数据论文

第一性原理计算研究 Cr 掺杂 CuZr₂ 的 电子结构、弹性性质和硬度^{*}

王坤1)† 徐鹤嫣2) 郑雄1) 张海丰1)

(江西铜业技术研究院有限公司,加工研究所,南昌 330096)
 2)(哈尔滨工程大学船舶工程学院,哈尔滨 150001)
 (2025年3月3日收到;2025年4月21日收到修改稿)

近年来,基于第一性原理的新型高性能合金的设计开发受到了广泛关注.然而,在纳观尺度上,关于 Cu-Zr 合金的结构设计及其热力学性质的研究鲜有报道.本文基于 CuZr₂的晶体结构特点,采用 Cr 原子掺杂的方 法,通过基于密度泛函理论的第一性原理计算,设计优化了 12种 Cr 掺杂 CuZr₂结构,发现了 6种力学及动力 学稳定的掺杂结构模型.通过对 CuZr₂ 及其动力学稳定的 Cr 掺杂结构的电子结构、弹性性质和硬度的计算 研究发现:所有的研究对象均表现为金属性质,CuZr₂对外不显示磁性.然而,Cr 原子的掺入,增加了基体的 元素种类,除 Cr 原子 d 轨道电子带来的自旋电子差异外,掺入的 Cr 原子还会破坏基体内 Zr 原子 p 和 d 轨道 上不同自旋方向电子的对称性分布,使设计的 6种 Cr 掺杂 CuZr₂结构表现为铁磁性质,其磁矩在 0.303— 5.243μ_B之间变化.此外,研究发现 Cr 元素可以改善 CuZr₂的力学性质.当采用 Cr 原子替代基体内 Zr 原子 时,可以提高材料的弹性模量和硬度,而采用 Cr 原子替代基体内 Cu 原子时,由于硬度的降低,则可以改善材 料的加工性能.本文数据集可在科学数据银行数据库 https://www.doi.org/10.57760/sciencedb.j00213.00122 中访问获取.

关键词:第一性原理, CuZr₂合金, 掺杂
PACS: 71.15.Mb, 89.20.-a
CSTR: 32037.14.aps.74.20250264

DOI: 10.7498/aps.74.20250264

1 引 言

CuZr₂因其超高屈服强度、大弹性应变极限、 高硬度、耐腐蚀性和低断裂韧性是材料学界非常感 兴趣的研究对象^[1,2].同时,CuZr₂兼备良好强度、 延展性和热稳定性的特点也是金属玻璃领域重点 研究的合金之一^[3-5].在新型高性能铜合金的设计 开发方面,CuZr₂也是一个很有前途的选择,可以 通过添加其他元素或采用其他独特的工艺来控制 其微观结构和性能^[1,6].通过在Cu-Zr 系合金中添 加 Cr 元素或在 Cu-Cr 合金中添加 Zr 元素在来开 发具有高强度、高导电性和良好耐磨性的 Cu-Zr-Cr 材料,期望能够满足高速铁路接触线对电线材料的 高要求^[7-10].同时,以原子掺杂的方式开发具有高 导热性及良好的抗辐射性能的 Cu-Zr-Cr 掺杂体 系,也期望成为国际热核实验堆的潜在散热材料的 候选材料^[10-12].在 Cu-Zr-Cr 材料的应用领域,由 于单晶材料较多晶材料少了晶界缺陷,在抗氧化腐 蚀性能、高温蠕变性能以及高温强度等性能上一般 要强于多晶材料^[13,14].同时,单晶材料具有可控的 各向异性性能,其力学性能具有方向性,可以通过

^{*} 江西铜业集团有限公司一级科研项目 (批准号: YJY2023011) 资助的课题.

[†] 通信作者. E-mail: wangkun1992@hrbeu.edu.cn

^{© 2025} 中国物理学会 Chinese Physical Society

晶体取向设计优化特定方向的强度、蠕变抗性或热膨胀系数^[15,16].因此,通过 Cr 掺杂 CuZr₂ 单晶的方法来设计开发 Cu-Zr-Cr 材料对其性能的提高具有重要意义.

