一种基于光纤内马赫-曾德尔干涉仪的 低频声传感方案^{*}

胡晓 田晶† 田佳俊 陈富城 陈小杰 杨诗宇 江阳

(贵州大学物理学院,贵阳 550025)

(2024年12月23日收到; 2025年2月13日收到修改稿)

提出了一种基于光纤内马赫-曾德尔干涉仪结构的低频声传感方案,其中传感光纤是由多模-超高数值孔 径-多模光纤焊接级联而成的微型马赫-曾德尔干涉仪,可有效提高光纤弯曲灵敏度;然后将该干涉仪结构与 聚对苯二甲酸乙二酯换能膜片进行组合,使得传感光纤在受到声压作用时与膜片同步产生曲率变化,间接增 大了光纤接收声场的面积.文章推导了该系统的声传感理论,并通过实验进行了验证,得到传感系统在 65 Hz 处信噪比约为 57 dB,最小可探测声压为 267.9 μPa/Hz^{1/2};在 50—500 Hz 的频率范围内,对声波有较好响应, 信噪比均在 40 dB 以上,信号较平坦.该方案可显著提升传感系统声响应能力,实现对低频声波的有效检测, 且具有制作简单、成本低的特点,在声波探测相关应用领域具有较大的发展潜力.

关键词:光纤传感,马赫-曾德尔干涉仪,声传感器,声波测量 PACS:07.07.Df,42.81.-I,43.58.+z CSTR:32037.14.aps.74.20241758

DOI: 10.7498/aps.74.20241758

1 引 言

光纤低频声传感系统因其具有较强的抗电磁 干扰能力、较高灵敏度、较小体积等特点,较传统 电压、电容等压电类传感器具有明显优势,成为近 年来研究的热点^[1],在桥梁结构监测、地震、海啸等 自然灾害的安全预警、生物医学成像等多个领域都 有重要应用^[2-4].目前,光纤声传感系统大多数采用 光纤干涉仪结构和光纤光栅结构^[5-7].其中,光纤干 涉仪结构包括迈克耳孙 (Michelson)干涉仪、萨尼 亚克 (Sagnac)干涉、马赫-曾德尔 (Mach-Zehnder) 干涉仪和法布里-珀罗 (Fabry-Perot, F-P)干涉仪. 按照探测声场的频率,光纤声传感系统通常分为 高频声传感系统和低频声传感系统.高频声传感系 统大多数采用光纤激光器结构和 F-P 干涉仪结构. 光纤激光器结构对高频声信号探测较为灵敏^[8,9], 在低频范围受相位噪声影响较大. FPI 结构主要利 用 F-P 腔内膜片接收声音振动,使 FPI 的腔长产 生周期性变化导致干涉光谱漂移. 该类方法通过在 光纤内部形成 F-P 腔和对光纤末端镀膜来提高反 射率,制作难度较大,主要用于高频声信号探测^[10,11]. 低频声传感系统主要采用 Sagnac 干涉结构和光纤 光栅结构,目前基于 Sagnac 干涉结构和光纤 光栅结构,目前基于 Sagnac 干涉结构和光纤 光栅结构,目前基于 Sagnac 干涉结构和光纤 光栅结构,目前基于 Sagnac 干涉结构和光纤

近年来,本课题组和相关研究单位利用倾斜光 纤光栅和长周期光纤光栅分别进行低频声场探测 和振动探测^[14,15],研究表明该类特殊光纤光栅存在

© 2025 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 61801134, 61835003)、贵州大学审核评估专项 (批准号: GDSHPG2023007) 和贵州大学课程体系改 革项目 (批准号: XJG2024045) 资助的课题.

[†] 通信作者. E-mail: jtian1@gzu.edu.cn

的多种包层模式容易受曲率变化影响而产生变化, 可有效进行振动或低频声场测量.这些对声场或振 动的探测方法,都是基于声场对特殊光纤光栅多种 模式的调制作用,而对特种光纤模式进行调制并有 效用于声场探测的研究较少.级联特种光纤作为声 传感光纤具有性能好、结构灵活、易制作、造价低 等特点^[16].

