling ultra-sensitive detection of pesticide residues in aquatic products.

Keywords: surface-enhanced Raman spectroscopy, vertically aligned molybdenum disulfide nanosheets, silver nanoparticles, charge transfer

PACS: 74.25.nd, 78.67.-n, 81.07.-b

DOI: 10.7498/aps.74.20241671

CSTR: 32037.14.aps.74.20241671

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 12174229, 12474408), the Taishan Scholars Program of Shandong Province, China (Grant No. tsqn202306152), the Qingchuang Science and Technology Plan of Shandong Province, China (Grant No. 2021KJ006), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022YQ02).

[†] Corresponding author. E-mail: byman@sdnu.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

竖直取向MoS。纳米片复合Ag基底的表面增强拉曼光谱效应及机制

戴硕 李振 张超 郁菁 赵晓菲 吴阳 满宝元

Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS₂ nanosheet composite with Ag substrate DAI Shuo LI Zhen ZHANG Chao YU Jing ZHAO Xiaofei WU Yang MAN Baoyuan 引用信息 Citation: Acta Physica Sinica, 74, 057402 (2025) DOI: 10.7498/aps.74.20241671 CSTR: 32037.14.aps.74.20241671 在线阅读 View online: https://doi.org/10.7498/aps.74.20241671

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

 F_{4} TCNQ/MoS₂纳米复合异质材料的表面结构对SERS的影响

Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering

物理学报. 2023, 72(3): 037402 https://doi.org/10.7498/aps.72.20221958

高温退火优化h-BN/Ag/Ag₂O异质结构型及表面增强拉曼散射性能研究

 $\label{eq:optimization} Optimization of h-BN/Ag/Ag_{2}O \ heterostructure \ by \ high \ temperature \ annealing \ and \ its \ surface-enhanced \ Raman \ scattering \ performance$

物理学报. 2023, 72(22): 227401 https://doi.org/10.7498/aps.72.20231105

单分子表面增强拉曼散射的光谱特性及分析方法

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis 物理学报. 2021, 70(13): 137401 https://doi.org/10.7498/aps.70.20201447

海胆状Au-Ag-Pt-Pd四元纳米合金的近红外光电响应特性及拉曼散射增强的研究

Research on near infrared photoelectric response and surface-enhanced Raman scattering of urchin-like Au-Ag-Pt-Pd nanoalloy 物理学报. 2022, 71(10): 107401 https://doi.org/10.7498/aps.71.20212094

低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测

Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine

物理学报. 2022, 71(14): 146101 https://doi.org/10.7498/aps.71.20220151

利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底

Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate 物理学报. 2021, 70(10): 104207 https://doi.org/10.7498/aps.70.20201773