混合填充下介质阻挡放电特性的粒子云网格/ 蒙特卡罗碰撞模拟^{*}

张璐璐¹) 李天翔¹⁾²) 庞学霞^{2)†} 葛禹琦¹) 刘晓倩¹) 冉俊霞³) 李庆³) 李雪辰^{1)3)‡}

(河北大学物理科学与技术学院,保定 071002)
 (河北大学,光电信息与材料重点实验室,保定 071002)
 (零碳能源建筑与计量技术教育部工程研究中心,保定 071002)
 (2025年2月20日收到;2025年4月17日收到修改稿)

填充床介质阻挡放电通常采用某一种材料进行填充以实现等离子体催化反应,而利用不同材料混合填充可以实现更复杂的化学反应.为了深入理解混合填充放电的物理机制,本文基于粒子云网格/蒙特卡罗碰撞 (PIC/MCC)模型对其动力学行为进行研究.结果表明,流光最先在高介电常数 (ε_r)的介质柱底部产生,并沿着低 ε_r 介质柱缝隙向下传播.当流光传播到下介质板后,该放电转化为体放电.随后,在上介质板附近又产生一个新的流光,并沿着高 ε_r 介质柱缝隙向下传播.研究发现,电子和正离子的数量随时间先增加,在 0.8 ns后电子数随时间减少,但正离子数几乎保持不变.在此过程中负离子数随时间单调增加.此外,介质柱缝隙中平均电子密度 (\bar{n}_e)和平均电子温度 (\bar{T}_e)随气压升高均减小.它们随着电压幅值或介质柱半径的增大而增大.随工作气体中氮气含量的增大, \bar{n}_e 先减小后增大,而 \bar{T}_e 单调增大.这些研究结果对优化反应器设计,进一步提升填充床介质阻挡放电的反应效率具有重要意义.

关键词:填充床介质阻挡放电,粒子云网格/蒙特卡罗碰撞,动力学行为,流光
 PACS: 52.20.-j, 52.65.-y, 52.65.Pp, 52.65.Rr
 CSTR: 32037.14.aps.74.20250208

1 引 言

等离子体催化技术通过低温等离子体与催化 剂耦合的方式,可以在接近室温的状态下实现一些 常规方法难以进行的化学反应^[1,2],极大提高了化 学反应效率^[3,4],在化工合成^[5,6]、能源转化^[7]以及 环境保护^⑧等领域具有广泛的应用.

作为一种常用的等离子体催化反应器,填充床 介质阻挡放电 (PB-DBD) 受到了广泛关注^[9-11].研 究表明, PB-DBD 中前后两次放电的传输电荷量 基本是相同的,这与无填充介质阻挡放电 (DBD) 的情况具有显著区别^[12],表明填充介质的引入能 影响反应器的放电特性^[13].此外, PB-DBD 的性能

^{*} 国家自然科学基金 (批准号: 12375250, 11875121, 51977057, 11805013)、河北省自然科学基金 (批准号: A2022201036, A2020201025)、 河北省光电信息材料实验室补贴项目基金 (批准号: 22567634H)、河北省杰出青年基金 (批准号: A2012201045)、河北大学自然 科学跨学科研究项目基金 (批准号: DXK201908, DXK202011) 和河北大学研究生创新项目基金 (批准号: HBU2022bs004) 资助 的课题.

[†] 通信作者. E-mail: pangxuexia@hbu.edu.cn

[‡] 通信作者. E-mail: plasmalab@126.com

^{© 2025} 中国物理学会 Chinese Physical Society

受到反应器结构参数的影响,当减小电极间距时, 等离子体的电场强度增强,电子温度和电子密度也 升高;增大阻挡层的介电常数导致电子温度升高,但 电子密度降低^[14]. PB-DBD 的性能还受到电源参 数(诸如电压、频率和占空比等)的影响^[15-19]. 研究还 发现,降低工作气压会引起等离子体的尺度增大^[20].

PB-DBD 的性能不仅受到以上实验参数的影 响,由于等离子体和催化剂存在相互作用^[21],填充 材料的介电常数 $(\varepsilon_r)^{[22-24]}$ 、填充介质形状 [25]、填充 珠直径、填充数量和填充位置都会影响 PB-DBD 的特性[26]. 关于填充材料 (不同填充材料对应不同 的 ε_r) 对 PB-DBD 的影响, 大量的实验研究和数值 模拟表明^[27-32], 低 ε_r 填充时等离子体尺度更大, 产 生连接瞬时阳极和瞬时阴极的微放电,且微放电工 作于沿面流光模式^[24]; 在高 ε_r 填充时等离子体不 会连接两个电极, 而是限制于填充珠间的局部区 域, 且局部放电工作于丝状模式^[24]. 以往关于 PB-DBD 的研究, 通常采用某一 ε_r 的介质进行填充^[33–37], 在实际应用的 PB-DBD 中需要添加两种不同的催 化剂,才能有效去除挥发性有机物[38,39].目前,对 于这种混合填充 DBD 的放电特性尚不清楚, 严重 限制了 PB-DBD 反应效率的提升.

为了揭示混合填充 PB-DBD 的放电特性,本 文基于二维 PIC/MCC 的方法,对混合填充 PB-DBD 的放电演化过程进行数值模拟.通过改变气 压、电压幅值、介质直径和工作气体的氮气含量, 研究了这些参数对混合填充 PB-DBD 中平均电子 密度和平均电子温度的影响规律.本文研究结果对 优化 PB-DBD 的反应器设计具有指导意义.

