HfO_2/SnO_2 异质结界面电子结构研究^{*}

冯春萌 杨洋 李志青†

(天津大学理学院, 天津市低维功能材料物理与制备技术重点实验室, 天津 300350)

(2025年1月24日收到; 2025年2月24日收到修改稿)

在 SrTiO₃ 基氧化物异质结中,由于 Ti 3d 轨道的影响,界面处的二维电子气 (2DEG) 室温迁移率较低, 这限制了它们在半导体器件中的应用.而 SnO₂ 的导带底由 Sn 的 5s 轨道组成,因此,基于 SnO₂ 的异质结界 面具有形成室温下高迁移率 2DEG 的潜力.本文采用第一性原理计算的方法,对 (001) HfO₂/SnO₂ 异质结构 的界面电子结构进行了系统研究.计算结果表明,无缺陷的 HfO₂/SnO₂ 异质结具有半导体的能带结构,其界 面附近不会形成 2DEG.当异质结界面附近的 SnO₂ 侧存在氧空位时,体系出现跳跃导电,但其界面附近仍不 会出现 2DEG.当氧空位处于异质结的 HfO₂表面时,氧空位的存在使表面产生缺陷态.缺陷态的电子处于局 域态,并不参与导电,但缺陷态与异质结构的导带底 (由界面贡献)发生交叠,使异质结表面缺陷态中的电子 转移至界面,并在异质结界面附近形成 2DEG.此外,对于 HfO₂层较薄的 HfO₂/SnO₂ 异质结构,比如 HfO₂层 为7个单胞 (约 2.37 nm) 厚时, HfO₂ 表面吸附的 H 原子向异质结提供电子,这些电子部分转移到界面附近的 导带,形成 2DEG. 随着 HfO₂ 层厚度的增加,表面电子转移到界面的概率逐渐下降,使得界面处的电子浓度 逐渐降低.

关键词:氧化物异质结,二维电子气,电子结构 **PACS:**73.20.-r,73.40.Lq **CSTR:**32037.14.aps.74.20250114

DOI: 10.7498/aps.74.20250114

1 引 言

自从 Ohtomo 和 Hwang^[1] 在 LaAlO₃/SrTiO₃ 异质结构界面发现高迁移率二维电子气 (2DEG) 以来,研究人员在多种氧化物异质结界面相继发现 了 2DEG 的存在^[2-7].这些发现不仅为量子霍尔效 应、界面超导等物理现象的研究提供了重要平台^[8-11], 还为高迁移率晶体管和高灵敏度传感器等电子器 件的研发提供了新的途径.目前,氧化物异质界面 的 2DEG 主要存在于两类体系中:一类是以钙钛 矿氧化物为基底的异质结,如 LaAlO₃/SrTiO₃^[1,12], γ-Al₂O₃/SrTiO₃^[4,13], LaTiO₃/KTaO₃^[5] 以及 EuO/ KTaO₃^[7]等;另一类则是由二元半导体氧化物

© 2025 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

所构成的异质结,包括 $Mg_x Zn_{1-x}O/ZnO^{[2,14,15]}$ 和 ($Al_x Ga_{1-x}$)₂O₃/Ga₂O₃^[6]等.对于前者,其界面上 2DEG 的导电电子由 Ti 3d (或 Ta 5d) 轨道贡献. 低温下,导电电子主要分布在能量较低的 d_{xy} 带上, 因此具有较高的迁移率.然而,随着温度的升高, 电子-声子耦合和带间跃迁会使简并的 d_{xz} 和 d_{yz} 带参与导电,导致电子迁移率急剧下降^[16,17],例 如,对于 γ -Al₂O₃/SrTiO₃ 异质结,在 2 K 时电子迁 移率可达 1.4×10⁵ cm²/(V·s),而在室温则降低到 10 cm²/(V·s) 以下^[4].相比之下,第二类异质结因 其导带底由非简并 s 轨道贡献,展现出更优异的室 温载流子迁移率,例如, Mg_x Zn_{1-x}O/ZnO 界面处 的 2DEG 在室温下的迁移率高达 250 cm²/(V·s)^[2], 而 (Al_xGa_{1-x})₂O₃/Ga₂O₃ 异质结中的 2DEG 室温

^{*} 国家自然科学基金 (批准号: 12174282) 资助的课题.

[†] 通信作者. E-mail: zhiqingli@tju.edu.cn

迁移率也达到了 180 cm²/(V·s)^[6],这些数值远高于 以钙钛矿氧化物为基底的异质结.因此,为寻找室 温下具有高迁移率的 2DEG,有必要探讨其他二元 半导体氧化物构成的异质结界面是否也能够产生 2DEG.另一方面,第一性原理计算解释了多种氧 化物异质结界面 2DEG 的来源问题,例如,Lee 与 Demkov^[18]利用第一性原理计算,发现 LaAlO₃/ SrTiO₃中的 2DEG 来源于界面处的极性不连续; Chen 等^[19]利用第一性原理计算成功解释了 Mg_x Zn_{1-x}O/ZnO 界面处 2DEG 的产生机制.因此,第 一性原理计算已经成为探索异质结界面二维电子 气起源的重要工具.

