

薛子威 袁登鹏† 谭世勇

(表面物理与化学重点实验室, 绵阳 621907)

(2024年12月25日收到; 2025年2月6日收到修改稿)

作为近年来新发现的非常规超导体,重费米子化合物二碲化铀 (UTe₂) 因被认为存在自旋三重态超导配 对、高场再入超导相和新奇量子临界特征而受到广泛关注. 然而,不同的样品质量导致该体系的实验研究结 果呈现出明显的差异甚至矛盾. 关于是否多组分超导序参量、是否时间反演对称性破缺和多个场致超导相是 否相同起源等关键问题,学界争议激烈,严重阻碍了对该体系本征超导配对机制的深度认识和理解.本文总 结了 UTe₂ 的单晶生长方法研究进展,包括化学气相输运法、熔盐助熔剂法、碲助熔剂法和熔盐助熔剂液体 输运法,并梳理了生长条件对样品超导性和结晶质量的影响,最后进行了总结和展望.

 关键词:二碲化铀,非常规超导电性,化学气相输运法,熔盐助熔剂法

 PACS: 74.70.Tx, 81.10.-h, 74.62.Bf, 74.70.-b
 DOI: 10.7498/aps.74.20241778

 CSTR: 32037.14.aps.74.20241778

1 引 言

重费米子超导体 UTe₂ 因其表现出的诸多新 奇超导特性而受到广泛关注. 2019年, Ran 等^[1] 首 次报道了 UTe₂ 单晶具有超导转变温度 *T*_c = 1.6 K 的非常规超导性, 因其远超泡利顺磁性极限的上临 界场 *H*_{c2} 而被认为是自旋三重态配对的超导. 之 后, 基于 Te-125 同位素的核磁共振 (NMR) 实验 观测到 UTe₂ 在进入超导态后出现 Knight 位移的 小幅度下降^[2-4]. 由于下降幅度远低于自旋单态超 导配对的理论预期值, 表明其超导态下的自旋磁化 率并未完全消失, 从而证实了 UTe₂ 中的库珀对是 自旋三重态配对的^[5]. 接着, Ran 等^[6] 和 Knebel 等^[7] 惊奇地发现 UTe₂ 会在超过 40 T 的强磁场下再次 进入新的超导相, 即高场再入超导相. 磁化率测量 表明, UTe₂ 在 *T*_c 以上处于顺磁态, 并表现出强烈 的各向异性, 其易磁化轴为晶体 *a* 轴^[1,8]. 然而, 通 过施加较小的静水压力,该体系中可以观察到多个 超导和磁有序相^[9-12],表明其处于量子临界点附近. 鉴于这些实验中观察到的新奇现象,UTe₂体系迅 速成为国内外研究学者研究自旋三重态超导配对、 高场再入超导相和新奇量子临界特征的重要平台, 是近年来凝聚态物理领域的研究热点和难点.

然而, UTe₂的超导性对样品质量表现出高度 敏感性. 在较早的研究报道中, 零场下的比热实验 观察到 UTe₂单晶随温度降低会经历两次热力学 跳变, 从而推测该体系在常压下可能拥有多组分的 超导序参量^[1,13,14]. 随后的研究表明, 比热测量中的 两次热力学跳变可能是样品本身的不均匀性所致^[15,16], 而更高质量的单晶样品仅表现出单一、尖锐的超导 转变峰^[17-19]. 对于表现出两次比热跳变的样品, 高 分辨率的极化 Kerr 效应测量实验得出了时间反 转对称性破缺的证据^[13], 但是该结果未能在更高 质量的样品上得以重现^[20]. 再者, 理论研究表明 UTe₂的超导配对机制可能与其准二维费米面和强

^{*} 国家自然科学基金联合基金 (批准号: U23A20580) 和四川省自然科学基金杰出青年科学基金 (批准号: 2025NSFJQ0040) 资助的 课题.

[†] 通信作者. E-mail: yuandengpeng@caep.cn

^{© 2025} 中国物理学会 Chinese Physical Society

烈的磁性涨落密切相关^[21],基于高质量单晶样品的精细实验研究显得尤其重要.然而,各个研究小组在不同质量的UTe₂样品中开展实验研究导致的结果差异,严重阻碍了对该体系的超导序参量、高场再入超导性和量子临界特性的深入认识和理解.

目前,公开报道的生长 UTe₂ 单晶主要有四种 方法,包括化学气相输运法 (chemical vapor transport, CVT)、碲助熔剂法 (Te-flux)、熔盐助熔剂 法 (molten salt flux, MSF) 和熔盐助熔剂液体输 运法 (molten salt flux liquid transport, MSFLT), 如图 1 所示.本文将综述 UTe₂ 单晶生长方法的研 究进展,梳理生长条件对样品超导性和质量的影 响,从而为制备高质量的 UTe₂ 单晶样品提供借鉴 和参考.

2 化学气相输运法 (CVT)

CVT 的原理是利用温度梯度下可逆化学反应 的平衡移动,将原料在高温区转化为易挥发的化合 物,然后随气体输运至低温区后分解,释放原料沉 积而形成单晶,如图 1(c)所示.通常以易挥发的碘 (I₂)、溴 (Br₂)等卤素元素单质或化合物作输运剂, 起始时将合成样品所需的单质元素或多晶原料与 输运剂一起混合,并置于真空密封石英管的高温 端,在一定温度梯度下输运一段时间后,即可在低 温端收集单晶样品.早在 1996年,Stöwe^[22]就以 TeBr₄ 作输运剂,起始原料摩尔比 U:Te = 1:2,在 950—850 \mbox{C} 的梯度温度下生长获得了 UTe₂单晶 样品,并对其晶体结构及其随温度的变化情况进行 了实验表征.之后,Stöwe^[22]又采用 0.6—0.7 mg/cm³ 的 Br₂ 作输运剂,以相同的原料比和温度梯度生 长 9—10 d 获得单晶样品,用于电阻率测量. 2006 年, Ikeda 等^[8] 改用 I₂ 作输运剂,输运剂用量 3 mg/cm³, 先在无梯度的 450 ℃ 温度下预热反应 3 d 后进行 温度梯度生长获得 UTe₂ 样品.磁化率测量表明, UTe₂ 样品在温度 2 K 以上不存在任何磁序,并且 表现出明显的磁各向异性^[8].

2019年, Ran 等[1] 首次将起始原料摩尔比调 整为 2:3, 生长获得尺寸为 2-3 mm 的块体状 UTe,单晶样品,剩余电阻率比(RRR)为18-30, 并通过电阻率、比热和交流磁化率测量发现该体系 存在 $T_{c} = 1.6$ K 的非常规超导电性, 如图 2 所示. 其具体工艺步骤为:1) 在惰性气体保护下将 U, Te 原料按原子比 2:3 混合后装入石英管, 并根据 石英管容积加入 3 mg/cm^3 的 I_2 作输运剂; 2) 对 石英管抽真空并用氢氧焰密封; 3) 将石英管置于 双温区管式炉中,所有原料置于高温区;4)经过 12 h 分别加热至 1060 ℃(高温端) 和 1000 ℃(低 温端),然后保持该温度梯度1周;5)关闭加热,随 炉自然冷却至室温; 6) 从低温区收集样品, 并用乙 醇清洗样品表面残留的 I2. 此外,由于纯金属 U 有 较高的化学活性, 配料之前需要先用硝酸清洗去除 其表面的氧化层^[23]. 随后, Aoki 等^[2] 采用相同工 艺参数生长获得 UTe2 单晶样品, RRR≈35, 并确 认了其非常规超导电性的存在.