2 模型描述

PB-DBD 实际上是一个三维系统,但为了减小运算量通常将三维系统简化为二维系统进行研究^[37],其简化后的反应器如图 1 所示. PB-DBD 包含两个水平放置的平板金属电极,电极长度为 x = 4.0 mm.其中下电极接地,作为瞬时阴极.上电极施加上升时间为 0.1 ns 的正极性脉冲电压,作为瞬时阳极,在 0.1 ns 后电压达到幅值 (V_a)不再随时间变化.两电极被厚度均为 0.3 mm 的介质板 ($\varepsilon_r = 25.0$)所覆盖.宽度为 d 的电极间隙填充有交错排列的电介质柱 (介质珠,二维情况下可以视为柱体),其中上层介质柱是 ZrO_2 ($\varepsilon_r = 25.0$),下层是

PTFE ($\varepsilon_r = 2.5$). 同一水平面上的相邻介质柱圆 心距离为 2.2*R* (其中 *R* 为圆柱的半径),两层介质 柱间圆心竖直方向距离为 2*R*. 由于外加电场大小 会影响等离子体的放电特性^[21,40],因此在后文中改 变 *R* 时将成比例地改变 *V*_a,以保持外加电场固定.

图 1 二维 PB-DBD 反应器示意图 Fig. 1. Schematic diagram of the two-dimensional PB-DBD reactor.

为了保持模拟的稳定性,时间步长 (Δt) 和空 间步长 (Δx , Δy) 应满足 Courant-Friedrichs-Lewy 条件^[41]:

$$v_{\rm m}\Delta t < \frac{1}{\sqrt{\left(\frac{1}{\Delta x}\right)^2 + \left(\frac{1}{\Delta y}\right)^2}},$$
 (1)

其中本模型中粒子速度最大值 $(v_{\rm m})$ 为 5.5×10⁶ m/s. 显然,减小时空步长会增大模拟过程的精确度,但 同时会增加计算量.综合考虑,本文 PB-DBD 研究 中选择了 $\Delta t = 1.0 \times 10^{-13}$ s, $\Delta x \times \Delta y = 4.0$ µm× 3.0 µm, 这样的时空步长与以往 PIC 模拟中选取 的相似^[30], 甚至比文献 [42] 报道的更小. 在放电过 程中电荷只能在介质的表面堆积,形成表面电荷, 这些积累的表面电荷会影响带电粒子的运动[16], 但电荷不会在边界堆积. 图 1 中虚线 AB (x = 0) 和 CD (x = 4.0 mm) 属于边界, 采用了 Neumann 边 界条件^[30,41,43]. 在模拟过程中, 考虑了电子 (e), 正 离子 (N⁺₂和O⁺₂) 以及负离子 (O⁻₂). 反应包括弹 性碰撞、激发、电离和附着, 见表 1[41,43-45]. 忽略了 复合反应,碰撞解离成 O 原子和 N 原子的反应, 生成 O+, N+, 以及氮氧之间的化学反应. 相比于其 他反应过程, 生成 N_2^+ , O_2^+ 和 O_2^- 的碰撞以及激发 碰撞阈值能量较低,碰撞截面更大,所以这些碰撞 更容易发生.此外,文中流光传播过程只需约 2.2 ns (见下文),时间很短,而复合反应进行较慢,其弛豫 时间约为 100 ns^[46]. 类似地, 生成 O⁺, N⁺以及氮氧 间的化学反应也需要较长时间^[42],所以在 2.2 ns 内可以忽略这些反应.前人研究已经证明,为了加 快模拟运输过程,省略一些解离反应等过程几乎不 会影响 PB-DBD 的放电动力学行为^[43,46].

表 1 模型中所考虑的电子与 N_2 和 O_2 的碰撞 Table 1. Collisions of electrons with neutral N_2 and O_2 considered in the model.

Reaction	Threshold/eV	Reference
Electron-impact ionization		[41, 43-45]
$\mathrm{e} + \mathrm{O}_2 \rightarrow 2\mathrm{e} + \mathrm{O}_2^+$	12.06	
$e+N_2 \rightarrow 2e+N_2^+$	15.58	
Attachment		[41, 43-45]
$e+\mathrm{O}_2+\mathrm{O}_2\to\mathrm{O}_2^-+\mathrm{O}_2$		
Elastic collision		[43-45]
$e + O_2 \rightarrow e + O_2$		
$e+N_2 \rightarrow e+N_2$		
Electron-impact excitation		[43-45]
$e + \mathrm{O}_2 \to e + \mathrm{O}_2^*$	0.98	
$e + O_2 \rightarrow e + O_2^*$	1.63	
$\mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{e} + \mathrm{O}_2^*$	6.0	
$\mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{e} + \mathrm{O}_2^*$	8.4	
$\mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{e} + \mathrm{O}_2^*$	10.0	
$e+N_2 \rightarrow e+N_2^\ast$	6.169	
$e+N_2 \rightarrow e+N_2^\ast$	7.353	
$e+N_2 \rightarrow e+N_2^\ast$	7.362	
$e+N_2 \rightarrow e+N_2^\ast$	8.165	
$e+N_2 \rightarrow e+N_2^\ast$	8.399	
$e+N_2 \rightarrow e+N_2^\ast$	8.549	
$e+N_2 \rightarrow e+N_2^\ast$	8.89	
$e+N_2 \rightarrow e+N_2^\ast$	9.7537	
$e + N_2 \rightarrow e + N_2^\ast$	11.032	

在 PIC 中为了避免数值模拟的不稳定性, 需 要通过一阶粒子云插值法将电荷密度 (ρ) 分配到 网格点上, 通过求解泊松方程得到电势 (φ):