SnO₂ 是一种具有金红石结构的直接带隙氧化 物半导体,其带隙值约为 3.6 eV^[20],具有较高的室 温载流子迁移率^[21].通常情况,宽带隙材料与窄带 隙材料构成的异质结在界面处会发生能带弯曲现 象,可促进电子向界面附近的积累,这有利于 2DEG 的形成^[22,23]. HfO₂ 的带隙值 ($E_g = 5.7 \text{ eV}^{[24]}$)比 SnO₂ 更宽,常以单斜相形式存在. 但理论和实验 均表明,四方相的 HfO₂ 也可稳定存在^[25,26]. 因此, 本文选用金红石结构的 HfO₂ 与 SnO₂ 构成异质结 构,系统研究异质结界面的电子结构,探索材料中 的缺陷、表面吸附等对 HfO₂/SnO₂ 界面电子结构 的影响.

2 计算方法

本文所有计算均使用 VASP 软件包进行, 计 算过程中, 用投影缀加波 (PAW) 赝势处理离子实 与电子之间的相互作用, 选用 Perdew-Burke-Ernzerhof (PBE) 函数参数化的广义梯度近似 (GGA) 处理交换关联能, 并用 Monkhorst-Pack 法对布里 渊区进行 k 点取样^[27-30]. 电子能量收敛精度设置 为 1×10⁻⁵ eV, 完全弛豫结构中每个原子上的力小 于 0.02 eV/Å. 根据收敛测试, k 点设置为 3×5×1, 平面波截断能设置为 420 eV^[31].

在计算过程中, HfO₂/SnO₂ 异质结中 Sn, Hf 和 O 原子使用的电子构型分别为 5s²5p², 5d²6s² 及 2s²2p², 其中, SnO₂ 中 Sn 4d 电子态也被当作价态来 处理^[32-34]. 对于半导体而言, 密度泛函理论 (DFT) 方法的主要缺陷是低估材料的带隙^[35], 因此本文 的计算采用 GGA+*U*方法 (这里 *U*为 Hubbard 相 互作用参数). 根据 Singh 等^[32] 和 Pavoni 等^[36] 的 计算经验,本工作首先将 Sn 4d 和 Hf 5d 轨道的 U 值分别设定为 3.5 eV 和 5.0 eV, 此 U值设置记为 GGA+U. 计算所得 SnO₂和 HfO₂的带隙值分别 为 1.58 eV 和 4.42 eV, 如图 1(a) 和图 1(b) 所示, 均 分别小于 SnO₂和 HfO₂的实验带隙值 (E_g (SnO₂) = 3.6 $eV^{[20]}$, $E_{\sigma}(HfO_2) = 5.7 eV^{[24]}$). 近期, Akbar 等^[37] 发现,在O 2p 轨道添加 U能够进一步修正 SnO2 的带隙,同时,Li等^[38]研究的结果也表明,在O 2p 轨道加 U同样能进一步增加 HfO₂ 的带隙值. 因此, 在固定 Sn 4d 和 Hf 5d 轨道的 U值的基础 上, 进一步在 SnO₂和 HfO₂的 O 2p 轨道加 U. 计 算结果显示,随O 2p轨道上 U值的增加, SnO₂ 和 HfO₂的带隙均逐渐增加. 但 SnO₂价带顶附近 的能量-动量色散关系会受到影响,即价带顶的 "F-Q-Z"高对称点路径处"凸起",并且这种"凸 起"会随着 O 2p 轨道上 U 值的增加而增大. 当 O 2p 轨道上 U值为 8.0 eV 时, 虽然计算所得到的 SnO₂ 和 HfO₂的带隙值分别为 2.37 eV 和 4.75 eV (仍小 于实验带隙值 E_{g} (SnO₂) = 3.6 eV^[20], E_{g} (HfO₂) = 5.7 eV^[24]), 但得到的 SnO₂ 和 HfO₂ 的能量-动量色散 关系 (图 1(c) 和图 1(d)) 与 Heyd-Scuseria-Ernzerhof (HSE) 方法获得的色散关系 (图 1(e) 和图 1(f)) 基本一致. 我们将此 U值设置记 $U_0^{2p} = 8 \text{ eV}$ 的 GGA+U. 由于带边附近的能量-动量色散关系对 材料的电输运性质起着至关重要的作用,因此,本 文若不进行特别说明, 均是采用上述方法计算而 得. 此外,对O 2p 轨道 U值的测试结果还表明,进 一步增加 O 2p 轨道的 U值能更有效地打开 SnO₂ 和HfO2的带隙.基于此,我们考虑在保持Sn 4d 和 Hf 5d 轨道 U 值不变的前提下, 进一步增加 O 2p 轨道 U值. 计算结果显示, O 2p 轨道 U值的进一 步增加对 SnO2带隙修正效果比 HfO2更明显.因 此,随O 2p轨道 U值的增加,计算所得 SnO₂和 HfO2的带隙差会逐渐减小. 当 O 2p 轨道的 U值 设为 14 eV 时, 计算所得 SnO2 和 HfO2 的带隙差 约 2.0 eV, 与带隙差的实验值约 2.1 eV 接近^[20,24]; 并且, SnO2和 HfO2带隙的计算值分别为 3.13 eV 和 5.12 eV(如图 1(g) 和图 1(h) 所示), 与它们带 隙的实验值 $E_{\sigma}(\text{SnO}_2) = 3.6 \text{ eV}^{[20]} 和 E_{\sigma}(\text{HfO}_2) =$ 5.7 eV^[24] 分别相差 13% 和 10%, 在可容忍范围. 因 此,为保证对两种材料所构成异质结界面的能带弯 曲的准确描述,将O 2p轨道 U值设置为 14 eV, 并记为 $U_0^{2p} = 14 \text{ eV}$ 的GGA+U.