此后,多个研究小组基于该生长方法获得的单 晶样品开展了大量的实验研究,使UTe₂迅速成为 热门研究对象.例如,Te-125 NMR 实验获得其自 旋三重态超导配对证据^[2],扫描隧道显微镜研究发 现该体系中的手性边缘态^[24],强磁场下的磁阻测 量发现多个高场再入超导相^[6],角分辨光电子能谱

图 1 UTe₂单晶的生长方法示意图 (a) Te-flux 法; (b) MSF 法; (c) CVT 法; (d) MSFLT 法.

Fig. 1. Illustration of the single crystal growth methods for UTe_2 : (a) Te-flux method; (b) MSF method; (c) CVT method; (d) MS-FLT method.

获得其正常态费米面拓扑结构和能带结构^[25,26]等. 然而,随着研究的深入,研究者们很快发现不同的 起始原料摩尔比和生长温度等工艺参数可以获得 不同质量的样品,进而影响 UTe₂ 的超导电性^[27,28].

2.1 起始原料摩尔比的影响

相比于 2006 年 Ikeda 等^[8] 获得的 UTe₂ 样品, 2019年 Ran 等[1] 发现 UTe2 超导电性采用的 CVT 生长工艺主要有两点区别: 1) 起始原料中 Te 相对 于 U 摩尔比例 (即 M_{Te/U}) 不同,由化学计量比 2 改 为 1.5; 2) 生长温度梯度较高, 由 950-850 ℃ 改为 1060—1000 ℃. 鉴于此, Cairns 等^[27] 在 950—850 ℃ 的温度梯度下研究了起始原料摩尔比 M_{Te/U} 对 UTe2 超导电性的影响,其他生长条件与 Ikeda 等^[8] 的一致.结果表明,起始原料摩尔比 M_{Te/U} 对 UTe₂ 样品的超导电性有显著影响, $M_{\rm Te/U} = 1.85$ 的样品 由电阻率测得 T_{c} 最大为 2 K, 而 $M_{Te/U} > 2$ 的样品 降温至 0.45 K 仍未见有超导电性. 同时, 采用能量 色散 X 射线分析 (EDX) 对样品成分进行分析发 现,样品的实际成分与起始原料摩尔比 M_{Te/U}有 关,但同一组样品的成分在一定范围内波动,如 表1所列. Cairns 等^[27]因此认为 UTe₂ 体系的超 导电性可能与 Te 缺陷浓度有关, 并且存在使 T_c 最高的某一临界值,接近化学计量比或过高的 Te 缺陷都会导致其超导电性受到抑制. Yang 等^[29] 采 用电感耦合等离子体原子发射光谱 (ICP-AES) 对 以 $M_{\text{Te/U}} = 2$ 生长的 UTe₂样品进行了精确的成 分测定,结果为 UTe1.96, 接近理想的化学计量比. 并且, 电阻测量证实该样品在常压或较低的静水压 力下不超导,但在沿晶体 c 轴 1.5 GPa 的准单轴压 力下表现出 $T_c = 3.6$ K 的 ab 面内超导性.

表 1 CVT 起始原料摩尔比 *M*_{Te/U} 对 UTe₂ 样品 实际成分和 *T*_c 的影响^[27]

Table 1. The impact of the molar ratio of $M_{\rm Te/U}$ in CVT starting materials on the actual composition and $T_{\rm c}$ of UTe₂ samples ^[27].

样品分组	起始原料 摩尔比M _{Te/U}	EDX测得的 <i>M</i> _{Te/U} 范围	电阻率 测得的 <i>T</i> _c
А	1.71	1.46 - 1.50	1.74 K
В	2.14	1.79-2.06	无超导
С	1.85	1.72—1.87	$2.00~{\rm K}$

为了进一步研究 UTe₂样品中 Te 缺陷与超 导电性的关系, Haga 等^[28] 采用起始原料摩尔比 $M_{Te/U} = 2 和 1.8 \pm 950-850 \%$ 的温度梯度下进 行 CVT 生长, 分别获得了非超导和超导的样品, 并通过单晶 X 射线衍射 (SXRD)和电子探针 X 射 线显微分析仪 (EPMA) 对样品的晶体结构和化 学计量比进行了精细测定.研究结果表明, UTe₂ 的超导性与样品中 U 缺陷有关, 而不是 Te 缺陷. 超导样品的 U 和 Te 化学计量偏离约在 1% 的实 验误差内, 而非超导样品的实际成分被估计为 $U_{0.96\pm0.01}$ Te₂, 明显偏离理想成分.这也就解释了 CVT 方法需采用过量的 U 才能获得超导 UTe₂样 品的原因, 通常将起始原料摩尔比 $M_{Te/U}$ 限制在 1.5—1.85 范围内.

另外,在 1.5—1.85 范围内,调整起始原料摩 尔比 $M_{\text{Te/U}}$ 不仅会改变 UTe₂样品的超导 T_c ,还 会影响样品的质量指标. 当其他生长条件相同时, 升高 $M_{\text{Te/U}}$ 将使 UTe₂样品的 T_c 升高,但会降低 样品的 RRR. Cairns 等^[27] 以 $M_{\text{Te/U}} = 1.8$ 生长获 得的 $T_c = 2$ K 样品,其 RRR≈10(见图 3(a)),低 于 Ran 等^[1] 以 $M_{\text{Te/U}} = 1.5$ 生长获得 $T_c = 1.6$ K 样品 (RRR = 18—30).这一点,在 Frank 等^[30] 的

图 3 (a) 不同起始原料摩尔比 *M*_{Te/U} 样品的电阻率测量结果^[27], 并与 Ran 等^[1] 和 Hayes 等^[13] 对比; (b) *T*_c = 2 K 样品 (C6) 的比 热测量结果, 插图为样品照片^[27]

Fig. 3. (a) Resistivity of samples with different initial molar ratios $M_{\text{Te/U}}^{[27]}$ and comparison with those reported by Ran et al.^[1] and Hayes et al.^[13]; (b) specific heat data of sample C6 with $T_c = 2$ K, and the inset shows a sample image ^[27].

研究中也得到证实. 另一衡量超导单晶样品质量 的指标是剩余电子比热系数比 γ^*/γ_N . 早前 Ran 等[1]报道的比热测量结果中, UTe₂样品在超导态 下的 γ^* 为正常态电子比热系数 γ_N 的一半(图 2(b)), 即 $\gamma^*/\gamma_N = 0.5$,被认为是其固有特征. 然而, Cairns 等^[27]对比发现 T_c 随 γ^*/γ_N 的降低而升高, 其生长 获得 $T_c = 2$ K样品的 γ^* 约为 γ_N 的 40%(图 3(b)). 这种 T_c 与 γ^*/γ_N 的依赖关系, Aoki 等^[31]的研究 也得到相同的结论, 从而推翻了固有 $\gamma^*/\gamma_N = 0.5$ 的猜测. 事实上, 已有理论研究表明, 即使杂质散 射极低, UTe₂体系中的 γ^* 虽不会降低至 0, 但也会 随着 T_c 升高而逐渐降低至某一极限值^[32].

2.2 生长温度的影响

2022 年, Rosa 等^[17] 采用 CVT 方法在不同的 生长温度下生长获得 UTe₂ 单晶样品, 并采用比热 测量确定了超导 T_c 和样品质量指标, 见表 2 所列, 其他生长条件与 Ran 等^[1] 的相一致. 由表 2 中数 据可见, 随着生长温度降低, UTe₂ 样品的 T_c 逐渐 升高, 在 800—710 ℃ 的生长温度梯度下可获得最 高 $T_c = 2$ K. 但是, 当生长温度梯度降低为 775— 685 ℃, 获得的 UTe₂ 样品不超导. 同时, 随着生长 温度降低, 超导样品的结晶质量明显提升, 表现为 RRR 的升高和 γ^*/γ_N 的降低, 最大的 RRR = 88, 最小的 $\gamma^*/\gamma_N = 0.19$. 之后, Sundar 等^[33] 同样以起 始原料摩尔比 $M_{Te/U} = 1.5$ 和 I₂ 为输运剂在不同 温度梯度下 CVT 生长 UTe₂ 单晶样品, 其超导样 品的 T_c 也随着生长温度降低而升高, 并在 800— 725 ℃ 生长温度梯度下获得 $T_c = 2$ K 样品.