基于以上研究,本文提出了一种基于光纤内马 赫-曾德尔干涉仪的低频声传感方案,利用光纤纤 芯与包层折射率不同,通过将不同类型特种光纤焊 接在一起重组包层模式与纤芯模式,形成了基于多 模-超高数值孔径-多模光纤的微型马赫-曾德尔干 涉仪结构.然后将该干涉仪结构与聚对苯二甲酸乙 二酯换能膜片进行结合,当外界声压对传感光纤和 换能膜片形成弯曲调制时,由于包层和纤芯受到的 应变不同,产生了光程差,使得干涉光谱发生变化, 通过对传感光谱进行解调可实现对低频声波信号 的有效探测.

2 传感结构与原理

本文提出的基于多模光纤-超高数值孔径光纤-多模光纤级联的马赫-曾德尔干涉结构如图 1(a) 所 示.该结构将一段超高数值孔径光纤的两端通过光 纤焊接机接上多模光纤,形成光纤内马赫-曾德尔 干涉仪结构.信号光从单模光纤 (single mode fiber, SMF)依次进入多模光纤 (multimode fibers, MMF)、 超高数值孔径光纤 (ultra-high NA single-mode fibers, UHNAF),由于二者芯径差,光分两路分别 进入 UHNAF 的包层和纤芯,最后两路光进入多模 光纤后形成干涉,其中两端的多模光纤长度约为 2 mm,超高数值孔径光纤长度约为 6 mm.图 1(b) 为传感结构的透射光谱图,图中 Dip 1 为随机选择 的干涉谐振峰,波长在 1551.5 nm 左右.

在多模光纤处产生的干涉为超高数值孔径光 纤的纤芯模式与各阶包层模式的干涉,根据干涉原 理可得干涉光输出光强为

$$I = I_{\rm core} + I_{\rm clad} + 2\sqrt{I_{\rm core}I_{\rm clad}}\cos\Delta\varphi, \qquad (1)$$

式中 I_{core} 为纤芯模式光强; I_{clad} 为各阶包层模式的 总光强; $\Delta \varphi$ 为干涉光之间的相位差, 表示为

$$\Delta \varphi = \frac{2\pi \,\Delta n_{\rm eff} L_{\rm p}}{\lambda},\tag{2}$$

其中 Δn_{eff} 为纤芯和包层间的有效折射率差, L_{D} 为超高数值孔径光纤的长度, λ 为入射光波长.当相位差为 $(2m+1)\pi$,其中m为整数时,得到谐振波长 λ_{m} 为

$$\lambda_{\rm m} = \frac{2\Delta n_{\rm eff} L_{\rm D}}{2m+1}.\tag{3}$$

由此可知,当选用超高数值孔径光纤时,较大的数 值孔径会使得折射率调制深度更大,使得该结构更 灵敏.

图 1 (a) 传感光纤结构示意图; (b) 传感光纤光谱图 Fig. 1. (a) Schematic diagram of optic sensing fiber structure; (b) spectral diagram of sensing fiber.

当干涉结构受到弯曲影响时,光纤纤芯包层有效 折射率差 $\Delta n_{\rm eff}$ 发生变化,其表示为^[17] $\Delta n_{\rm eff} = k_{\rm c}\varepsilon$, 其中 $k_{\rm c}$ 为应变折射率系数,应变 $\varepsilon = r_{\rm c}C$, $r_{\rm c}$ 为纤 芯中心到包层中心的距离, C 为曲率.将这些参数 代入 (3) 式整理后可得到:

$$\lambda_{\rm m} = \frac{2r_{\rm c}k_{\rm c}L_{\rm D}}{2m+1}C.$$
(4)

由 (4) 式可知, 谐振波长的漂移量与曲率变化成正 比关系. 所以当声压作用在传感光纤上时, 曲率变 化会使得谐振波长发生变化.