图 1 SnO₂和 HfO₂ 块体的能带结构图 (费米能级设为零点) (a), (b) 采用 GGA+U所得 (a) SnO₂和 (b) HfO₂的能带结构; (c), (d) 采用 $U_0^{2p} = 8 \text{ eV}$ 的 GGA+U所得 (c) SnO₂和 (d) HfO₂的能带结构; (e), (f) 采用 HSE 杂化泛函所得 (e) SnO₂和 (f) HfO₂的能带结构; (g), (h) 采用 $U_0^{2p} = 14 \text{ eV}$ 的 GGA+U所得 (g) SnO₂和 (h) HfO₂的能带结构

Fig. 1. Band structure of bulk SnO₂ and HfO₂. The band structures of (a) SnO₂ and (b) HfO₂ obtained by GGA+U. (c) SnO₂ and (d) HfO₂ obtained by GGA+U with $U_{\rm O}^{\rm 2p} = 8$ eV. The band structures of (e) SnO₂ and (f) HfO₂ obtained by HSE hybrid functional. The band structures of (g) SnO₂ and (h) HfO₂ obtained by GGA+U with $U_{\rm O}^{\rm 2p} = 14$ eV. The Fermi level is set as zero.

为模拟在 SnO₂ 衬底上沿 c 轴生长的 HfO₂ 薄 层与 SnO₂ 衬底所构成的异质结构,选取了 (001) 面内 2×1 HfO₂/SnO₂ 超胞结构.图 2 是构建的沿 (001) 面法线的具有干净 HfO₂表面的 (HfO₂)₇/ (SnO₂)₁₃ 异质结构示意图.该异质结构含有 13 u.c. SnO₂ 层和 7 u.c. HfO₂ 层 (这里 u.c.为单胞 unit cell 的简写,对于 SnO₂和 HfO₂(001) 法线方向, 1 u.c. = 0.315 nm 和 0.338 nm),并沿堆叠方向添加 了 15 Å真空层.同时,在 SnO₂侧, Sn—O 表面端 的 O 和 Sn 原子分别用带有 2/3 和 4/3 电荷的赝 H 原子进行了钝化.这种钝化方法成功消除了 SnO₂

侧的表面电子态,从而能够合理模拟 SnO₂ 衬底. 为方便讨论,对图 2 所示的异质结构进行编号,以 1 u.c.厚度记为一层, SnO₂ 侧从界面开始到逐渐远 离界面编号依次为 Lī, L2,…, Lī3, HfO₂ 侧从界 面开始依次编号为 L1, L2,…, L7. 其中, Lī和 L1 层形成异质结的界面, L7 为异质结的表面层.

3 结果与讨论

首先来探究具有干净 HfO₂ 表面的 (HfO₂)₇/ (SnO₂)₁₃ 异质结构的电子结构, 计算结果如图 3 所示.图 3(a) 为 (HfO₂)₇/(SnO₂)₁₃ 异质结构的能带 结构.可以看出,费米能级位于带隙之中,价带顶 和导带底均位于 Γ 点,带隙值为 2.35 eV,显示直 接带隙半导体特征.在能带图中,费米能级以上约 3.35 eV 到 4.50 eV 之间存在两条非抛物线能带 (如图中的方形点线所示),其主要来源于表面层 Hf 原子的贡献,这是由于表面不饱和悬键畸变所 致.图 3(b) 给出了 (HfO₂)₇/(SnO₂)₁₃ 异质结各原 子层的电子态密度图.从图 3(b) 可以看出, SnO₂ 和 HfO₂ 侧的各原子层的导带底均在费米能级以

图 3 (HfO₂)₇/(SnO₂)₁₃ 异质结构的电子结构 (费米能级设为零点) (a) 能带结构图, 方形点线标记能带来源于异质结表面 L7 层 不饱和悬键的畸变; (b) 原子层分解态密度图; (c) 平面平均电荷密度差, 其中负值和正值分别表示电子的耗尽和积累, L 表示沿 异质结构的距离, 点划线给出了异质结界面的位置; (d) Sn, Hf, O 原子轨道投影态密度

Fig. 3. Electronic structure of $(HfO_2)_7/(SnO_2)_{13}$ heterostructure. (a) The energy band structure. The band marked by the square dots originates from the distortion of the unsaturated dangling bonds of the L7 layer near the heterojunction surface. (b) The partial density of states projected onto atomic planes. (c) The plane-averaged charge density difference. The negative and positive values represent the depletion and accumulation of electrons, respectively. *L* is noted as the distance along direction of the heterostructure, and the dashed line gives the location of the interface. (d) Projection density of states for Sn, Hf, and O atomic orbitals, where the Fermi level is set as zero.