表 2 CVT 生长温度对 UTe₂ 单晶的 T_c 和样品质 量的影响^[17]

Table 2.	Effect of	f CVT	growth	temperature	on	T_{i}
and sample	e quality	of UTe	e_2 single	crystals ^[17] .		

样品 编号	生长 温度/℃	比热 测得的 <i>T</i> _c /K	RRR	$\gamma^*/\gamma_{ m N} \ (\gamma_{ m N}=121 \ { m mJ\cdot mol^{-1}\cdot K^{-1}})$
s1	1060—1000	$\begin{array}{c} 1.64 \\ 1.48 \end{array}$	30—40	0.54
s2	950—860	1.68	_	0.42
$\mathbf{s3}$	925 - 835	1.77	_	0.36
$\mathbf{s4}$	875—785	1.85	55	0.34
$\mathbf{s5}$	825 - 735	1.95	70	0.21
$\mathbf{s6}$	800—710	2.00	88	0.19
$\mathbf{s7}$	775—685	No SC	2	—

值得注意的是, 由图 4(a) 可见, 生长温度为 1060—1000 ℃ 条件下获得的 UTe₂ 样品在比热测 量中呈现出相邻的两个热力学跳变,一度被认为是 该体系存在多组分超导序参量的实验证据之一. 早 前 Hayes 等^[13] 对 1060—1000 ℃ 温度梯度下生长 的 UTe2 样品进行高分辨率极化 Kerr 效应测量, 观测到明显的 Kerr 偏转 (见图 4(b)), 即表明体系 中时间反演对称性的破缺,进一步支持了多组分的 超导序参量. 然而, 较低生长温度获得的更高 T_c 样品则仅表现出一次比热跳变. Thomas 等^[16] 通 过热膨胀、磁致伸缩和比热测量对高、低两种生长 温度获得的 UTe, 样品进行了对比研究, 结果发现 只有部分样品表现出两个可检测的比热跳变,且在 样品的不同区域有着不同的 T_c. 因此, 高生长温度 样品中出现的两次比热跳变是空间非均匀性所导 致的,并不能确认 UTe2 体系具有多组分的超导序 参量. 2024年, Theuss 等^[34] 采用超声脉冲回波技 术测量了 CVT 生长 UTe₂ 样品的弹性模量. 实验 结果显示, 无论是高温生长的双 T_c 样品还是低温 生长的单 T_c 样品, 测得的剪切弹性模量在 T_c 处均 没有观测到热力学上的不连续性. 因此, Theuss 等^[34] 认为 UTe₂ 体系的超导序参量是单组分的.

此外, 生长温度还会对 UTe₂ 样品的形态和表面质量造成影响. Yao 等^[35] 以起始原料摩尔比 *M*_{Te/U} = 2 采用 CVT 方法获得不同生长温度下的 UTe₂ 样品, 如图 5 所示. 结果表明, 当高温端温度 为最低的 810 ℃时, 生长获得的 UTe₂ 样品表面光

滑,呈片状结晶,晶体尺寸可达 5 mm 以上.随着高 温端温度升高至 860 ℃,则可以获得尺寸 20 mm 以上、表面光滑的片状晶体.进一步将生长时的高 温端温度提高到 1010 和 1060 ℃,获得的样品则 表面变得粗糙,呈现厚度较大的多晶聚集形态.这 种现象是由于生长温度影响晶体的成核速率和生 长速率所导致的:当输运剂用量相同时,高生长温 度有更大的成核速率和生长速率.Yao 等^[35]的研 究表明,约 860 ℃ 的中等生长温度正好可以平衡 成核速率和生长速率之间的关系,从而可以获得表 面质量高、尺寸大的片状 UTe₂样品.

图 4 (a) 不同生长温度获得 UTe₂ 样品的比热数据^[17]; (b) 1060—1000 ℃ 温度梯度下生长的 UTe₂ 样品中测得 *T*_c 附近的极化 Kerr 角度演化^[13].数据来源于文献 [17,13]

Fig. 4. (a) Specific heat data of UTe₂ samples obtained at different growth temperatures ^[17]; (b) polar Kerr angle evolution near T_c in a UTe₂ sample grown under a temperature gradient of 1060–1000 °C^[13]. The data are taken from Refs.[17,13].

图 5 不同生长温度下获得 UTe₂ 样品的照片, 起始原料摩尔比 *M*_{Te/U} = 2, 标注为高温端温度^[35] (a) 810 ℃; (b) 860 ℃; (c) 930 ℃; (d) 1010 ℃; (e) 1060 ℃. 出自文献 [35], 已获得授权

Fig. 5. Photos of UTe₂ samples obtained at different growth temperatures, with the molar ratio of the starting materials $(M_{\text{Te/U}})$ set to 2, are labeled with the high-end temperatures ^[35]: (a) 810 °C; (b) 860 °C; (c) 930 °C; (d) 1010 °C; (e) 1060 °C. Reproduced with permission from Ref.[35].

2.3 输运剂类型与用量的影响

Yao 等^[35]还研究了 CVT 生长 UTe₂ 样品过 程中输运剂类型和用量的影响.结果表明,相比 AgBr 和 TeBr₄, I₂ 作输运剂时拥有更大的输运速 率,因而可以获得尺寸更大的 UTe₂ 样品.当输运 剂用量相同时,起始原料中加入的 AgBr 或 TeBr₄ 将会在生长温度下分解出 Br₂,由于其输运速率较 I₂ 慢,获得的样品尺寸较小,约1 mm.进一步对比 发现,以 TeBr₄ 作为输运剂的晶体尺寸略大于 AgBr, 而使用 AgBr 输运的样品厚度较大、尺寸较小.同 时,输运剂的用量也会影响输运速率,从而改变晶 体成核速率与生长速率之间的关系.在 Yao 等^[35] 的研究中,随着输运剂 I₂ 用量的减少,获得样品的 表面变得更加光滑,尺寸更大但厚度更薄.

3 碲助熔剂法 (Te-flux)

助熔剂法是常用的晶体生长技术,其基本原理 是利用助熔剂降低目标材料的熔点,从而在相对较 低的温度下实现晶体生长过程.在这一过程中,晶 体原料首先在高温下溶解于低熔点的助熔剂溶液 中,形成均匀的饱和溶液.随后,通过缓慢降温或 其他方式,促使过饱和溶液生成,从而使晶体逐渐 析出.最后,采用离心或酸洗的方法去除多余的助 熔剂,即可获得所需的晶体样品.该方法的显著特 点是适用性广泛,几乎所有材料都能找到相应的助 熔剂,适合实验室大规模生长晶体材料. 为了与 CVT 方法生长的样品进行对比, Aoki 等^[2,31] 以 Te-flux 方法生长获得了 UTe₂ 单晶样品, 起始原料摩尔比 $M_{U:Te} = 22:78$,即以过量的 Te 作助熔剂. 其具体工艺步骤为: 1)将原料按原 子比 $A_{U:Te} = 22:78$ 装入氧化铝坩埚中,并依次真 空密封于钽管和石英管内; 2)在电炉中缓慢加热 至 1050 °C,并保温—段时间; 3)缓慢降温至 960 °C, 离心分离多余的 Te; 4)自然冷却后,取出样品. 相比 CVT 方法, Te-flux 方法获得的 UTe₂ 样品尺寸较 大,约5 mm, 但表面质量较差,如图 6(a)和图 6(b) 所示. 电阻率和比热测量表明, 仅有部分 Te-flux 样品表现出超导电性, 而大部分样品的比热测量温 度低至 0.4 K 仍未有超导迹象, 如图 6(c) 和图 6(d) 所示. 即使有超导的 Te-flux 样品,其 $T_c = 1.1$ K 和 RRR = 4, 也明显低于 CVT 样品.