由于光纤直径较小,受声压作用面积小,因此 需要使用换能元件.本文利用聚对苯二甲酸乙二 酯 (PET) 材质的膜片作为换能元件,将传感光纤 粘贴在膜片上,在感知到外界声压时,光纤和膜片 同时发生周期性弯曲,从而间接放大声压对传感光 纤的影响.

根据受迫振动原理,四周固定的圆形膜片振动时中心处最大形变量为^[18]

$$\eta = \frac{3P(1-\mu^2)r^4 f_{00}^2}{16Eh^3 \sqrt{\left(f_{00}^2 - f^2\right)^2 + 4f^2\varsigma^2}},$$
(5)

其中 E 为杨氏模量, μ 为泊松比, r 为膜片半径, f_{00} 为一阶固有频率, h 为膜片厚度, ς 为阻尼系数, P 为声压, f 为声波频率.

根据几何关系进行计算,当膜片弯曲时,中心形 变量 η 、曲率半径 1/C 以及膜片半径 r 之间的关系 满足: $\left(\frac{1}{C}\right)^2 = r^2 + \left(\frac{1}{C} - \eta\right)^2$,进而得到 $C = \frac{2\eta}{r^2 + \eta^2}$. 由于声压对光纤作用产生的形变量相对于膜片半 径很小, η^2 可忽略不计,将 (5) 式代入后化简得到

$$C = \frac{3P(1-\mu^2)r^2f_{00}^2}{8Eh^3\sqrt{\left(f_{00}^2 - f^2\right)^2 + 4f^2\varsigma^2}}.$$
 (6)

将(1)式和(2)式整理后得

$$I = I_{\rm D} + A \cos\left(\frac{2\pi \, r_{\rm c} k_{\rm c} L_{\rm D} C}{\lambda}\right),\tag{7}$$

其中, $I_{\rm D} = I_{\rm core} + I_{\rm clad}$ 为直流常数, $A = 2\sqrt{I_{\rm core}I_{\rm clad}}$ 为振幅,由于在声波的作用下,光纤产生的弯曲很 小,可将 $I_{\rm core}$ 和 $I_{\rm clad}$ 近似为固定值.在傍轴条件 下(7)式 $I = I_{\rm D} + A \cos \left[\frac{1}{\lambda} \cdot 2\pi r_{\rm c} k_{\rm c} L_{\rm D} \left(C + \frac{\pi}{2} - \frac{\pi}{2} \right) \right]$ 可以变为 $I = I_{\rm D} + A \sin \left(\frac{2\pi r_{\rm c} k_{\rm c} L_{\rm D} C}{\lambda} + \frac{\pi^2 r_{\rm c} k_{\rm c} L_{\rm D}}{\lambda} \right).$

由 (7) 式可知, 光强变化与曲率和波长两个参数相 关. 当选定波长 λ 为谐振峰边沿线性区的固定波长 后, 此时 λ 为定值, 光强变化只与曲率有关, 则 (7) 式可表示为

$$I = I_{\rm D} + A \frac{2\pi r_{\rm c} k_{\rm c} L_{\rm D} C}{\lambda} + A \frac{\pi^2 r_{\rm c} k_{\rm c} L_{\rm D}}{\lambda}.$$
 (8)

$$I = I_{\rm O} + A \frac{2\pi r_{\rm c} k_{\rm c} L_{\rm D}}{\lambda} \frac{3P(1-\mu^2)r^2 f_{00}^2}{8Eh^3 \sqrt{(f_{00}^2 - f^2)^2 + 4f^2 \varsigma^2}},$$
(9)

其中 $I_0 = I_D + A \frac{\pi^2 r_c k_c L_D}{\lambda}$ 为常数.由(9)式可知, 在声波频率一定时,光强I变化与声压P有关,且 为线性关系.通过探测光强的变化可以检测动态变 化的声波信号.