上,其中 SnO₂侧 L²层的导带底能量最低,位于费 米能级以上 2.17 eV 处;对于 HfO₂侧,除 HfO₂ 的表面原子层外,界面处 (L1 层)的导带底能量最 低,位于费米能级以上 3.60 eV 处.上述结果表明, 在界面处 SnO₂的导带底和 HfO₂的导带底存在 1.43 eV 的能量突变,异质结界面处导带底的不连 续,有利于电子在界面处积累而形成 2DEG.此外, HfO₂表面层的导带底位于费米能级以上 3.28 eV 处,该值明显低于 HfO₂侧其他原子层导带底的能 量.这是表面悬键所致,与图 3(a)的能带结果一 致.图 3(c)为异质结平面平均电荷密度差.可以看 出,异质结的界面处存在由 HfO₂侧向 SnO₂侧的 电荷转移.这是由于 HfO₂的费米能级高于 SnO₂ 的费米能级,当两种材料接触形成异质结时,电子 转移会使得 HfO₂的费米能级下降,使得 SnO₂的 费米能级升高,当两种材料的费米能级一致时电子 将不再转移. 图 3(d) 为异质结的 Sn, Hf, O 原子轨 道投影态密度图. 可以看出,异质结的价带顶来源 于 O 2p 轨道,导带底主要由非简并的 Sn 5s 轨道 贡献. 相比于导带底由三重简并的 d 轨道贡献的异 质结,如 LaAlO₃/SrTiO₃和 LaTiO₃/KTaO₃等, 这种非简并的 s 轨道可以大幅降低带间散射对迁 移率的影响^[16,39]. 因此,在该异质结界面附近引入 电子,有望获得 s 轨道占据的导电电子,进而得到 高室温迁移率的 2DEG.

上述结果同时表明, 无缺陷的 (HfO₂)₇/(SnO₂)₁₃ 异质结界面处不存在 2DEG. 在氧化物异质结中, 氧空位可能会提供额外的电子, 从而改变电荷分 布, 在界面处形成 2DEG 或增强界面处 2DEG 的 浓度, 例如, 无缺陷的 Mg_xZn_{1-x}O/ZnO 异质结界

面处不会产生 2DEG, 但引入氧空位会使界面处形 成 2DEG^[19];在 LaAlO₃/SrTiO₃ 异质结制备过程 中,氧分压越低,低温下界面电阻越小,载流子迁 移率越高^[40].同时,氧空位是氧化物制备过程中的 常见缺陷^[41,42].因此,我们考虑氧空位对(HfO₂)₇/ (SnO₂)13 异质结电子结构的影响.为计算方便,考 虑在 (HfO₂)₇/(SnO₂)₁₃ 超胞中存在一个氧空位的 情形.图4为氧空位在不同位置时的形成能,这里 形成能的计算公式为 $E_f = E_V - (E_0 - n\mu_0)$,其中 Ev和 Eo分别为含氧空位和不含氧空位异质结构 的总能量, µo 为氧原子的化学势, n 为氧空位的个 数. 从图 4 可以看出: 在 SnO₂ 侧, 形成能均为负 值,且变化不大;在HfO2侧,随着氧空位位置逐渐 远离界面,形成能逐渐增加且为正值,但在靠近表 面时,氧空位形成能急剧减小,并且HfO2表面层 的形成能甚至低于 SnO₂侧. 仔细观察发现, SnO₂ 侧和 HfO₂ 侧氧空位形成能极小值位置分别位于 L2 层和 L7 层 (图中圆圈标记位置). 因此, 氧空位 更易在界面附近 SnO₂侧的 L2 层和 HfO₂侧表面 (L7 层) 处形成.

图 4 (HfO₂)₇/(SnO₂)₁₃ 异质结表面和界面附近不同原子层 的氧空位形成能,其中点划线给出了异质结界面的位置,圆 圈标记为 SnO₂ 侧和 HfO₂ 侧的氧空位形成能最低的位置 Fig. 4. Formation energies of oxygen vacancies in different atomic layers near the surface and interface of (HfO₂)₇/ (SnO₂)₁₃ heterostructure. The dashed line gives the position of the interface of the heterostructure, and the circles mark the lowest oxygen vacancy formation energy on the SnO₂ side and the HfO₂ side.