2021年, Ran 等^[23]将起始原料摩尔比 $M_{U:Te}$ 调整为 1:3, 并将生长温度提高至 1180 °C, 保温 5 h 后经过 100 h 缓慢降温至 975 °C, 最后在该温 度下离心去除多余的 Te. 然而, 这种工艺改进后获 得的 Te-flux 样品仍未表现出超导电性. 根据前文 结果, UTe₂体系表现出超导性要求样品中的 U 缺 陷小于 1%, 即严格的化学计量比要求. 因此, 在 Teflux 生长 UTe₂样品所遵循的 U-Te 相图中, 对应 1180 °C 附近包晶线的 "UTe₂"可能轻微偏离化学 计量比^[28], 应为 "U_{1-δ}Te₂", 加之样品组分的空间不 均匀性同样存在, 从而导致获得的样品偶有 $T_c <$ 1.6 K 的超导性或不具有超导性.

图 6 (a) Te-flux 样品照片^[31]; (b) CVT 样品照片^[31]; (c) 电阻率测量结果对比; (d) 比热测量结果对比. (c) 和 (d) 的数据来源于 文献 [2]

Fig. 6. (a) Photos of Te-flux samples^[31]; (b) photos of CVT samples^[31]; (c) comparison of resistivity data; (d) comparison of specific heat data. The data of (c) and (d) are taken from Ref.[2].

4 熔盐助熔剂法 (MSF)

由前文可知, UTe₂体系的超导 T_c 与样品质量 密切相关, 并严重影响其超导序参量、场致超导相 图和量子临界特性的实验研究结果. 再者, 采用 CVT 或助熔剂法生长的铀基金属间化合物单晶样 品通常有较高的结晶质量, RRR 通常超过 100 甚至更大. 比如, Sb-flux 方法生长的 USb₂ 单晶有 RRR = 150^[36], CVT 生长的 UAs₂ 单晶有 RRR > 200^[37]. 然而, 即便是对于采用最优化工艺的 CVT 方法生长获得 $T_c = 2$ K的 UTe₂样品, 其 RRR 也 仅有 88^[17]. 因此, 提高 UTe₂样品的 RRR, 有望提 高 T_c , 从而提供在更纯净样品中开展其超导本征 特性实验研究的机会.

2022年, Sakai 等^[38] 首次提出采用 MSF 方法 生长 UTe₂ 单晶, 其助熔剂为 NaCl 和 KCl 等摩尔 混合物, 获得最高 $T_c = 2.1$ K 和最大 RRR ~ 1000 的样品, 如图 7 所示. 所用的 MSF 属于助熔剂法 的一种, 通常以低熔点的盐类或盐类混合物作助熔 剂, 已经广泛用于镧氧化物和硫化物单晶样品的生 长, 比如 Na₃La(AsO₄)₂, HfS₂ 和 BaTiS₃等^[39-41]. MSF 方法生长获得 UTe₂ 单晶样品的尺寸较小, 通常为沿晶体 *a* 轴的长条状晶体, 其长度约 1 mm. 通过 EPMA 对样品表面进行分析, 发现 MSF 生 长的 UTe₂样品具有严格的化学计量比, U 和 Te 元素 的成分分布均匀. 同时, 电阻率测量显示 MSF 样品比 CVT样品有更高 T_c 的超导转变, 并 且 RRR 值更大, 如图 7(a) 所示. 随后, Aoki 等^[18] 利用这些 MSF 样品, 首次通过德哈斯-范阿尔芬振 荡 (dHvA) 观测了 UTe₂ 的费米面结构, 也充分说 明了 MSF 样品具有足够高的结晶质量. 在此之后, 更多应用"新一代" MSF 样品的实验研究被相继报 道, 并与以往 CVT 样品的研究结果进行对照, 从 而在 UTe₂体系的超导序参量是否多组分^[20,42-44]、 临界磁涨落类型^[45,46] 和费米面结构有无三维结 构^[47-49] 等关键问题上产生了诸多争论与矛盾.

Sakai 等^[38] 通过 MSF 方法生长 UTe₂ 单晶的 具体工艺步骤为:1)采用浓硝酸清洗 U 表面的氧 化物; 2) 在惰性气体保护下,将U,Te, NaCl和 KCl等原料按一定比例混合,装入石墨坩埚中,并 在顶部塞入石英棉以防止加热过程中熔盐溢出; 3) 装入石英管中, 加热至 200 ℃, 动态抽真空数小 时充分去除水汽后,用氢氧焰密封石英管;4)放入 箱式炉中, 缓慢升温至 450 ℃, 预热 24 h; 5) 经 24 h 升温至 950 ℃, 保温 24 h; 6) 缓慢降温至退火温 度 T_f, 降温速率为 1.2—1.8 ℃/h; 7) 退火 24 h, 缓 慢冷却至室温; 8) 在去离子水中溶解盐, 收集获得 晶体,最后用乙醇清洗晶体并在真空气氛中干燥.在 MSF 生长过程中,设置了原料中不同 Te 和 NaCl+ KCl 混合盐相对 U 的摩尔比例, 即 M_{Te/U} 和 M_{Salt/U}, 对 UTe2 样品的超导性、形状尺寸和结晶质量有显 著影响,相关数据见表 3.

考虑到 NaCl 和 KCl 等摩尔混合物的共晶熔 点为 650 ℃,因而将退火温度 $T_{\rm f}$ 设置在该温度及 其附近.在 650 ℃ 退火条件下,由 $M_{\rm Te/U} = 2$ 生长 获得 UTe₂样品的 $T_{\rm c}$ 为 1.7—1.8 K,略高于大多 数文献报道的 CVT 样品.然而,当 1.9< $M_{\rm Te/U}$ <2 时,生长获得 M2—M5 样品的 $T_{\rm c}$ 提高至 1.9— 2.05 K,由此表明 MSF 方法中采用 U 轻微过量的

图 7 (a) MSF 与 CVT 样品的归一化电阻率对比; (b) MSF 方法生长获得 U-Te 体系产物与原料 Te/U 的关系. 数据来源于文献 [38] Fig. 7. (a) Normalized resistivity comparison of MSF and CVT samples; (b) the relationship between the product of U-Te system grown by MSF method and raw material Te/U. The data are taken from Ref. [38].