3 实验原理及结果分析

光纤低频声场探测原理如图 2 所示,利用可调 谐激光器 (tunable laser)输出一束波长为 1552 nm (Dip 1 附近)的窄线宽激光作为入射光进入单模 光纤,通过单模光纤后输入到传感头中,出射的激 光进入光电探测器 (photodetector),光电探测器将 光信号转化为电信号,进入示波器观察.传感头部 分是将焊接好的光纤内马赫-曾德尔干涉仪结构 (in fiber Mach-Zehnder interferometer structure) 与圆形换能膜片 (diaphragm)粘贴在一起,膜片半 径约为 2 cm,厚度约为 50 μm,换能膜片固定在一 个空心金属圆柱体 (metal cylinder)顶部;商用扬 声器 (speaker) 为声源,其调谐频率由信号发生器 (signal generator) 控制.

图 2 声波传感系统示意图 Fig. 2. Schematic diagram of acoustic sensing system.

实验过程中为了测试该传感系统声响应能力, 首先随机测试不同频率的声波信号,得到了输出 时域信号和经快速傅里叶变化 (FFT) 的频谱图. 图 3(a)—(d)所示声波频率为 55 Hz, 65 Hz, 75 Hz, 85 Hz 时对应示波器时域图,图 3(e)—(h)分别为 对应 FFT 后的频谱图.由图 3 可知,在相同被测 声压下固有频率 65 Hz 处信噪比较高约为 57.2 dB, 而其他频率 55 Hz, 75 Hz, 85 Hz 分别为 49.91 dB, 49.88 dB, 51.89 dB.可以发现所提出的声波探测 方案有较好的频率响应和较高信噪比.为了进一步 探究该系统在低频范围内对声信号的响应能力,实 验中通过随机选取 35—1000 Hz 范围内的声波信 号进行测试,得到了不同频率的信噪比如图 4(b) 所示,在 50—500 Hz 范围内有较好的响应,信噪比 均在 40 dB 以上且频响范围较大且较平坦.50220 Hz 频谱图如图 4(a) 所示.可以发现所提出的 传感方案对不同频率声波都有较好的响应,实验过 程中一直存在谐波效应,推测是室内声波反射所 致,整个过程在室温环境下进行,受温度影响较小.

然后,保持信号发生器输出频率不变,改变输出 电压从 2 V_{pp} —18 V_{pp} (逐渐增大声压),以及从 18 V_{pp} 到 2 V_{pp} (逐渐减小声压),研究频率在 55 Hz, 65 Hz, 75 Hz, 85 Hz 时的声压灵敏度.这里 V_{pp} 为信号发生 器对扬声器施加的电压.通过对示波器上正弦信号 峰-峰值的最大值进行线性拟合,图 5(a)—(d)分别 为 55 Hz, 65 Hz, 75 Hz, 85 Hz 的声压响应.可以看 出,其声压增大过程的线性拟合优度分别为 0.997, 0.995, 0.999, 0.998, 灵敏度分别为 0.048 mV/V_{pp}, 0.0549 mV/V_{pp}, 0.0540 mV/V_{pp}, 0.466 mV/V_{pp}; 声 压减小过程的线性拟合优度分别为 0.996, 0.997, 0.998, 0.998, 灵敏度分别为 0.0499 mV/V_{pp}, 0.0536 mV/V_{pp}, 0.0533 mV/V_{pp}, 0.463 mV/V_{pp}. 图 5 插图 为对应频率在电压为 4 V_{pp}, 8 V_{pp}, 12 V_{pp} 时输出的 时域图. 以上结果表明声压与信号强度有 0.995 以上 的高线性拟合优度, 线性拟合优度越接近 1, 表明与 线性拟合曲线的方程越符合, 这与 (9) 式为线性方程 的描述吻合.