我们分别计算了氧空位存在于L2和L7层时, (HfO₂)₇/(SnO₂)₁₃异质结构的电子结构,为了更准确地描述缺陷能带与导带底的能量状态关系,计算结果采用能够更好修正带隙的 $U_{O}^{2p} = 14 \text{ eV}$ 的GGA+U方法所得.图 5(a)和图 5(b)分别为氧空 位位于L2层时的 (HfO₂)₇/(SnO₂)₁₃ 异质结的能带 结构和原子层分解态密度图. 从图 5(a) 可以看 出, L2层中空位缺陷引入了一个缺陷能带, 即图中 棕实线标记的能带. 该缺陷能带的宽度约 0.91 eV, 能带顶位于S点,与位于 Γ 点的导带底的能量差 为 0.12 eV, 费米能级只穿过缺陷能带的顶部. 由 于缺陷能带的顶部几乎为平带,费米能级附近的电 子具有很大的有效质量,因而具有很小的迁移率. 因为缺陷能带靠近导带底, 当系统吸收外界热量 时,缺陷能带上的电子容易获得能量而跃迁到导带 中,从而引发跳跃导电.综上所述,L2处存在氧空 位会使异质结界面附近随着温度的升高具有一定 的导电能力,但导电性很差.从图 5(b)的分层态密 度可以看出,缺陷能级来自于异质结的LI-L3层, 而异质结的导带底主要由 SnO₂ 侧 L4—L9 层所贡 献.因此,跳跃导电主要发生在界面附近的 SnO₂侧. 图 5(c) 和图 5(d) 分别给出了氧空位位于 (HfO₂)₇/ (SnO₂)13 异质结表面 L7 层的能带结构和原子层分 解态密度图. 从图 5(c) 可以看出, 当氧空位位于 HfO₂表面时,同样在带隙中引入了一条缺陷能带 (图 5(c) 中棕实线标记能带), 且缺陷能带顶部与导 带底部发生了交叠,费米能级进入了导带底部.此 时,缺陷能带上的电子将部分转移至导带而形成导 电电子.图 5(d)的分层态密度图显示,氧空位在 HfO2 表面 L6 和 L7 层引入缺陷态, 其顶部与该原 子层导带底相距 0.32 eV, 此时表面层呈半导体特 征. 然而, 此时费米能级穿过缺陷态, 即部分缺陷 能级高于费米能级. 由图 5(d) 的分层态密度图还 可以看出,伴随表面缺陷态的引入,费米能级进入 界面附近 SnO₂侧的导带,即界面附近 SnO₂的导 带与 HfO₂ 表面氧空位的缺陷带发生交叠. 考虑到 HfO_2 的费米能级高于 SnO₂, 而 HfO₂ 侧的表面缺 陷态 (作为施主态) 会进一步提高 HfO₂ 侧的费米 能级^[43],并且 HfO₂ 表面和 (HfO₂)₇/(SnO₂)₁₃ 异质 结的界面的距离仅约为 2.37 nm. 因此, 缺陷态中 的电子并不全部局域在 HfO2 表面层, 会有一部分 电子通过隧穿方式,转移至 SnO2 侧. 最终,在异质 结的界面附近,特别是在 SnO_2 侧的 Lī—L7层, 形成了 2DEG.

近期, Chen 等^[19] 采用第一性原理计算方法, 研究了 $Mg_x Zn_{1-x} O/ZnO$ 异质结中 2DEG 的来源. 发现 $Mg_x Zn_{1-x} O$ 层较薄时, $Mg_x Zn_{1-x} O/ZnO$ 异质 结中 2DEG 来源于表面原子或原子团的吸附作用.

图 5 存在氧空位时 $(HfO_2)_7/(SnO_2)_{13}$ 异质结的能带结构图和原子层分解态密度图 (a), (b) 氧空位位于 L $\overline{2}$ 原子层的情况; (c), (d) 氧空位位于 L7 原子层的情况; 棕实线标记能带为氧空位的缺陷能级, 计算结果基于 $U_0^{2p} = 14 \text{ eV}$ 的 GGA+U方法, 费米 能级设为零点

Fig. 5. Energy band structure and partial density of states projected onto atomic planes of $(HfO_2)_7/(SnO_2)_{13}$ heterostructure with oxygen vacancy: (a), (b) The cases for oxygen vacancy on the L $\overline{2}$ layer; (c), (d) the cases for oxygen vacancy on the L7 layer. The band marked by brown solid line are the defective energy levels of the oxygen vacancy. The calculation results are based on the GGA+U method of $U_0^{2p} = 14$ eV, and the Fermi level is set as zero.

由于实验制备过程中 SnO2 和 HfO2 等氧化物表面 均容易发生原子或原子团的吸附[44-46],因此,我们 研究了 HfO2 表面吸附 H 原子、O 原子和 OH-原子 团对 (HfO₂)₇/(SnO₂)₁₃ 异质结表面和界面电子结 构的影响. 当图 2 所示的 (HfO₂)₇/(SnO₂)₁₃ 异质结 构表面分别有 H 原子、O 原子和 OH-原子团吸附 时,表面吸附能可通过 $E_{ads} = E_{total} - (E_{hetero} + E_{atom})$ 来计算,这里, Eads 为表面吸附能, Etotal 为原子或 原子团吸附后异质结体系的总能量, Ehetero 为未吸 附异质结体系的总能量, Eatom 表示孤立原子或原 子团的总自由能. 计算结果表明, H 原子、OH-原子 团和 O 原子的吸附能分别为-5.17 eV, -3.12 eV 和 0.12 eV. 吸附能小于零意味着吸附过程放热, 表明吸附系统能量稳定,故该异质结表面容易吸 附H原子和OH-原子团.首先计算了OH-原子团 吸附后, (HfO₂)₇/(SnO₂)₁₃的电子结构. 计算结果 表明, 当吸附 OH-原子团后, 异质结整体仍具有绝

缘体的能带结构,因此本文对吸附 OH⁻的情况不再 进一步讨论.表面吸附 H 原子的异质结构型具有 更低的表面吸附能,因此具有更好的热力学稳定 性.下面讨论表面吸附 H 原子的 (HfO₂)₇/(SnO₂)₁₃ 异质结构的电子结构.