样品编号 ——	原料	原料比例		<i>m</i> / <i>V</i>		友注
	$M_{ m Te/U}$	$M_{ m Salt/U}$	I _f / L	$I_{\rm c}/{\rm K}$	ККК	
M1	2	29	650	1.7—1.8	40—60	
M2	1.93	37	650	1.9—2.0	60—80	
M3	1.92	36	650	1.95 - 2.0	30—40	
M4	1.90	40	650	1.8—1.95	50—60	
M5	1.90	67	650	1.9-2.05	50—60	
M6	1.8	21	650	_	_	产物为U7Te12
M6a	1.8	40	650	2.0-2.1	80—130	主要产物为U7Te12
M7	1.71	60	650	2.1	170—1000	主要产物为U7Te12
H1	2.0	48	700	1.6	11—12	离心去除盐
H2	1.95	42	700	1.75 - 1.9	35—60	
L1	1.95	38	600	1.6—1.8	20-30	
L2	1.90	44	600	2.1-2.2	65—70	聚集晶体

表 3 MSF 方法工艺参数对 UTe₂ 单晶 T_c 和样品质量的影响^[38] Table 3. Effect of MSF process parameters on the T_c and sample quality of UTe₂ single crystals^[38]

原料配比可以获得接近化学计量比的 UTe₂ 单晶. 事实上,在等摩尔的 NaCl+KCl 高温熔融盐中,轻 微过量的 U 不仅作为还原剂 [50], 而且可以抑制样 品中 U 缺陷的产生. 若进一步降低 M_{Te/U}, 生长获 得的 M6—M7 样品则全部为 U7Te12 或以 U7Te12 为主. 不难看出, 这是由于理想 U7Te12 样品对应 的 M_{Te/U}≈1.714, 与 M6—M7 样品所采用的原料 配比十分接近. U7Te12 的晶体结构属六方晶系, 在 低温下有 $T_{\rm FM} = 48$ K 的铁磁转变, 可以通过电阻 率和磁化率测量进行甄别^[5]. 值得注意的是, 相比 M6, M6a 和 M7 样品采用了更高的 M_{Salt/U}, 其产 物中有少量的 UTe2 单晶存在, 尽管其晶体尺寸较 小. 并且, 在这种与 U7Te12 共存的临界条件下, M6a 和 M7 中的 UTe2 样品有 Tc 高达 2.1 K, 其 RRR 值甚至可以达到 1000, 表明这些 UTe, 样品可能具 有理想的化学计量比. 综上, 在生长温度为 950 ℃, T_f = 650 ℃ 条件下, 以 NaCl 和 KCl 等摩尔混合 物为助熔剂的 MSF 方法可以得到图 7(b) 所示的 U-Te体系产物分布,通过合适的原料配比 Te/U 能获得实现完美化学计量比的 UTe2 单晶样品.

除了原料配比 Te/U, 退火温度 T_f也对样品造 成影响.当 T_f设置为比混合盐的共晶熔点 650 ℃ 更高或更低时, L1 和 H2 晶体表现出多个台阶的 电阻率下降, 推测可能这些样品中存在空间不均匀 的超导行为.为了在无水环境中去除多余的盐, H1 样品被重新加热至 700 ℃ 进行离心, 结果显示其 T_c 和 RRR 都明显低于其他 MSF 样品. 尽管 L2 样品 有最高 $T_c = 2.2 \text{ K}$,但形态上表现为多块晶体的 聚集,十分容易碎裂.由此可见,MSF 生长 UTe₂ 样品结束前的最优退火温度恰好是混合盐的共晶 熔点 650 °C,过高或过低温度退火都会导致样品结 晶质量的下降.

此外,降温速率也是助熔剂方法生长单晶样品 的重要影响因素.通常情况下,过快的降温速率容 易导致晶体内部出现位错、空位或杂质包裹等缺 陷,不仅降低单晶样品的结晶质量,还会使获得的 样品尺寸较小.过慢的降温速率则会导致样品生长 时间漫长,使得晶体生长过程中受到其他因素干扰 的风险增加,比如杂质吸附或表面污染等,反而不 利于晶体质量的提升.因此,根据具体的晶体材料 和生长条件进行优化,从而选择适中的降温速率是 获得高质量单晶样品的重要途径.在已有的报道 中,Sakai等^[38]采用 MSF 方法生长 UTe₂ 单晶的降 温速率设置在 1.2—1.8 ℃/h 范围内, Eaton 等^[19] 则采用 1.8 ℃/h 的具体降温速率.然而,由于缺少 关注降温速率的实验研究,目前尚无法确定降温速 率对 MSF 生长 UTe₂ 单晶的具体影响.

2024年, Eaton 等^[19]对 MSF 方法的生长工 艺细节进行了优化, 获得的 UTe₂ 单晶样品有 $T_c =$ 2.1 K和 RRR = 900, 并用于量子振荡实验研究. 工艺优化主要在两个方面, 一是在超高真空下采用 固态电迁移 (solid-state electrotransport, SSE) 方 法对金属铀原料进行提纯, 二是在约为 10⁻⁶ mbar (1 mbar = 100 Pa) 的动态真空下 200 ℃ 烘烤 12 h 以更加彻底地去除助熔剂盐中的水分.之后,Wu 等^[52]基于优化工艺生长的高质量 UTe₂ 单晶样品 对多个场致超导相进行了细致研究,获得了新的场 致超导相图,如图 8 所示.相比"上一代"的 CVT 样品,SC1和 SC2 超导相明显扩大了磁场方向偏 离的角度范围,表明这两个 40 T 以下的场致超导 相对晶体质量敏感.

图 8 MSF方法生长高质量 UTe₂ 单晶样品的高磁场超导 相图^[52]

Fig. 8. High magnetic field superconducting phase diagram of high quality UTe $_2$ single crystal sample grown by MSF method ^[52].

5 熔盐助熔剂液体输运法 (MSFLT)

为了进一步提高样品质量, Aoki^[53]结合 MSF 和 CVT 两种方法提出 MSFLT 用于生长 UTe₂ 单 晶样品.在该方法中,等摩尔的 NaCl 和 KCl 混合 物既作为助熔剂又充当输运剂,类似于 CVT 方法 在一定温度梯度的高温熔盐液体中输运生长获得 单晶样品.与 Sakai等^[38]进行的 MSF 方法相比, MSFLT 生长 UTe₂样品的工艺步骤有以下几点区 别:1)原料混合后直接装入石英管中,无需坩埚; 2)在水平管式炉中设置 750—670 ℃ 的温度梯度 生长 10—14 d; 3) 生长结束后不需要进行退火. MSFLT 方法生长获得的 UTe₂ 单晶样品如图 9(a) 所示,相比 MSF 方法有较大的尺寸,大多为 2—3 mm,个别大块样品可达 5 mm 以上.

对采用原料比例 $M_{\text{Te/U}} = 1.65$ 生长的 UTe₂ 单晶进行电阻率和比热测量,有 $T_c = 2.09$ K 和 RRR = 800,如图 9(b) 所示.更重要的是,由比热 测量获得 MSFLT 样品的 γ^*/γ_N 明显低于 CVT 和 MSF 样品,见表 4 所列, $T_c = 2.09$ K 样品的 γ^*/γ_N 更是低至 0.034. 当采用原料比例 $M_{\text{Te/U}} = 1.50$ 时, MSFLT 生长获得的 UTe₂ 样品有 $T_c = 2.06$ K

图 9 (a) MSFLT 生长的 UTe₂ 单晶样品照片, 右上角插 图为样品嵌于混合盐中的照片; (b) MSFLT 样品的比热测 量结果^[53]

Fig. 9. (a) Photograph of MSFLT-grown UTe_2 single crystal samples, the inset in the upper right corner shows the sample embedded in the flux; (b) specific heat data of a MSFLT sample ^[53].

生长方法	原料比例 $M_{\rm Te/U}$	助熔剂/输运剂	生长温度/℃	$T_{\rm c}/{ m K}$	RRR	$\gamma^*/\gamma_{\rm N}$
Te-flux	3.55	Te	1050	1.08	3.6	_
CVT	2.00	I_2	950-850	_	2.5	—
CVT	1.50	I_2	1050—990	1.65	14	0.61
CVT	1.40	I_2	780—680	2.01	49	0.13
MSF	1.80	NaCl+KCl	950	< 1.70	22	0.78
MSF	1.65	NaCl+KCl	950	2.06	220	0.046
MSFLT	1.50	NaCl+KCl	750—650	2.06	179	0.124
MSFLT	1.65	NaCl+KCl	750—650	2.09	800	0.034

表 4 不同生长方法获得 UTe₂ 单晶的 T_c 和样品质量对比^[53] Table 4. Comparison of T_c and sample quality of UTe₂ single crystals grown by different methods ^[53].