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0},\tag{2}$$

其中 ε_0 为真空介电常数. φ 微分可得到电场 (*E*). 利用第n个时间步长 (Δt)的速度 (v_i)和位置 (r_i) 信息,通过牛顿运动方程可求解粒子在 (n+1) Δt 时的 v_i 和 r_i :

$$v_i\left[\left(n+1\right)\Delta t\right] = v_i\left[n\Delta t\right] + a_i\left[n\Delta t\right] \times \Delta t,\qquad(3)$$

$$r_i\left[\left(n+1\right)\Delta t\right] = r_i\left[n\Delta t\right] + v_i\left[n\Delta t\right] \times \Delta t,\qquad(4)$$

$$a_i \left[n\Delta t \right] = \frac{q_i}{m_i} E \left[n\Delta t \right], \tag{5}$$

其中 m_i和 q_i表示第 i类粒子的质量及电荷.在一个网格中粒子的碰撞采用 MCC 处理.电子与中性 粒子的碰撞概率 P表示为^[47,48]

$$P = 1 - \exp\left[-N\sigma\left(\varepsilon_{i}\right)u\Delta t\right],\tag{6}$$

其中, N为中性粒子密度, σ(ε_i) 是有关粒子能量的 碰撞截面; u 是两碰撞粒子的相对速度. 若 P大于 系统生成的随机数, 则认为粒子间发生了碰撞, 且 相关截面决定发生的碰撞类型 (弹性碰撞、激发、 电离、还是附着). 若不发生碰撞, 则由 PIC 方法继 续循环处理. 关于阴极表面的二次电子发射: 由于 离子的迁移速率很低, 本模型中考虑流光传播过程 (数 ns 的时间内), 离子几乎不动, 所以很少有离子 到达阴极表面, 因此本模型中没有考虑二次电子发 射, 这与文献 [23,49] 的模型类似.

采用商业软件 VSim (9.0 版) 执行模拟运算^[23], 计算平台为 72 核的并行处理工作站. 在处理复杂 几何曲面边界时采用了 Cutting-Cell 算法, 化曲为 直,用折线处理复杂的边界^[50].例如介质珠的圆形 边界划分为多条折线,从而将边界上累积的电荷耦 合到电场中. 在放电的初始时刻向模拟区域内加入 电子密度为 10^{15} m⁻³ 的准中性等离子体,其中 N₂⁺: $O_2^+: e = 4:1:5^{[23,43]}$. 实际上, 初始电子密度仅能影 响模拟过程的速度,而不会改变最终的模拟结 果^[49].利用相同的模型,我们已经对单珠填充的 PB-DBD 进行了模拟研究^[23],模拟结果表明介质珠具 有高介电常数 ($\varepsilon_r = 25.0$) 时放电由介质珠上的表 面流光,介质珠与介质板接触点附近的局部放电以 及介质板上的沿面放电组成. 当表面流光到达介质 珠表面中点后,会沿着介质珠下半表面传播,随后 与沿面放电相遇; 低 ε_r ($\varepsilon_r = 2.0$) 时接触点附近不 会产生局部放电,且表面流光在到达介质珠表面中 点后垂直向介质板传播. 这些模拟结果与实验结果 吻合很好^[22],从而说明了模型的有效性.

3 结果与讨论

图 2 为大气压空气条件下 V_a = 10.0 kV 时混 合填充 PB-DBD 中电子密度 (n_e)和电场强度 (E)的时空演化结果.在外加电场作用下介质柱发 生极化效应,极化电场会增强介质柱外表面附近的 电场^[26,34].由于两层介质柱极化电场的增强作用,

图 2 混合填充 ($\varepsilon_r = 2.5 \ \pi 25.0$) PB-DBD 中 $n_e (m^{-3})$ (a) 和 E (V/m) (b) 的时空演化图. 图 (a), (b) 中的数值分别对应最大的 lg (n_e) 和 $E (\times 10^7)$

Fig. 2. Spatial-temporal evolution of $n_{\rm e}$ (m⁻³) (a) and E (V/m) (b) in PB-DBD packed by mixed dielectric columns with $\varepsilon_{\rm r} = 2.5$ and 25.0. The maximal (×10⁷ V/m) values correspond to maximal lg ($n_{\rm e}$) and E (×10⁷), respectively.