图 3 不同频率的频谱响应和时域波形 (a)—(d) 55 Hz, 65 Hz, 75 Hz, 85 Hz 时对应的时域信号; (e)—(h) 55 Hz, 65 Hz, 75 Hz, 85 Hz 时对应的频域信号

Fig. 3. Frequency response and time domain signal at different frequencies: (a)–(d) Time domain signal at 55 Hz, 65 Hz, 75 Hz, 85 Hz; (e)–(h) frequency response at 55 Hz, 65 Hz, 75 Hz, 85 Hz.

图 4 传感系统对声波频率的频响 (a) 50-220 Hz 部分频率的响应频谱图; (b) 35-1000 Hz 的信噪比

Fig. 4. Frequency response of the sensing system for acoustic wave: (a) The response of frequency spectrum during 50–220 Hz; (b) signal to noise ratio corresponding to different frequencies during 35–1000 Hz.

传感结构	声压响应	信噪比/dB	最小探测声压/(μPa·Hz ^{-1/2})
Tapered fiber ^[20]	$36 \mathrm{~mV/kPa}$	46.84	21.11×10^{6} @2500 Hz
Gold diaphragm-based FPI with a fiber-optic collimator ^[21]	$12.6~\mathrm{mV/Pa}$	51	470@150 Hz
$FP etalon^{[22]}$	177.6 mV/Pa	12.7	530@1 kHz
$LPBG^{[15]}$	$0.064~\mathrm{nm/kPa}$	40.6	331.9@550 Hz
CMOS micromachined capacitive ^[23]	_	_	1.35×10^{6} @2.4 MHz
Two-photon 3D printed spring-based Fabry-Perot cavity resonator ^[24]	$0.0883~\mathrm{mV/V_{pp}}$	56.2	$2390@75~\mathrm{kHz}$
本工作	$0.0549~\mathrm{mV}/\mathrm{V_{pp}}$	57.21	267.9@65 Hz
1.1 (a) \triangleq Exprimental data of rising 1.0 $R^2 = 0.996$ $R^2 = 0.997$ $R^2 = 0.997$ R^2	$\begin{array}{c} & & \\$	1.4 (b) \triangleq Exprimen \checkmark Exprimen 1.2 1.0 1.0 1.0 $R^2 = 0.$ $R^2 = 0.$ $R^2 = 0.$ $R^2 = 0.$ $R^2 = 0.$	tal data of rising tal data of down 0.0549 995 e = 0.0536 e = 0.0536 e = 0.097 6.6 6.4 7 7 7 7 7 7 7 7 7 7
1.2 (c) ▲ Exprimental data of rising ▼ Exprimental data of down	*	1.1 (d) ▲ Exprimen 1.0 0.9	tal data of rising tal data of down
		0.8 0.7 Slope = 0.0466	2
$\begin{array}{c c} \text{Slope} = 0.0533 \\ R^2 = 0.998 \\ 0.4 \\ 0.4 \\ \text{Slope} = 0.0540 \\ R^2 = 0.999 \\ 0.6 \\ 0.4 \\ \text{Slope} = 0.0540 \\ R^2 = 0.999 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$4 V_{pp} = \frac{8 V_{pp}}{12 V_{pp}}$ $30 \qquad 60$ $Time/ms$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$= 0.0463 \\ 0.998 \\ 0.098 \\ 0.000 \\ 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} \hline & & \\ 8 & 10 & 12 & 14 & 16 & 18 & 20 \\ \hline & Voltage/V_{pp} \end{array}$

表 1 几种声传感方案的性能比较

Table 1. Performance comparison of several acoustic sensing systems.

图 5 不同频率时传感结构对不同声压的灵敏度线性拟合及重复性测试 (a) 55 Hz; (b) 65 Hz; (c) 75 Hz; (d) 85 Hz Fig. 5. Linearly fitted sensitivities of the sensing structure to different acoustic pressures and repeatability test at (a) 55 Hz, (b) 65 Hz, (c) 75 Hz, (d) 85 Hz.