图 6(a) 展示了表面吸附 H 原子的 (HfO₂)₇/ (SnO₂)₁₃ 异质结的能带结构. 与具有干净 HfO₂ 表面 的 (HfO₂)₇/(SnO₂)₁₃ 异质结的能带结构 (见图 3(a)) 相比, 表面吸附 H 原子的异质结的费米能级穿过 导带底, 具有类金属 (简并半导体)的能带结构. 图 6(a) 的方形点线标记的两条能带来源于异质结 中的 HfO₂ 表面原子层 (L6 和 L7 层, 约 0.78 nm 厚), 这两条缺陷能带与导带底交叠, 为异质结提供 导电电子. 图 6(b) 为表面吸附 H 原子的 (HfO₂)₇/ (SnO₂)₁₃ 异质结构的原子层分解态密度图.可以 看出, 该异质结在 Lī—Lī房中均存在导电电子, 即 2DEG 分布在厚度约为 2.21 nm 的 SnO₂ 中. 与 HfO₂ 表面具有氧空位的情况类似,杂质带中的电子是通过隧穿的方式传输到异质结界面附近的.结合图 6(a) 和图 6(b) 可知,尽管 (HfO₂)₇/(SnO₂)₁₃异质结在表面吸附 H 原子时能够像 Mg_xZn_{1-x}O/ZnO 异质结界面^[19]那样产生 2DEG,但 H 原子提供的电子也在 HfO₂ 表面形成了导电层.

图 6 表面吸附 H 原子的 (HfO₂)₇/(SnO₂)₁₃ 异质结的电子 结构 (费米能级设为零点) (a) 能带结构图, 方形点线标记 能带来源于表面处电子, 圆圈标记能带来自界面处电子; (b) 原子层分解态密度图

Fig. 6. Electronic structure of $(HfO_2)_7/(SnO_2)_{13}$ heterostructure adsorbed H atoms on the surface. (a) The energy band structure. The band marked by the square dots originates from the surface electrons, and the band marked by the circles comes from electrons at interface. (b) The partial density of states projected onto atomic planes. The Fermi level is set as zero.

最后,我们研究了 HfO₂ 的厚度对表面吸附 H原子的 HfO₂/SnO₂ 异质结界面附近电子浓度 的影响.为此,计算了 (HfO₂)_l/(SnO₂)₁₃ (l = 7, 8,9,10 u.c.)异质结构的电子结构,对费米能级以下 电子态密度进行积分,获得了这些异质结界面附 近各个原子层的电子浓度^[19,22,47],结果如图 7 所示. 从图 7 可以看出,这些不同 HfO₂层厚度的异质 结界面处的导电电子均聚集在Lī—L7层中.当 HfO₂层厚度固定时,随着 Sn-O 层逐渐远离界面, 导电电子浓度开始增大,在L3层达到最大值,然后 逐渐减小至 0.随着 HfO₂层的厚度 l的增加,异质 结界面附近各原子层的电子浓度均逐渐减小. HfO₂ 层厚度的增加导致 HfO₂表面与异质结界面之间的 势垒宽度增大,使表面电子转移到异质结界面附近 的概率降低.该结果进一步说明 HfO₂表面电子是 通过隧穿机制转移到异质结界面附近的.可以推测, 当 HfO₂ 层厚度足够大时, HfO₂表面与异质结界 面之间的势垒宽度很大,表面电子向异质结界面转 移的概率将很小.因此,界面处将不再形成 2DEG. 采用 $U_0^{2p} = 14$ eV的 GGA+U方法的计算结果与 上述结果一致.

图 7 表面吸附 H 原子 $(HfO_2)_l/(SnO_2)_{13}$ (l = 7, 8, 9, 10 u.c.)异质结界面附近的电子浓度

Fig. 7. Electron density near the interface of $(HfO_2)_l/(SnO_2)_{13}$ (l = 7, 8, 9, 10 u.c.) heterostructures adsorbed H atoms on the HfO_2 surface.

4 结 论

本文采用第一性原理计算的方法研究了 (001) HfO₂/SnO₂ 异质结构的电子结构.结果表明:具有 干净 HfO₂ 表面的 HfO₂/SnO₂ 异质结构的能带结 构呈现半导体特征;当异质结构的 SnO₂ 侧存在氧 空位时,氧空位会在异质结的导带底以下引入缺陷 能带,使体系出现跳跃导电;当异质结构的 HfO₂ 表面存在氧空位时,氧空位引入的缺陷态与界面贡 献的导带底发生交叠,使缺陷态中的电子转移至界 面,并在界面处形成 2DEG.此外,HfO₂/SnO₂ 异质 结构的 HfO₂ 表面易吸附 H 原子.当 HfO₂/SnO₂ 异质结构的 HfO₂ 层较薄时,表面吸附的 H 原子 提供的电子部分转移至界面,从而在界面处形成 2DEG. 然而,随着 HfO₂ 层厚度的增加,表面电子 转移到界面的概率逐渐下降,使界面处的电子浓度 逐渐减小.