最强电场 (约为 3.6×10⁷ V/m) 出现在高 ε_r 介质柱 底部空间 (0.07 ns). 由于电场远高于空气的击穿电 场 (约为 3.0×10⁶ V/m), 这表明放电是在过电压情 况下产生,此时放电运行于流光机制^[51].也就是说, 0.07 ns 时流光最先在高 ε_r 介质柱的底部产生. 外 加电场随时间增强, 高 ε_r 介质柱底部放电的 n_o 随 时间增大.之后 (0.16 ns) 流光沿着低 ε_r 介质柱的 缝隙向下传播,在流光传播过程中,最大 n。和 E 出现在流光头附近^[26,52]. 在 0.2 ns 时流光头到达下 介质板附近, 流光头净余正离子, 所以流光头的正 离子和下介质板 (阴极) 间诱导出较强电场. 除了 这个较强电场区, 流光轨迹被大量电子和离子充 满,即中性等离子体连接了 PB-DBD 的瞬时阳极 和瞬时阴极,这预示着放电从流光传播转化为体放 电过程.体放电呈现纺锤形,最大 n。出现在纺锤的 中点 (低 ε_r 介质柱间最小缝隙处). 最大 E 出现在 下介质板表面,达到约1.26×10⁸ V/m,这表明下 介质板附近产生了一个鞘层. 0.75 ns 时, 高 ε_r 介 质柱底部外侧产生的放电传播到气隙中.实际应用 中,上层一般不会是两个介质柱,因此这部分放电 我们不予考虑. 纺锤形的体放电呈现两侧高而中间 低的 n_e 分布,原因可能是双极扩散导致下层 (低 ε_r)介质柱表面沉积电子,这些表面电荷会使电子 减速向其表面移动,从而使得电子在体放电外侧堆 积,造成 n_e 中间低而两侧高.该体放电会在高 ε_r 介质柱的下表面堆积电子,因此放电空间上半部 分间隙中电场增强.此外,由于高 ε_r 介质柱的极化 增强作用,上半部分的最强电场出现上介质板附 近,从而引发上介质板附近产生一个新的流光,该 流光沿着高 ε_r 介质柱缝隙向下传播 (2.00 ns).由 于外加电场较低,该流光在 2.20 ns 停止传播,同 时体放电的 n_e 和 *E*均有所减小.在上述放电过程 中,低 ε_r 介质柱缝隙中的放电始终强于高 ε_r 介质 柱缝隙的放电.

图 3 为不同时刻 PB-DBD 的电子能量分布函数,可以看出,高能电子比例先随时间增大,在 0.8 ns 后随时间减小.图 4 是混合填充 (上层 $\varepsilon_r = 25.0$, 下层 2.5) PB-DBD 中 e, N₂⁺, O₂⁺和 O₂⁻数量随时 间的变化.对于任意时刻气体中各种电荷数量为 e > N₂⁺ > O₂⁺ > O₂⁻.分析如下,由于空气中 O₂ 的浓度 低于 N₂,且 O₂ 电离率低于 N₂^[40],这导致任意时刻 放电中 O₂⁺数量比 N₂⁺数量低.在放电中,O₂电离

概率要大于附着概率^[45],因此O⁺ 数量比O⁻ 数量 高. 此外, 图 4 表明电子数, 正离子 (N₂⁺ 和 O₂⁺) 数 随时间先增加,在 0.8 ns 后电子数随时间减少,但 正离子数几乎保持不变.利用电子能量分布函数对 各粒子的时间变化趋势可以分析如下.在 0.8 ns 前,随着放电的发展,高能电子增多,使得更多电 子具有电离能力从而导致电子和正离子 (N⁺₇和 O₂⁺) 数增多. 在这段时间, 由于总电子数增多, 导 致更多电子被氧分子吸附,所以O5 也随时间增加. 在 0.8 ns 之后, 随着高能电子减少, 基于上述相同 的原因会导致电子和正离子 (N⁺₂和O⁺₂)的生成减 少. 沉积在介质上的电子数与附着反应消耗的电子 数之和大于电离生成的电子数,因此总电子数会随 时间减少.相比于电子,正离子迁移速率小,所以 正离子在介质上的沉积几乎与离子的生成达到平 衡,所以正离子数在 0.8 ns 后几乎保持不变. 在整 个放电过程中吸附反应一直存在,导致即使在 $0.8 ns 后 O_2^-$ 也一直随着时间增加.

图 3 不同时刻的电子能量分布函数 Fig. 3. Electron energy distribution function at different discharge moments.

在应用中,等离子体催化的效率和气压有关^[53]. 为了进一步了解气压对放电的影响,图 5 为 $V_a =$ 10.0 kV 时介质柱缝隙中平均电子密度 (\bar{n}_e/m^{-3}) 和平均电子温度 (\bar{T}_e/eV)随气压的变化关系.其中 取平均的空间对应图 1 中红色虚线框内介质柱缝 隙 (白色区域). 从图 5 可以发现,随气压的升高 \bar{n}_e 和 \bar{T}_e 均减小.造成这一现象的机制分析如下.随着 气压的升高,分子数密度增大,电子的碰撞频率升 高,平均自由程减小.碰撞频率的增大和平均自由 程的减小导致单位时间内电子损失的能量增大而 从电场获得的能量减小^[54].因此,电子的平均能量 (亦即*ī*_e) 会随着气压升高而减小.*ī*_e随气压升高 而减小,表明由于气压较高,击穿位于帕邢曲线的 右支,这导致击穿电压会随着气压升高而增大^[51]. 在固定电压下意味着电子能量的减少,即*ī*_e随气 压升高而减小.这一结果与介质阻挡放电的模拟结 果一致^[55].随着*ī*_e的减小,决定电子产生过程的电 离碰撞系数 (汤森第一电离系数 α) 也会减小,这 导致放电产生的电子数会减少,因此*ī*_e会减小.

图 4 混合填充 ($\varepsilon_r = 2.5 \approx 25.0$) PB-DBD 中 e, N₂⁺, O₂⁺ 和 O₂⁻ 数量随时间的变化

Fig. 4. Numbers of e, N_2^+ , O_2^+ and O_2^- versus time in PB-DBD packed by mixed dielectric columns with $\varepsilon_r = 2.5$ and 25.0.

图 5 介质柱缝隙中平均电子密度(*n*_e)和平均电子温度 (*T*_e)随气压的变化.其中取平均的空间对应图1中红色虚 线框内介质柱缝隙(白色区域)

Fig. 5. Averaged electron density (\bar{n}_e) and averaged electron temperature (\bar{T}_e) as functions of pressure, the average is made in the voids between the dielectric columns surrounded by the red dashed lines (the white regions) in Fig. 1.