和 RRR = 129, 其样品质量虽略有降低, 但也明显 高于 CVT 样品. 此外, 通过对大量 MSF 和 MSFLT 样品的电阻率结果进行对比, Aoki^[53] 发现 UTe, 样 品的 T。随着 RRR 值的增大而提高, 但在 RRR 超 过 100时 T_c 会接近最高的极限温度 2.1 K. 这意味 着,即使质量略差的 MSFLT 样品,其 $T_c = 2.06$ K 已经非常接近最高Tc. 由此可见, MSFLT 方法可 以获得更高的样品质量,通过调整原料比例 M_{Te/U} 可以获得样品质量极高和近乎完美化学计量比的 UTe2单晶.

综合而言, MSFLT 方法同时继承了 CVT 和 MSF 方法的优势. 一方面, 与 MSF 方法一样, 在 NaCl+KCl 的熔盐环境中有比 CVT 方法更稳定 的单晶生长环境,并且生长温度更低.参考早前 CVT 生长方法的优化策略[17],更低的生长温度可以获 得更高 T_c和质量的 UTe₂单晶样品, MSFLT 也正 是得益于此. 另一方面, 存在有与 CVT 方法类似 的温度梯度,在物料运输过程中,一些杂质会留在 起始位置,从而进一步提高了最终晶体的纯度并减 小晶体缺陷. 然而, 由于 MSFLT 生长 UTe, 样品 的方法发展较晚,加之其样品质量相对于 MSF 并 未有质的提升,目前尚未见该方法获得的样品在具 体实验研究中的相关报道.

6 总结与展望

本文对现有 UTe2 单晶样品生长方法的研究 进展进行了系统梳理,四种方法的工艺特点及优缺 点整理在表 5 中. 尽管 CVT 方法在 UTe2 体系研 究中最早被采用,但由于该方法生长的样品质量不 高,并且有严重的成分不均匀性,即使单个样品也 存在空间上的成分差异,因而逐渐被近年来新发展 的 MSF 方法所取代. MSF 和 MSFLT 方法可以获 得最高质量的 UTe2 单晶样品, 甚至 Tc 可以达到 目前最高 2.1 K, RRR 高达 1000, 从而使得量子振 荡实验研究在 UTe, 体系中得以应用和实现. 然而, MSF 方法存在一个较大的缺陷: 其产物中可能存 在磁性杂质 U7Te19, 需要在样品收集过程中仔细 甄别. MSFLT 则是 CVT 与 MSF 相结合的一种生 长方法,同样可以生长出高质量的 UTe2 单晶样品, 且其样品尺寸较 MSF 略大. 尽管 MSF 和 MSFLT 方法可以获得最高质量的 UTe2 单晶, 但难以获得 较大尺寸的样品,因此在中子散射等需求较大面积 样品的实验研究中面临困难.对比其他方法,Teflux 生长 UTe2 样品的工艺最为简单, 且样品尺寸 大和产量高,适合需求大批量样品开展实验研究或 应用的场景,但需进一步优化生长条件以解决样品 不超导和质量不高的问题.

在样品生长的工艺参数方面, 原料比例 M_{Te/U} 在所有方法中均对样品质量有显著影响,并且除 Te-flux 之外的三种方法都需要起始原料中的 U 过 量.同时,合适的原料比例 M_{Salt/U} 以及生长开始前 有效去除盐中的水分对 MSF 和 MSFLT 方法也至 关重要. 再者, 现有的研究表明 CVT 方法对生长 温度十分敏感,采用更低的生长温度可以获得更高 的样品质量和 T_c, MSFLT 方法可能同样受此因素

表 5 不同生长方法的工艺特点与优缺点 Table 5. Process characteristics, advantages and disadvantages of different growth methods.						
方法	最优的 工艺参数	最佳的 超导样品	影响因素	优点	缺点	
CVT	原料比例M _{Te/U} = 1.5 生长温度梯度800—710 ℃	$T_{\rm c} = 2.0 \ {\rm K}$ RRR = 88	原料比例M _{Te/U} 生长温度梯度 输运剂类型与用量	生长温度较低 样品尺寸大	样品质量较差 成分均匀性差	
Te-flux	原料比例M _{Te/U} = 3.55 生长温度1050 ℃ 离心温度950 ℃	$T_{\rm c} = 1.1 \text{ K}$ RRR = 4	原料比例M _{Te/U} 生长温度 降温速率	工艺简单 样品产量高 样品尺寸大	几乎不超导 样品质量差 生长温度高	
MSF	原料比例M _{Te/U} = 1.71 原料比例M _{Salt/U} = 60 生长温度950 ℃ 退火温度650 ℃	$T_{\rm c} = 2.1 \text{ K}$ RRR = 1000	原料比例M _{Te/U} 原料比例M _{Salt/U} 退火温度; 降温速率 助熔剂盐的含水量	样品质量高 生长温度较低	产物伴随有磁性杂质 U ₇ Te ₁₂ 样品尺寸小	
MSFLT	原料比例M _{Te/U} = 1.65 生长温度梯度750—670 ℃	$T_{\rm c} = 2.09 \text{ K}$ RRR = 800	原料比例M _{Te/U} 助熔剂盐的含水量 生长温度梯度	样品质量高 生长温度低	样品尺寸较小	

影响. 此外, 降温速率对 Te-flux 和 MSF 的结晶质 量可能造成影响, 但目前最优化的降温速率尚缺少 详细的实验研究.

更重要的是,自 2022 年通过 MSF 方法获得 高质量的 UTe₂ 样品以来,"新一代"样品为该体系 研究带来突破性进展的同时也引起了更多的争议, 比如量子振荡实验揭示费米面结构^[18,19,47-49]、不同 的超导态配对^[42,43]、可能存在的 Majorana 费米子^[54] 以及相比早前 CVT 样品获得不同的实验结果^[20,44,52] 等.总之,高质量 MSF 样品进一步表明了 UTe₂ 体 系本身的复杂性和多样性,是综合研究非常规超导 电性、自旋三重态、磁性涨落、拓扑性质和量子临 界现象的重要平台.

因此, 未来基于超高质量的 UTe2 单晶样品可 以从以下几个方面开展实验研究工作:1) 对早前 CVT 样品实验结果的重新测定,并结合多种实验 观测手段深入研究,比如时间反演对称性是否破 缺、手性表面态是否存在等; 2) 超导序参量的精确 确定和超导机制的深入研究,包括其轨道角动量和 超导节点结构, 需通过进一步实验观测确定三维费 米面的存在与否,以及研究重费米子物理和磁性在 超导性中的作用; 3) 体系表现出 4 GPa 压力下的 结构相变以及多个高场超导再入相,有必要探究高 压、高场、应变和栅压等外加条件对超导序参量及 配对机制的影响; 4) 致力于解决体系的自旋涨落 性质争议,是铁磁涨落还是反铁磁涨落需要更多的 实验研究来确定; 5) 深入探究体系中的拓扑物理, 比如可能存在的 Majorana 费米子还有待进一步实 验确定,这对拓扑量子计算的实现具有重要意义.