参考文献

- [1] Ohtomo A, Hwang H Y 2004 Nature 427 423
- Tampo H, Shibata H, Matsubara K, Yamada A, Fons P, Niki S, Yamagata M, Kanie H 2006 Appl. Phys. Lett. 89 132113
- [3] Hotta Y, Susaki T, Hwang H Y 2007 Phys. Rev. Lett. 99 236805
- [4] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygård J, Lu L, Büchner B, Shen B G, Linderoth S, Pryds N 2013 Nat. Commun. 4 1371
- [5] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J, Ahn C H 2015 APL Mater. 3 036104
- [6] Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502
- [7] Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301 (in Chinese) [颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301]
- [8] Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W, Sun J R 2018 *Phys. Rev. Lett.* **121** 116803
- [9] Kozuka Y, Tsukazaki A, Maryenko D, Falson J, Akasaka S, Nakahara K, Nakamura S, Awaji S, Ueno K, Kawasaki M 2011 Phys. Rev. B 84 033304
- [10] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721
- [11] Wang J G, Li L L, Qiu G T, Chen X M, Cao D X 2023 Acta Phys. Sin. 72 176801 (in Chinese) [王继光, 李珑玲, 邱嘉图, 陈 许敏, 曹东兴 2023 物理学报 72 176801]
- [12] Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942
- [13] Chen X H, Li Z Q, Hu Z X, Gao K H 2022 Phys. Rev. B 105 205437
- [14] Nakano M, Tsukazaki A, Ueno K, Gunji R Y, Ohtomo A, Fukumura T, Kawasaki M 2010 Appl. Phys. Lett. 96 052116
- [15] Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 *Acta Phys. Sin.* 62 150202 (in Chinese) [张 阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202]
- [16] Himmetoglu B, Janotti A, Peelaers H, Alkauskas A, Van de Walle C G 2014 Phys. Rev. B 90 241204
- [17] Himmetoglu B, Janotti A 2016 J. Phys. Condens. Matter 28

065502

- [18] Lee J, Demkov A A 2008 Phys. Rev. B 78 193104
- [19] Chen X H, Li Z Q, Hou D Y, Hu Z X, Gao K H 2023 Phys. Rev. B 107 165411
- [20] Sanon G, Rup R, Mansingh A 1991 Phys. Rev. B 44 5672
- [21] Toyosaki H, Kawasaki M, Tokura Y 2008 Appl. Phys. Lett. 93 132109
- [22] Paudel T R, Tsymbal E Y 2017 Phys. Rev. B 96 245423
- [23] Nazir S, Cheng J L, Yang K S 2016 ACS Appl. Mater. Interfaces 8 390
- [24] Lee B H, Kang L, Nieh R, Qi W J, Lee J C 2000 Appl. Phys. Lett. 76 1926
- [25] Seo M, Kim S K, Han J H, Hwang C S 2010 Chem. Mater. 22 4419
- [26] Seo M, Kim S K, Min Y S, Hwang C S 2011 J. Mater. Chem. 21 18497
- [27] Blöchl P E 1994 *Phys. Rev. B* **50** 17953
- [28] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
- [29] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [30] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [31] Gilani R, Rehman S U, Butt F K, Haq B U, Aleem F 2018 Silicon 10 2317
- [32] Singh A K, Janotti A, Schefler M, Van de Walle C G 2008 *Phys. Rev. Lett.* **101** 055502
- [33] Park J, Saidi W A, Chorpening B, Duan Y H 2021 J. Phys. Chem. C 125 22231
- [34] Marcillo F, Stashans A 2015 J. Theor. Comput. Chem. 13 1450069
- [35] Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101
- [36] Pavoni E, Mohebbi E, Stipa P, Mencarelli D, Pierantoni L 2022 Materials 15 4175
- [37] Akbar W, Elahi I, Nazir S 2020 J. Magn. Magn. Mater. 511 166948
- [38] Li J P, Meng S H, Yang C, Lu H T, Tohyama T 2018 Chin. Phys. B 27 027101
- [39] Krishnaswamy K, Himmetoglu B, Kang Y, Janotti A, Van de Walle C G 2017 Phys. Rev. B 95 205202
- [40] Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, HamzićA, Broto J M, Barthélémy A, Fert A 2007 *Phys. Rev. Lett.* **98** 216803
- [41] Oh T 2017 Trans. Electr. Electron. Mater. 18 21
- [42] Liu H Y, Zeng F, Lin Y S, Wang G Y, Pan F 2013 Appl. Phys. Lett. 102 181908
- [43] Singh R, Khan M A, Mukherjee S, Kranti A 2018 IEEE Trans. Electron Devices 65 2850
- [44] Bandura A V, Kubicki J D, Sofo J O 2008 J. Phys. Chem. B 112 11616
- [45] Li L, Huang X, Zhang Y F, Guo X, Chen W K 2013 Appl. Surf. Sci. 264 424
- [46] Jia H, Liang W H, Zhou M, Cao E S, Yang Z, Hao W T, Zhang Y J 2018 J. Supercond. Novel. Magn. 31 3361
- [47] Li Y, Phattalung S N, Limpijumnong S, Kim J, Yu J 2011 Phys. Rev. B 84 245307