在新型材料的设计开发中,通过理论与计算准 确预报新材料的组分、结构和性能,在微观、介观、 宏观层次上进行材料设计制备,从而开发具有精确 多级结构、体现设计性能的新型材料,大大减少材 料研发和测试的成本和时间是人们追求的长远目 标[17]. 第一性原理计算是研究单晶材料性能的有 利手段. 近年来的研究结果表明, 基于第一性原理 的掺杂计算在高性能的多元材料的设计开发中得 到了广泛的应用[18-25]. 同时, 对设计开发新材料起 到了重要的推动作用^[26,27].如 Das 等^[28]采用全电 势线性增强平面波 (FP-LAPW) 方法对过渡金属 Cr 掺杂 MgTe 的四种结构进行了电子和磁性能的 第一性原理计算,发现了 Cr_xMg_{1-x}Te 化合物具有 铁磁性闪锌矿结构,其磁性主要来自材料中 Cr 原 子的贡献. Wu 等^[29] 计算了 Ca 掺杂 Ti₂Ni 的晶格 参数、形成能、电子结构、弹性性能以及德拜温度, 发现了 Ti₂Ni 的延展性可以通过掺杂 Ca 来调节, 采 用 Ca 替代 Ni 加强了体系内的金属键, 削弱了共 价键,同时强化了金属结合,可以提高 Ti₂Ni 的延 展性. Hamad^[30] 基于密度泛函理论对 S 掺杂 SnSe 的电子和热电性能进行了从头计算研究,设计优化 了三种 Sn-Se-S 掺杂结构, 计算其带隙在 0.94 eV 和 1.02 eV 之间, 并发现了 SnSe0 75S0 25 结构具有 良好的热电性能. 然而, 在 CuZr₂方面, 有关设计 开发的计算文章报道较少,相关的研究结果不足以 建立材料数据库并支撑其在高维尺度上的大规模 建模模拟和性能预测,制约了材料的设计开发及应 用^[31,32]. 同时, 在采用第一性原理设计的新型掺杂 材料中,大多数都仅给出了掺杂结构的性能而没有 对其稳定性进行预测,导致在实验上一些材料无法 获得[33].

一个稳定的化合物是掺杂计算的开始. 根据 Okamoto^[34,35] 报道的 Cu-Cr 和 Cu-Zr 二元合金相 图可以发现, Cu-Cr 合金在冷却过程中不形成稳定 的化合物, 而 Cu-Zr 合金在凝固过程中可以形成 Cu₉Zr₂, Cu₅₁Zr₁₄, Cu₈Zr₃, Cu₁₀Zr₇, CuZr 和 CuZr₂ 等 6 种金属间化合物相. 因此, 将通过在稳定的 Cu-Zr 化合物中掺杂不同含量和不同占位的 Cr 原子 来寻找改善 Cu-Zr 合金性能的材料结构, 从而实 现对 Cu-Zr 二元合金的结构优化设计. 在 6 种 Cu-Zr 金属间化合物相的结构单元中, CuZr 和 CuZr₂ 包含的原子数最少, 计算速度最快. 而在材料设计 方面, CuZr₂相比于 CuZr 可参考的资源更少. 因 此, 为了获得更多的 Cu-Zr 合金相关的数据, 将以 CuZr₂为例进行设计计算.

本文基于 CuZr₂的晶体结构模型,采用原子 替代的方法,设计优化了 12 种 Cr 掺杂 CuZr₂的 晶体结构,并对掺杂结构的结构稳定性、电子结 构、弹性性质和硬度进行了系统的计算研究.首先, 介绍了计算方法,给出了理论计算模型,通过收敛 性测试确定了计算参数.然后,采用密度泛函微扰 理论 (DFPT) 方法对材料结构的稳定性进行了评 估.通过能带结构及态密度的计算,分析了材料的 电子结构.基于广义 Hooker 定理的应力-应变关系 方法、Voigt-Reuss-Hill 模型以及半经验公式对材 料的弹性性质以及硬度进行了估计.本文的计算结 果可进一步丰富 Cu-Zr 材料的理论数据库,并为 其他尺度上设计优化新型 Cu-Zr 材料的理论建模 提供有效的数据支撑和理论参考.