参考文献

- Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J 2019 Science 365 684
- [2] Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vališka M, Harima H, Flouquet J 2019 J. Phys. Soc. Jpn. 88 043702
- [3] Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2021 *Phys. Rev. B* 103 L100503
- [4] Fujibayashi H, Nakamine G, Kinjo K, Kitagawa S, Ishida K, Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2022 J. Phys. Soc. Jpn. 91 043705
- [5] Ran S, Jiao L 2021 Sci. Sin. Phys. Mech. Astron. 51 047406 (in Chinese) [冉升, 焦琳 2021 中国科学: 物理学 力学 天文学) 51 047406]

- [6] Ran S, Liu I, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P 2019 Nat. Phys. 15 1250
- [7] Knebel G, Knafo W, Pourret A, Niu Q, Valiska M, Braithwaite D, Lapertot G, Nardone M, Zitouni A, Mishra S, Sheikin I, Seyfarth G, Brison J, Aoki D, Flouquet J 2019 J. Phys. Soc. Jpn. 88 063707
- [8] Ikeda S, Sakai H, Aoki D, Homma Y, Yamamoto E, Nakamura A, Shiokawa Y, Haga Y, Onuki Y 2006 J. Phys. Soc. Jpn. 75 116
- [9] Braithwaite D, Valiska M, Knebel G, Lapertot G, Brison J, Pourret A, Zhitomirsky M E, Flouquet J, Honda F, Aoki D 2019 Commun. Phys. 2 147
- [10] Aoki D, Honda F, Knebel G, Braithwaite D, Nakamura A, Li D, Homma Y, Shimizu Y, Sato Y J, Brison J, Flouquet J 2020 J. Phys. Soc. Jpn. 89 053705
- [11] Ran S, Kim H, Liu I, Saha S R, Hayes I, Metz T, Eo Y S, Paglione J, Butch N P 2020 *Phys. Rev. B* 101 140503
- [12] Lin W, Campbell D J, Ran S, Liu I, Kim H, Nevidomskyy A
 H, Graf D, Butch N P, Paglione J 2020 npj Quantum Mater.
 5 68
- [13] Hayes I M, Wei D S, Metz T, Zhang J, Eo Y S, Ran S, Saha S R, Collini J, Butch N P, Agterberg D F, Kapitulnik A, Paglione J 2021 Science 373 797
- [14] Thomas S M, Santos F B, Christensen M H, Asaba T, Ronning F, Thompson J D, Bauer E D, Fernandes R M, Fabbris G, Rosa P F S 2020 Sci. Adv. 6 eabc8709
- [15] Aoki D, Brison J, Flouquet J, Ishida K, Knebel G, Tokunaga Y, Yanase Y 2022 J. Phys. Condens. Matter 34 243002
- [16] Thomas S M, Stevens C, Santos F B, Fender S S, Bauer E D, Ronning F, Thompson J D, Huxley A, Rosa P F S 2021 *Phys. Rev. B* 104 224501
- [17] Rosa P F S, Weiland A, Fender S S, Scott B L, Ronning F, Thompson J D, Bauer E D, Thomas S M 2022 Commun. Mater. 3 33
- [18] Aoki D, Sakai H, Opletal P, Tokiwa Y, Ishizuka J, Yanase Y, Harima H, Nakamura A, Li D, Homma Y, Shimizu Y, Knebel G, Flouquet J, Haga Y 2022 J. Phys. Soc. Jpn. 91 083704
- [19] Eaton A G, Weinberger T I, Popiel N J M, Wu Z, Hickey A J, Cabala A, Pospisil J, Prokleska J, Haidamak T, Bastien G, Opletal P, Sakai H, Haga Y, Nowell R, Benjamin S M, Sechovsky V, Lonzarich G G, Grosche F M, Valiska M 2024 Nat. Commun. 15 223
- [20] Ajeesh M O, Bordelon M, Girod C, Mishra S, Ronning F, Bauer E D, Maiorov B, Thompson J D, Rosa P F S, Thomas S M 2023 Phys. Rev. X 13 041019
- [21] Xu Y, Sheng Y, Yang Y 2019 Phys. Rev. Lett. 123 217002
- [22] Stöwe K 1996 J. Solid. State. Chem. 127 202
- [23] Ran S, Liu I L, Saha S R, Saraf P, Paglione J, Butch N P 2021 J. Vis. Exp. 173 e62563
- [24] Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P, Madhavan V 2020 Nature 579 523
- [25] Fujimori S, Kawasaki D, Takeda Y, Yamagami H, Nakamura A, Homma Y, Aoki D 2019 J. Phys. Soc. Jpn. 88 103701
- [26] Miao L, Liu S, Xu Y, Kotta E C, Kang C, Ran S, Paglione J, Kotliar G, Butch N P, Denlinger J D, Wray L A 2020 Phys. *Rev. Lett.* **124** 076401
- [27] Cairns L P, Stevens C R, O'Neill C D, Huxley A 2020 J. Phys. Condens. Matter 32 415602
- [28] Haga Y, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Sakai H 2022 J. Phys. Condens. Matter 34 175601
- [29] Yang C, Guo J, Cai S, Zhou Y, Sidorov V A, Huang C, Long S, Shi Y, Chen Q, Tan S, Wu Q, Coleman P, Xiang T, Sun L

2022 Phys. Rev. B 106 24503

- [30] Frank C E, Lewin S K, Salas G S, Czajka P, Hayes I M, Yoon H, Metz T, Paglione J, Singleton J, Butch N P 2024 Nat. Commun. 15 3378
- [31] Aoki D, Nakamura A, Honda F, Li D, Homma Y, Shimizu Y, Sato Y J, Knebel G, Brison J, Pourret A, Braithwaite D, Lapertot G, Niu Q, Vali Ka M, Harima H, Flouquet J 2020 Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019) Okayama, Japan, September 23-28, 2019 011065
- [32] Mineev V P 2022 J. Phys. Soc. Jpn. 91 074601
- [33] Sundar S, Azari N, Goeks M R, Gheidi S, Abedi M, Yakovlev M, Dunsiger S R, Wilkinson J M, Blundell S J, Metz T E, Hayes I M, Saha S R, Lee S, Woods A J, Movshovich R, Thomas S M, Butch N P, Rosa P F S, Paglione J, Sonier J E 2023 Commun. Phys. 6 24
- [34] Theuss F, Shragai A, Grissonnanche G, Hayes I M, Saha S R, Eo Y S, Suarez A, Shishidou T, Butch N P, Paglione J, Ramshaw B J 2024 Nat. Phys. 20 1124
- [35] Yao S, Li T, Yue C, Xu X, Zhang B, Zhang C 2022 CrystEngComm 24 6262
- [36] Xie D H, Lai X C, Tan S Y, Zhang W, Liu Y, Feng W, Zhang Y, Liu Q, Zhu X G, Yuan B K, Fang Y 2016 *Rare Met. Mater. Eng.* 45 2128 (in Chinese) [谢东华, 赖新春, 谭世 勇, 张文, 刘毅, 冯卫, 张云, 刘琴, 朱燮刚, 袁秉凯, 方运 2016 稀有金属材料与工程 45 2128]
- [37] Ji X, Liu Q, Feng W, Zhang Y, Chen Q, Liu Y, Hao Q, Wu J, Xue Z, Zhu X, Zhang Q, Luo X, Tan S, Lai X 2024 *Phys. Rev. B* 109 075158
- [38] Sakai H, Opletal P, Tokiwa Y, Yamamoto E, Tokunaga Y, Kambe S, Haga Y 2022 Phys. Rev. Mater. 6 073401
- [39] Bdey S, Savvin S N, Bourguiba N F, Núñez P 2022 J. Solid State Chem. 305 122644
- [40] Kwon M J, Binh N V, Cho S, Shim S B, Ryu S H, Jung Y J, Nam W H, Cho J Y, Park J H 2024 Electron. Mater. Lett. 20 559
- [41] Chen H, Singh S, Mei H, Ren G, Zhao B, Surendran M, Wang Y, Mishra R, Kats M A, Ravichandran J 2024 J. Mater. Res. 39 1901
- [42] Matsumura H, Fujibayashi H, Kinjo K, Kitagawa S, Ishida K,

Tokunaga Y, Sakai H, Kambe S, Nakamura A, Shimizu Y, Homma Y, Li D, Honda F, Aoki D 2023 J. Phys. Soc. Jpn. 92 063701