图 6 为大气压空气条件下介质柱缝隙中 n_e 和 *ī*_e 随电压幅值 (*V*_a) 的变化关系.显然, n_e 和 *ī*_e 随 *V*_a 升高均增大.以上现象的分析如下:当电压升高 时,电场强度增大,在气压恒定的情况下电子温度 主要由电场决定^[56].因此,*T*_e随*V*_a升高而变大. 从 α 系数而言,*T*_e增大导致 α 系数增大.这意味 着放电过程中会产生更多电子,因此,*n*_e随着 *V*_a上升而增大.具体来说,15.0 kV时介质柱缝隙 中*n*_e比 5.0 kV时要高一个数量级.

图 6 介质柱缝隙中 n_e 和 T_e 随电压幅值 V_a 的变化, 其中 取平均的空间与图 5 相同

Fig. 6. The $\bar{n}_{\rm e}$ and $\bar{T}_{\rm e}$ in the voids between the dielectric columns as functions of $V_{\rm a}$, the voids are the same with those in Fig. 5.

填充材料的空间尺寸决定了气体停留时间,接 触面积和放电性能,从而也会影响了等离子体催化 效率^[57].基于此,图7研究了大气压空气条件下介 质柱缝隙中_{ne}和 <u>r</u>e随介质柱半径(R)的变化关 系.如模型描述部分所述,为了保持外加电场不变 V_a也随着 R 成比例变化.图7表明, <u>ne</u>和 <u>r</u>e均随 R 的增大而增大.当 R 变大时,介质柱的表面积也 随之增大,这意味着介质柱内表面会产生更多的极 化电荷,从而在介质柱外面产生更强的极化电场. 由于极化电场会增强介质柱附近的电场,导致 <u>r</u>e 增大,即 <u>r</u>e 随 R 的增大而增大.从 α 系数考虑, <u>r</u>e 增大会使得 <u>ne</u>增大.此外, R 减小时,介质柱间的 缝隙也会减小,使得没有足够的空间进行电离过程^[58], <u>ne</u>就会减小.

图 8 是大气压条件下 $V_a = 10.0 \text{ kV}$ 时介质柱 缝隙中 \bar{n}_e 和 \bar{T}_e 随混合气体中 N₂含量的变化关系. 从图 8 可以看出, \bar{T}_e 随着 N₂含量的增大 (O₂含量 的减小)而单调增大. \bar{n}_e 随着 N₂含量的增大先减 小,在 N₂含量达到 50% 后会随着 N₂含量的增大 而增大.对以上现象的原因分析如下.电子和 O₂ 发生电离碰撞的阈值能量是 12.06 eV,低于电子 与 N₂电离碰撞的阈值 (15.58 eV)^[41].这意味着随 着 N₂含量的增大, 在放电的碰撞过程中电子有机 会积累到更高的能量.因此, \bar{T}_e 随着 N₂含量的增 大而增大.此外, 介质柱缝隙中 \bar{n}_e 随 N₂含量的变 化应该由电离速率 (k_{ion}) 和附着速率 (k_{att}) 决定^[59]:

$$k_{\rm ion} = \frac{\alpha v_{\rm e}}{N_{\rm N_2} + N_{\rm O_2}},\tag{7}$$

$$k_{\rm att} = \eta v_{\rm e}/N_{\rm O_2},\tag{8}$$

其中 α 为汤森第一电离系数, η 是附着速率系数, v_e 电子速度, N 气体密度. 通过 (7) 式和 (8) 式确 定了不同 N₂ 含量的 k_{ion} 和 k_{att} , 如表 2 所示, k_{att} 比 k_{ion} 低两个量级. 这说明附着反应对于 \bar{n}_e 的影 响几乎可以忽略. 因此, \bar{n}_e 随 N₂ 含量的变化应该

图 7 介质柱缝隙中 n_e 和 T_e 随介质柱半径 (R) 的变化关系.其中取平均的空间与图 5 相同.对于不同 R, V_a也成比例变化以保持外加电场不变

Fig. 7. The $\bar{n}_{\rm e}$ and $\bar{T}_{\rm e}$ in the voids between the dielectric columns as functions of dielectric column radius (R), the voids are the same with those in Fig. 5. $V_{\rm a}$ is varied for different R to keep applied E constant.

图 8 介质柱缝隙中 ne 和 Te 随混合气体中 N2 含量的变 化关系,其中取平均的空间与图 5 相同

Fig. 8. The $\bar{n}_{\rm e}$ and $\bar{T}_{\rm e}$ in the voids between the dielectric columns as functions of N₂ content in the mixture, the voids are the same with those in Fig. 5.

由电离速率公式进行分析. 表 2 说明, 随着 N_2 含量的增大 k_{ion} 先减小, 当 N_2 含量达到 50% 后随 N_2 含量继续增加 k_{ion} 增大. 因此, \bar{n}_e 随 N_2 含量增大先减小后增大. 关于 k_{ion} 随 N_2 含量呈现不同的 变化趋势, 可能是由于 O_2 比 N_2 的电离碰撞阈值 能量低, 表明 O_2 比 N_2 更容易电离. 随着 N_2 含量 的增大, 由于 N_2 相比 O_2 更难于电离, 因此会导致 电离数量减少, 从而导致 k_{ion} 减小. 另一方面, 随着 N_2 含量的增大, 会导致 \bar{T}_e 增大, 这种因素会导 致 k_{ion} 增大.

表 2 电离速率与附着速率随混合气体中 N₂含量 (10%, 40%, 60%, 90%) 的变化

Table 2. Change of ionization rate and attachment rate with N_2 content (10%, 40%, 60%, 90%) in mixed gas.