最小可探测声压 (minimum detectable pressure, MDP) 表示为^[19]

$$\mathrm{MDP} = P / \left(10^{\mathrm{SNR}/20} \sqrt{\Delta f} \right).$$

其中, SNR为信噪比, Δf 为频谱图的频率分辨率. 本实验测量过程中,利用标准声压计测得声压为 0.238 Pa,可得频率分辨率为 1.5 Hz,则在 65 Hz 处得到 MDP 为 267.9 µPa/Hz^{1/2}.

如表1所列,将本文提出的传感方案与近年来 相关光纤声传感方案的性能进行对比.文献 [20] 是 通过拉伸光纤,使得中间部分光纤比两边细而形成 锥形光纤.文献 [21] 为基于金膜的法布里-珀罗干 涉结构,利用光纤套筒使光纤与金膜形成法布里-珀罗腔,在受到声波影响时,腔长发生变化而对声 波进行探测. 文献 [22] 利用法布里-珀罗标准具作 为传感元件. 文献 [15] 使用长周期光纤光栅受振动 影响使得光纤光栅的耦合模式发生变化, 从而对声 波进行探测. 文献 [23] 为基于 COMS 的微机械电 容式传感器. 文献 [24] 通过双光子聚合直接 3D 打 印在光纤尖端上形成法布里珀罗腔来对声波进行 探测. 由表1 可知, 本文提出的方案具有良好的信噪 比、较低的最小可探测声压和较好的声响应能力.

4 结 论

本文提出了基于光纤内马赫-曾德尔干涉仪的 低频声波探测方案,利用光纤纤芯包层折射率不 同,通过将不同类型特种光纤焊接在一起重组包层 模式与纤芯模式,形成了基于多模-超高数值孔径-多模光纤的微型马赫-曾德尔干涉仪结构. 然后将 该干涉结构与聚对苯二甲酸乙二酯换能膜片进行 结合,在感知到外界声压对传感光纤和换能薄膜形 成弯曲调制时,包层和纤芯受到的应变不同,产生 光程差,使得干涉光谱发生变化,通过对光谱变化 进行解调实现对低频声波信号的有效探测. 本文分 别从理论和实验两方面进行了论证,得到该传感系 统在 65 Hz 处信噪比约为 57 dB, 最小可探测声压 为267.9 μPa/Hz^{1/2};在50—500 Hz 的频率范围内, 对声波有较好响应, 信噪比均在 40 dB 以上, 信号 较平坦. 该方案可显著提升传感系统声响应能力, 实现对低频声波的有效检测,且具有制作简单、成 本低的特点,在声波探测相关应用领域有着很大的 发展潜力.

参考文献

[1] Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-

Phys. 270 162

- [2] Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180
- [3] Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132
- [4] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207
- [5] Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 *IEEE Sens. J.* 19 7988
- [6] Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301 (in Chinese) [刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 物理学报 71 094301]
- [7] Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276
- [8] Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353
- [9] Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160
- [10] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
- [11] Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344
- [12] Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046
- [13] Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033
- [14] Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538
- [15] Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 *IEEE Photonics J.* 8 7102811
- [16] Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363
- [17] Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742
- [18] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
- [19] Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 *IEEE Sens. J.* 21 14655
- [20] Dass S, Jha R 2017 J. Lightwave Technol. **35** 5411
- [21] Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 *IEEE Sens. J.* 21 17882
- [22] Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447
- [23] Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013
- [24] Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780

A low-frequency acoustic sensor scheme based on an in-fiber Mach-Zehnder interferometer^{*}

HU Xiao TIAN Jing[†] TIAN Jiajun CHEN Fucheng CHEN Xiaojie YANG Shiyu JIANG Yang

(College of Physics, Guizhou University, Guiyang 550025, China)

(Received 23 December 2024; revised manuscript received 13 February 2025)