Electronic structure of interface of HfO_2/SnO_2 heterostructure^{*}

FENG Chunmeng YANG Yang LI Zhiqing[†]

(Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China)

(Received 24 January 2025; revised manuscript received 24 February 2025)

Abstract

In SrTiO₃-based oxide heterostructures, the mobility of the two-dimensional electron gas (2DEG) at the interface is relatively low at room temperature due to the influence of Ti 3d orbitals, which limits their applications in semiconductor devices. In contrast, the conduction band bottom of SnO_2 is composed of Sn 5s orbitals, and it has been demonstrated that bulk SnO₂ exhibits high carrier mobility at room temperature. Therefore, SnO_2 -based heterostructure interfaces have the potential to form 2DEG with high mobility at room temperature. In this paper, we construct a heterostructure $(HfO_2)_7/(SnO_2)_{13}$ with 2×1 supercell in (001) plane and systematically investigate the electronic structure of the heterostructure by using first-principles calculations. The calculation results show that the defect-free $(HfO_2)_7/(SnO_2)_{13}$ heterostructure has a band structure similar to that of a semiconductor, and there is no 2DEG near the interface of the heterostructure. However, the conduction band bottom is mainly contributed by non-degenerate Sn 5s orbitals in this situation. In the in-plane 2×1 supercell of the $(HfO_2)_7/(SnO_2)_{13}$ heterostructure, each layer contains 8 oxygen atoms (the thickness of 1 unit cell is defined as a layer). When an oxygen atom in a layer on the SnO_2 side near the interface of the heterostructure is removed, the presence of the oxygen vacancy leads to the formation of a defect band below the conduction band. This will lead to hopping conductivity in the heterostructure. However, 2DEG still does not appear near the heterostructure interface. When the oxygen vacancy is located in the surface layer of the HfO_2 in the supercell structure, the presence of the oxygen vacancy leads to the formation of a defect state in the surface. The electrons in the defect state are localized and do not contribute to conductivity. However, the defect band overlaps with the conduction band at the interface, causing the electrons on the surface of HfO_2 to tunnel towards the interface. In this scenario, the 2DEG emerges in the vicinity of the heterostructure interface. In addition, for HfO_2/SnO_2 heterostructures with thinner HfO_2 layers, such as HfO_2 layer with a thickness of 7 unit cells (about 2.37 nm), the H atoms adsorbed on the HfO_2 surface provide electrons for the heterostructure. Some of these electrons transfer to the conduction band near the interface, leading to the formation of a 2DEG in that region. Meanwhile, the remaining electrons stay on the surface, forming a conductive layer with a thickness of approximately 2 unit cells. As the thickness of the HfO_2 layer increases, the probability of electrons transferring from the surface to the interface gradually decreases, resulting in a gradual decrease in the electron density at the interface.

Keywords: oxide heterostructures, two-dimensional electron gas, electronic structure

PACS: 73.20.–r, 73.40.Lq

DOI: 10.7498/aps.74.20250114

CSTR: 32037.14.aps.74.20250114

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 12174282).

[†] Corresponding author. E-mail: zhiqingli@tju.edu.cn

物理学报Acta Physica Sinica

Institute of Physics, CAS

Hf0₂/Sn0₂异质结界面电子结构研究

冯春萌 杨洋 李志青

Electronic structure of interface of HfO2/SnO2 heterostructure

FENG Chunmeng YANG Yang LI Zhiqing

引用信息 Citation: Acta Physica Sinica, 74, 097301 (2025) DOI: 10.7498/aps.74.20250114 CSTR: 32037.14.aps.74.20250114 在线阅读 View online: https://doi.org/10.7498/aps.74.20250114 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

氧化物异质界面上的准二维超导

Quasi-two-dimensional superconductivity at oxide heterostructures 物理学报. 2023, 72(9): 097401 https://doi.org/10.7498/aps.72.20230044

钙钛矿超晶格材料界面二维电子气的调控

Tuning two-dimensional electron gas at LaAlO2/KNbO2 interface by strain gradient

物理学报. 2023, 72(17): 176801 https://doi.org/10.7498/aps.72.20230573

飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射

Terahertz emission from LaAlO₂/SrTiO₂ heterostructures pumped with femtosecond laser

物理学报. 2022, 71(9): 090702 https://doi.org/10.7498/aps.71.20201139

GaS/Mg(OH),异质结电子结构的第一性原理研究

First–principles study on electronic structure of $GaS/Mg(OH)_2$ heterostructure

物理学报. 2024, 73(13): 137103 https://doi.org/10.7498/aps.73.20231979

AlN/β-Ga2O3异质结电子输运机制

Electron transport mechanism in AlN/ β –Ga₂O₃ heterostructures

物理学报. 2023, 72(2): 028501 https://doi.org/10.7498/aps.72.20221545

Te掺杂对二维InSe抗氧化性以及电子结构的影响

Effect of Te doping on oxidation resistance and electronic structure of two-dimensional InSe 物理学报. 2023, 72(12): 123101 https://doi.org/10.7498/aps.72.20230004