$C_{\mathrm{N_2}}/\%$	$k_{ m ion}/({ m m}^3{ m \cdot}{ m s}^{-1})$	$k_{ m att}/({ m m}^3{ m \cdot}{ m s}^{-1})$
10	$5.0{ imes}10^{-14}$	$9.0{ imes}10^{-17}$
40	$2.7{ imes}10^{-14}$	$1.5 imes 10^{-16}$
60	$1.3{ imes}10^{-14}$	$3.1 imes 10^{-16}$
90	$7.2{ imes}10^{-14}$	$8.0 imes 10^{-16}$

4 结 论

本文采用二维 PIC/MCC 的方法,研究了 ZrO2 $(\varepsilon_r = 25.0)$ 和 PTFE $(\varepsilon_r = 2.5)$ 混合填充 PB-DBD 的放电特性及实验参数 (气压, V_{a} , R和 N₂含 量) 对等离子体参数的影响. 研究结果表明, 当上 电极施加上具有一定斜率的脉冲电压后,在外加电 场作用下介质柱通过极化增强了电场,使得流光先 在高 ε_r 介质柱底部产生并沿着低 ε_r 介质柱缝隙向 下传播,最终转化为体放电.体放电发展一定时间 后,在上介质板附近产生一个新的流光并沿着高 ε_r 介质柱缝隙向下传播.相比于高 ε_r 介质柱缝隙, 低 ε_r 介质柱缝隙的放电 n_e 较大. 放电过程中的 e, N_2^+ 和 O_2^+ 的数量随时间先增加,在 0.8 ns 后 N_2^+ 和 O⁺数量几乎保持不变.由于氧附着反应的消耗, 电子数在 0.8 ns 后随时间减少, O₂ 数量单调增加. 当气压升高时, \bar{n}_e 和 \bar{T}_e 均减小. 随着 V_a 或 R 的增 大, \bar{n}_e 和 \bar{T}_e 均增大. 当氮氧混合气体中的 N₂ 含量 改变时,随着 N₂含量的增大 n_e先减小后增大,但 \bar{T}_{e} 单调增大. 对 \bar{n}_{e} 和 \bar{T}_{e} 随实验参数的变化规律进 行了定性分析.

参考文献

[1] Bogaerts A, Kozák T, Van Laer K, Snoeckx R 2015 Faraday

Discuss. 183 217

- [2] Chen S W, Chen Y, Niu J Q, Liu T Q, Huang J G, Chen H H, Fan X L 2024 *Chem. Ind. Eng. Pro.* 44 1375 (in Chinese) [陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷 2024 化工进展 44 1375]
- [3] Cheng H, Lei X T, Zhang W C, Lu X P 2024 *High Volt. Eng.* 50 5206 (in Chinese) [程 鹤, 雷孝廷, 张文超, 卢新培 2024 高 电压技术 50 5206]
- [4] Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203 (in Chinese) [张海宝, 陈强 2021 物理学报 70 095203]
- $[5] Lee S, Ha J, Li O L 2024 \ Nanomaterials 14 \ 1313$
- [6] Li J, Guo Q, Zhao X, Hu Y K, Zhang S Z, Zhao Y, Li S Z 2023 Mol. Catal. 549 113494
- [7] Zhang S, Gao Y, Sun H, Fan Z, Shao T 2022 High Volt. 7 718
- [8] Hu G T, Ma Y C, Hao Q L, Liu D L, Dou B J, Bin F 2024 New J. Chem. 48 2624
- [9] Xu W C, Buelens L C, Galvita V V, Bogaerts A, Meynen V 2024 J. CO₂ Util. 83 102820
- [10] Lv X, Zhang H P, Zhang H, Shao Y Y, Zhu J S 2024 Prog. Coat. 192 108499
- [11] Xu S S, Chansai S, Shao Y, Xu S J, Wang Y C, Haigh S, Mu Y B, Jiao Y L, Stere C E, Chen H H, Fan X L, Hardacre C 2020 Appl. Catal. B: Environ. 268 118752
- [12] Zhang S, Gao Y, Sun H, Fan Z, Shao T 2021 Plasma Sci. Technol. 23 064007
- [13] Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A 2017 Chem. Eng. J. 326 477
- [14] Van Laer K, Bogaerts A 2017 Plasma Processes Polym. 14 1600129
- [15] Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 *High Volt.* 8 1132
- [16] Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process. 43 1613
- [17] Li S Q, Liu Y H, Yuan H, Liang J P, Zhang M, Li Y, Yang D Z 2022 Appl. Sci. 12 8895
- [18] Gómez-Ramírez A, Montoro-Damas A M, Cotrino J, Lambert R M, González-Elipe A R 2017 *Plasma Processes Polym.* 14 e1600081
- [19] Jiang N, Lu N, Shang K F, Li J, Wu Y 2013 J. Hazardous Mater. 262 387
- [20] Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002
- [21] Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004
- [22] Li Y, Yang D Z, Qiao J J, Zhang L, Wang W Z, Zhao Z L, Zhou X F, Yuan H, Wang W C 2020 Plasma Sources Sci. Technol. 29 055004
- [23] Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619
- [24] Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 085007
- [25] Zhao P, Gu J G, Wang H Y, Zhang Y, Xu X Y, Jiang W 2020 Plasma Sci. Technol. 22 034013
- [26] Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207
- [27] Zhu X B, Hu X L, Wu X Q, Cai Y X, Zhang H B, Tu X 2020 J. Phys. D: Appl. Phys. 53 164002
- [28] Jo S, Lee D H, Kang W S, Song Y H 2013 Phys. Plasmas 20 123507
- [29] Li J, Zhu S J, Lu K, Ma C H, Yang D Z, Yu F 2021 J. Environ. Chem. Eng. 9 104654
- [30] Xiong R X, Zhao P, Wang H Y, Zhang Y, Jiang W 2020 J.