Abstract

In this work, a low-frequency acoustic sensing scheme is proposed based on the structure of in-fiber Mach-Zehnder interferometer, in which the refractive index difference between fiber core and cladding is used to form a miniature Mach-Zehnder interferometer through fusion splicing of specialty optical fibers in a multi-modeultra-high numerical aperture-multi-mode configuration. This design achieves modal recombination between cladding and core modes, thereby effectively enhancing fiber bending sensitivity. The interferometer structure is then combined with a polyethylene terephthalate (PET) transducer diaphragm, enabling the sensing fiber to undergo curvature changes synchronously with the diaphragm under sound pressure, thereby indirectly increasing the area over which the fiber receives the acoustic field. When external acoustic pressure induces bending modulation on both the sensing fiber and transducer diaphragm, the differential strain distribution between the fiber cladding and core generates an optical path difference. This manifests itself in interference spectrum shifts, enabling the effective detection of low-frequency acoustic signals through demodulating the spectrum variations. In the paper, the theoretical framework for the acoustic sensing system is derived and validated experimentally. The results show that at 65 Hz, the system achieves a signal-to-noise ratio (SNR) of approximately 57 dB and a minimum detectable sound pressure of $267.9 \,\mu Pa/Hz^{1/2}$ at 65 Hz. In a frequency range of 50–500 Hz, the system exhibits good acoustic response, with an SNR consistently above 40 dB and a relatively flat signal output. This scheme significantly enhances the acoustic response capability of the sensing system, enabling the effective detection of low-frequency acoustic waves. Additionally, it features simple fabrication and low cost, showing great potential for the development of acoustic wave detection applications.

Keywords: optical fiber sensing, Mach-Zehnder interferometer, acoustic sensor, acoustic measurement

PACS: 07.07.Df, 42.81.-I, 43.58.+z

CSTR: 32037.14.aps.74.20241758

DOI: 10.7498/aps.74.20241758

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61801134, 61835003), the Special Review and Evaluation Program of Guizhou University, China (Grant No. GDSHPG2023007), and the Curriculum System Reform Project of Guizhou University, China (Grant No. XJG2024045).

 $[\]dagger$ Corresponding author. E-mail: jtian1@gzu.edu.cn

Institute of Physics, CAS

JIANG Yang

一种基于光纤内马赫-曾德尔干涉仪的低频声传感方案 胡晓 田晶 田佳俊 陈富城 陈小杰 杨诗字 江阳 A low-frequency acoustic sensor scheme based on an in-fiber Mach-Zehnder interferometer HU Xiao TIAN Jing TIAN Jiajun CHEN Fucheng CHEN Xiaojie YANG Shiyu J 引用信息 Citation: Acta Physica Sinica, 74, 090701 (2025) DOI: 10.7498/aps.74.20241758 CSTR: 32037.14.aps.74.20241758

在线阅读 View online: https://doi.org/10.7498/aps.74.20241758

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于银纳米链的马赫--曾德干涉仪结构的生物传感器

Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings 物理学报. 2022, 71(1): 017301 https://doi.org/10.7498/aps.71.20211420

基于电光晶体马赫--曾德干涉仪的载波包络偏移频率调节方法 Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer 物理学报. 2022, 71(14): 144203 https://doi.org/10.7498/aps.71.20220147

一种基于大角度倾斜光纤光栅包层模的低频声传感方案

A low-frequency acoustic sensing scheme based on cladding mode of large-angle tilted fiber Bragg grating 物理学报. 2023, 72(12): 124304 https://doi.org/10.7498/aps.72.20230067

基于无芯光纤的多参数测量传感器

Multi-parameter measurement sensor based on no-core fiber 物理学报. 2021, 70(6): 064202 https://doi.org/10.7498/aps.70.20201474

二阶梯度交叉耦合超导量子干涉仪电流传感器研制

A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure 物理学报. 2021, 70(12): 128501 https://doi.org/10.7498/aps.70.20201816

一种面向原子干涉仪均匀量子非破坏测量的光学环形腔

Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer 物理学报. 2025, 74(3): 033701 https://doi.org/10.7498/aps.74.20241348