- [43] Ishihara K, Roppongi M, Kobayashi M, Imamura K, Mizukami Y, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 Nat. Commun. 14 2966
- [44] Azari N, Yakovlev M, Rye N, Dunsiger S R, Sundar S, Bordelon M M, Thomas S M, Thompson J D, Rosa P F S, Sonier J E 2023 Phys. Rev. Lett. 131 226504
- [45] Ishihara K, Kobayashi M, Imamura K, Konczykowski M, Sakai H, Opletal P, Tokiwa Y, Haga Y, Hashimoto K, Shibauchi T 2023 *Phys. Rev. Res.* 5 L022002
- [46] Vališka M, Haidamak T, Cabala A, Pospíšil J, Bastien G, Sechovský V, Prokleška J, Yanagisawa T, Opletal P, Sakai H, Haga Y, Miyata A, Gorbunov D, Zherlitsyn S 2024 *Phys. Rev. Mater.* 8 094415
- [47] Broyles C, Rehfuss Z, Siddiquee H, Zhu J A, Zheng K, Nikolo M, Graf D, Singleton J, Ran S 2023 Phys. Rev. Lett. 131 036501
- [48] Aoki D, Sheikin I, McCollam A, Ishizuka J, Yanase Y, Lapertot G, Flouquet J, Knebel G 2023 J. Phys. Soc. Jpn. 92 065002
- [49] Weinberger T I, Wu Z, Graf D E, Skourski Y, Cabala A, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 *Phys. Rev. Lett.* **132** 266503
- [50] Serrano K, Taxil P 1999 J. Appl. Electrochem. 29 497
- [51] Opletal P, Sakai H, Haga Y, Tokiwa Y, Yamamoto E, Kambe S, Tokunaga Y 2023 J. Phys. Soc. Jpn. 92 034704
- [52] Wu Z, Weinberger T I, Chen J, Cabala A, Chichinadze D V, Shaffer D, Pospíšil J, Prokleška J, Haidamak T, Bastien G, Sechovský V, Hickey A J, Mancera-Ugarte M J, Benjamin S, Graf D E, Skourski Y, Lonzarich G G, Vališka M, Grosche F M, Eaton A G 2024 Proc. Natl. Acad. Sci. U.S.A. 121 e2403067121
- [53] Aoki D 2024 J. Phys. Soc. Jpn. 93 043703
- [54] Tokiwa Y, Sakai H, Kambe S, Opletal P, Yamamoto E, Kimata M, Awaji S, Sasaki T, Yanase Y, Haga Y, Tokunaga Y 2023 Phys. Rev. B 108 144502

REVIEW

Advances in single crystal growth methods for novel unconventional superconductor UTe_2^*

XUE Ziwei YUAN Dengpeng[†] TAN Shiyong

(Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China)

(Received 25 December 2024; revised manuscript received 6 February 2025)

Abstract

Heavy fermion compound UTe_2 , as a recently discovered unconventional superconductor, has received significant attention due to its potential spin-triplet superconducting pairing, high-field re-entrant superconducting phases, and unique quantum critical characteristics. However, experimental results of this system show significant changes and discrepancies, primarily due to difference in sample quality. The key unresolved issues include whether the system exhibits multi-component superconducting order parameters, whether time-reversal symmetry is spontaneously broken, and whether multiple field-induced superconducting phases share a common origin. These unsolved issues hinder an in-depth understanding of the intrinsic superconducting pairing mechanism in the UTe_2 system.

This paper reviews recent advances in single-crystal growth methods for UTe₂, including chemical vapor transport (CVT), Te-flux, molten salt flux (MSF), and molten salt flux liquid transport (MSFLT). We systematically analyze how growth conditions influence superconductivity and crystal quality. Although the CVT method was initially employed in UTe₂ studies, the samples grown by this method exhibit poor quality and significant compositional inhomogeneity, even in individual samples. Consequently, the CVT method has been progressively supplanted by the recently developed MSF method. In contrast, the MSF method and MSFLT method yield high-quality UTe₂ single crystals with $T_{\rm c}$ achieving a value as high as 2.1 K and residual resistivity ratio (RRR) reaching up to 1000; however, the sample sizes are smaller than those grown by the CVT and Te-flux methods. Notably, MSF-grown samples occasionally contain magnetic impurities such as U_7Te_{12} , so careful screening is required in the sample collection process. The MSFLT combines the advantages of CVT and MSF methods to grow high-quality UTe₂ single crystals while producing larger sample sizes than MSF. Our research findings highlight the importance of optimizing growth parameters such as Te/U ratio, temperature gradient, and cooling rate. For instance, lower growth temperature and precise control of the Te/U ratio can significantly enhance $T_{\rm c}$ and sample quality. Several controversies have been identified regarding highquality MSF and MSFLT samples, including clarifying the single-component nature of the superconducting order parameter and confirming the absence of time-reversal symmetry breaking in optimized samples.

This review underscores the pivotal role of advanced single-crystal growth techniques in advancing the study of UTe₂. Future research should focus on utilizing these high-quality UTe₂ samples grown by MSF and MSFLT methods to accurately determine superconducting order parameters, elucidate mechanisms behind high-field re-entrant superconducting phases, and explore topological properties, such as potential Majorana fermions. These efforts will deepen our understanding of unconventional superconductivity, spin fluctuations, and quantum critical phenomena in the UTe₂ system.

Keywords: UTe_2 , unconventional superconductivity, chemical vapor transport method, molten salt flux method

PACS: 74.70.Tx, 81.10.-h, 74.62.Bf, 74.70.-b

DOI: 10.7498/aps.74.20241778

CSTR: 32037.14.aps.74.20241778

^{*} Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U23A20580) and the Sichuan Provincial Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 2025NSFJQ0040).

[†] Corresponding author. E-mail: yuandengpeng@caep.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

新型非常规超导体UTe2的单晶生长方法研究进展

薛子威 袁登鹏 谭世勇

Advances in single crystal growth methods for novel unconventional superconductor UTe,

XUE Ziwei YUAN Dengpeng TAN Shiyong

引用信息 Citation: Acta Physica Sinica, 74, 087401 (2025) DOI: 10.7498/aps.74.20241778 CSTR: 32037.14.aps.74.20241778 在线阅读 View online: https://doi.org/10.7498/aps.74.20241778 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

三元钯基碲化物的单晶生长和电输运性质

Crystal growth and electronic transport property of ternary Pd-based tellurides 物理学报. 2022, 71(22): 227401 https://doi.org/10.7498/aps.71.20221034

自旋涨落与非常规超导配对

Spin fluctuations and uncoventional superconducting pairing 物理学报. 2021, 70(1): 017408 https://doi.org/10.7498/aps.70.20202180

探索非常规高温超导体 Searching for new unconventional high temperature superconductors 物理学报. 2021, 70(1): 017101 https://doi.org/10.7498/aps.70.20202122

磁性拓扑材料中贝利曲率驱动的非常规电输运行为

Berry curvature induced unconventional electronic transport behaviors in magnetic topological semimetals 物理学报. 2023, 72(17): 177103 https://doi.org/10.7498/aps.72.20230995

n = 2 Ruddlesden–Popper Sr₃ B_2 Se₇ (B = Zr, Hf) 非常规铁电性的第一性原理研究

First-principle investigation of hybrid improper ferroelectricity of n = 2 Ruddlesden-Popper Sr₃ B_2 Se₇ (B = Zr, Hf) 物理学报. 2021, 70(11): 116302 https://doi.org/10.7498/aps.70.20202142

镍基超导体中电荷序的实验研究进展

Experimental research progress of charge order of nickelate based superconductors 物理学报. 2024, 73(19): 197104 https://doi.org/10.7498/aps.73.20240898