Phys. D: Appl. Phys. 53 185202

- [31] Gadkari S, Gu S 2018 *Phys. Plasmas* **25** 063513
- [32] Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201
- [33] Peng Y, Wang C J, Li J, Gao K Y, Xu H C, Chen C J, Qian M Y, Dong B Y, Wang D Z 2025 Acta Phys. Sin. 74 025202 (in Chinese) [彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱 沐杨, 董冰岩, 王德真 2025 物理学报 74 025202]
- [34] Kourtzanidis K 2023 Plasma Sources Sci. Technol. 32 105016
- [35] Liu J, Zhu X B, Hu X L, Tu X 2022 Plasma Sci. Technol. 24 025503
- [36] Kang W S, Kim H H, Teramoto Y, Ogata A, Lee J Y, Kim D W, Hur M, Song Y H 2018 Plasma Sources Sci. Technol. 27 015018
- [37] Van Laer K, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002
- [38] Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Wang Q, Hou H 2022 J. Clean. Prod. 340 130774
- [39] Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Zheng H C 2022 Plasma Sci. Technol. 24 015504
- [40] Gao M X, Zhang Y, Wang H Y, Guo B, Zhang Q Z, Bogaerts A 2018 Catal. 8 248
- [41] Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 054002
- [42] Zhang Q Z, Zhang L, Yang D Z, Schulze J, Wang Y N, Bogaerts A 2020 Plasma Processes Polym. 18 e2000234
- [43] Zuo X, Zhou Y Y, Zhang Q Z, Wang H Y, Li Z H, Zhu J Z, Jiang X W, Zhang Y 2022 Plasma Processes Polym. 19 e2200025
- [44] Biagi V8.9 Database. [Online]. 2015 Available: https://www. lxcat.net

- [45] Gu J G, Zhang Y, Gao M X, Wang H Y, Zhang Q Z, Yi L, Jiang W 2019 J. Appl. Phys. 125 153303
- [46] Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056
- [47] Kuhfeld J, Lepikhin N D, Luggenholscher D, Gzarnetzki U, Donko Z 2023 Plasma Sources Sci. Technol. 32 084001
- [48] Shi F, Wang H, Zhu H W 2018 Vacuum Cryogenics 24 188 (in Chinese) [石峰, 王昊, 朱红伟 2018 真空与低温 24 188]
- [49] Zhang L Y, Zhang Q Z, Mujahid Z U, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016
- [50] Meierbachtol C S, Greenwood A D, Verboncoeur J P, Shanker B 2015 IEEE Trans. Plasma Sci. 43 3778
- [51] Raizer Y P, Kisin V I, Allen J E 1991 Gas Discharge Physics p336
- [52] Naidis G V 2011 Appl. Sci. 98 141501
- [53] Rad R H, Brüser V, Schiorlin M, Schäfer J, Brandenburg R 2023 Chem. Eng. J. 456 141072
- [54] Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Technol. 24 015011
- [55] Wang X B, Zhu C Y, Wang L, Liu J Q, Jin A 2022 Radiat. Eff. Defect. S. 177 1117
- [56] Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201 (in Chinese) [张雪雪, 贾鹏英, 冉俊 霞, 李金懋, 孙焕霞, 李雪辰 2024 物理学报 73 085201]
- [57] Cui Z L, Zhou C, Jafarzadeh A, Meng S Y, Yi Y H, Wang Y F, Zhang X X, Hao Y P, Li L C, Bogaerts A 2022 *High Volt.* 7 1048
- [58] Kumar P, Saha S K, Sharma A 2023 Chem. Eng. S. 282 119372
- [59] Chachereau A, Pancheshnyi S 2014 IEEE Trans. Plasma Sci. 42 3328

Particle-in-cell/Monte Carlo collision simulations of dielectric barrier discharge packed with mixed dielectrics^{*}

ZHANG Lulu¹⁾ LI Tianxiang¹⁾²⁾ PANG Xuexia^{2)†} GE Yuqi¹⁾ LIU Xiaoqian¹⁾

RAN Junxia³⁾ LI Qing³⁾ LI Xuechen^{1)3) \ddagger}

1) (College of Physics Science and Technology, Hebei University, Baoding 071002, China)

2) (Hebei Key Laboratory of Photo-Electricity Information and Materials, Hebei University, Baoding 071002, China)

3) (Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques,

Ministry of Education, Baoding 071002, China)

(Received 20 February 2025; revised manuscript received 17 April 2025)

Abstract

Packed bed dielectric barrier discharge (PB-DBD) is extremely popular in plasma catalysis applications, which can significantly improve the selectivity and energy efficiency of the catalytic processes. In order to

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 12375250, 11875121, 51977057, 11805013), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2022201036, A2020201025), the Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project of Hebei Province, China (Grant No. 22567634H), the Funds for Distinguished Young Scientists of Hebei Province, China (Grant No. A2012201045), the Natural Science Interdisciplinary Research Program of Hebei University, China (Grant Nos. DXK201908, DXK202011), and the Post-Graduate's Innovation Fund Project of Hebei University, China (Grant No. HBU2022bs004).

[†] Corresponding author. E-mail: pangxuexia@hbu.edu.cn

[‡] Corresponding author. E-mail: plasmalab@126.com

achieve some complex chemical reactions, it is necessary to mix different materials in practical applications. In this work, by using the two-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) method, the discharge evolution in PB-DBD packed with two mixed dielectrics is numerically simulated to reveal the discharge characteristics. Due to the polarization of dielectric columns, the enhancement of electric field induces streamers at the bottom of the dielectric columns with high electrical permittivity (ε_r). The streamers propagate downward in the voids between the dielectric columns with low $\varepsilon_{\rm r}$, which finally converts into volume discharges. Then, a new streamer forms near the upper dielectric plate and propagates downward along the void of the dielectric columns with high $\varepsilon_{\rm r}$. Moreover, electron density between the columns with high $\varepsilon_{\rm r}$ is lower than that between the dielectric columns with low ε_r . In addition, the numbers of e, N_2^+ , O_2^+ and O_2^- present different profiles versus time. All of e, N_2^+ and O_2^+ increase in number before 0.8 ns. After 0.8 ns, the number of electrons decreases with time, while the numbers of N_2^+ and O_2^+ keep almost constant. In the whole process, the number of O_2^- keeps increasing with time increasing. The reason for the different temporal profiles can be analyzed as follows. The sum of electrons deposited on the dielectric and those lost in attachment reaction is greater than the number of electrons generated by ionization reaction, resulting in the declining trend of electrons. Comparatively, the deposition of N_2^+ and O_2^+ on the dielectric almost balances with their generation, leading to the constant numbers of N_2^+ and O_2^+ . In addition, the variation of averaged electron density (\bar{n}_e) and averaged electron temperature (\bar{T}_{e}) in the voids between the dielectric columns are also analyzed under different experimental parameters. Simulation results indicate that both of them decrease with pressure increasing or voltage amplitude falling. Moreover, they increase with dielectric column radius enlarging. In addition, \bar{n}_{e} increases and then decreases with the increase of N₂ content in the working gas, while \bar{T}_{e} monotonically increases. The variations of \bar{n}_e and \bar{T}_e in the voids can be explained as follows. With the increase of pressure, the increase of collision frequency and the decrease of average free path lead to less energy obtained per unit time by electrons from the electric field, resulting in the decreasing of \bar{T}_{e} . Moreover, the first Townsend ionization coefficient decreases with the reduction in \overline{T}_{e} , resulting in less electrons produced per unit time. Hence, both \bar{n}_e and \bar{T}_e decrease with pressure increasing. Additionally, \bar{T}_e is mainly determined by electric field strength. Therefore, the rising voltage amplitude results in the increase of and \bar{T}_e . Based on the same reason for pressure, \bar{n}_e also increases with the augment of voltage amplitude. Consequently, both \bar{n}_e and \overline{T}_{e} increase with voltage amplitude increasing. In addition, the surface area of dielectric columns increases with dielectric column radius enlarging. Therefore, more polarized charges are induced on the inner surface of the dielectric column, inducing a stronger electric field outside. Accordingly, the enlarging of dielectric column radius leads \bar{n}_e and \bar{T}_e to increase. Moreover, the variation of \bar{n}_e with N₂ content is analyzed from the ionization rate, and that of \overline{T}_{e} is obtained by analyzing the ionization thresholds of N₂ and O₂.

Keywords: packed bed dielectric barrier discharge, particle-in-cell/Monte Carlo collision, dynamics, streamer

PACS: 52.20.–j, 52.65.–y, 52.65.Pp, 52.65.Rr

DOI: 10.7498/aps.74.20250208

CSTR: 32037.14.aps.74.20250208

Institute of Physics, CAS

混合填充下介质阻挡放电特性的粒子云网格/蒙特卡罗碰撞模拟

张璐璐 李天翔 庞学霞 葛禹琦 刘晓倩 冉俊霞 李庆 李雪辰

Particle-in-cell/Monte Carlo collision simulations of dielectric barrier discharge packed with mixed dielectrics ZHANG Lulu LI Tianxiang PANG Xuexia GE Yugi LIU Xiaogian RAN Junxia LI Qing LI Xuechen

引用信息 Citation: Acta Physica Sinica, 74, 135201 (2025) DOI: 10.7498/aps.74.20250208

CSTR: 32037.14.aps.74.20250208

在线阅读 View online: https://doi.org/10.7498/aps.74.20250208

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟

Particle-in-cell-Monte Carlo collision simulation study on gas side breakdown characteristics of high-power microwave dielectric window

物理学报. 2024, 73(23): 235101 https://doi.org/10.7498/aps.73.20241177

面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真

High-efficient particle-in-cell/Monte Carlo model for complex solution domain and simulation of anode layer ion source 物理学报. 2023, 72(8): 085202 https://doi.org/10.7498/aps.72.20222394

双气隙下介质阻挡放电斑图的放电特性与参数诊断

Discharge characteristics and parameter diagnosis of dielectric barrier discharge patterns in double-gap configuration 物理学报. 2025, 74(11): 115202 https://doi.org/10.7498/aps.74.20250111

空间调制的驱动外场下活性聚合物的动力学行为 Dynamic behavior of active polymer chain in spatially-modulated driven field 物理学报. 2022, 71(24): 240501 https://doi.org/10.7498/aps.71.20221367

结合机器学习的大气压介质阻挡放电数值模拟研究

Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning 物理学报. 2022, 71(24): 245201 https://doi.org/10.7498/aps.71.20221555

基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究

Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method 物理学报. 2022, 71(7): 074303 https://doi.org/10.7498/aps.71.20211869