2 计算方法、参数与理论模型

2.1 计算方法和参数

本论文采用基于密度泛函理论 (DFT) 的 Vienna ab initio 模拟包 (VASP) 代码执行当前的第一 性原理计算^[36-39].原子核与电子的相互作用采用 投影缀加波 (PAW) 赝势方法来描述^[40].电子之间 相互作用的交换关联泛函采用广义梯度近似 (GGA) 的 Perdew-Burke-Ernzerhof(PBE) 形式^[41].布里 渊区 *k*点采用 Monkhorst-Pack 方法自动生成^[42]. 计算优化过程中能量和力的收敛标准分别设置为 10⁻⁶ eV 和 0.001 eV/Å,并且在计算中考虑了电子 的自旋极化作用.

对于截断能 *E*_{cut} 和 *k* 点网格的选择,由于较 大的截断能和 *k* 点网格使得晶体弛豫过程需要更 长的时间,而较小的截断能和 *k* 点网格又不能保证 计算的精度及准确度.因此,综合考虑计算速度和 精度,对计算参数进行了收敛性测试.在测试过程 中,当能量变化范围在 10⁻³ eV 时,选择的参数可 以满足大多数的计算要求.

对于 *E*_{cut}, 选择的测试值范围为 250—600 eV, 每隔 50 eV 取一个 *E*_{cut} 值进行晶体弛豫. 对于 *k* 点

网格, 采用 CuZr₂ 单胞模型, 根据 CuZr₂ 晶格常数 满足 $3a+2 = 3b+2 \approx c$ 的特点, 选择 k 点网格为 $(3k+2)\times(3k+2)\times k$, 分别对不同的 KPOINTS 值 进行测试. 选择的测试值范围为 $8\times8\times2$ 到 $29\times29\times$ 9, 采用相同的梯度增加 k 点网格.

图 1(a) 和图 1(b) 分别为截断能 *E*_{cut} 和 *k*点 网格的收敛性测试结果. 图中红色数字为相邻两个数据点的能量差. 从计算结果可以看出, 截断能 *E*_{cut} 为 450 eV 时, 结构优化得到的能量变化接近 收敛标准 10⁻³ eV, 达到了所需的计算精度; 测试的 *k*点网格达到能量收敛标准是在 KPOINTS 为 17×17×5 时.

基于收敛性测试结果, 当采用 DFPT 方法^[43-45] 计算晶体结构稳定性时, 建立了含 48 个原子的 2×2×2 超晶胞模型, 选择 *E*_{cut} 为 450 eV, 同时根 据 *k*点网格的经验选取原则, 选择 8×8×3 的 *k*点 网格进行声子频率的计算.

2.2 理论模型

基于无机晶体结构数据库 (ICSD) 和 Materials Project 在线材料数据库, 建立了 CuZr₂ 的初始晶 体模型, 其空间群、晶格参数以及具体原子占位信 息, 如表 1 所列^[46-49].

根据 CuZr₂ 的晶体结构特点及原子占位信息, 采用 Cr 原子替代 CuZr₂ 晶体内 Cu 或 Zr 原子的 方式,设计了 12 种 Cr 掺杂 CuZr₂ 的晶体结构模 型,如图 2 所示.图中的晶体异构体采用-1,-2,-3 的命名方式加以区分.

3 结果与讨论

3.1 CuZr₂ 及其 Cr 掺杂结构的晶体结构 优化

在纳观尺度上,采用第一性原理对晶体结构的 弛豫优化,得到晶体的晶格信息,有助于在微观尺

图 1 计算参数收敛性测试结果 (a) 截断能 *E*_{cut} 的测试结果; (b) *k* 点网格的测试结果 Fig. 1. Convergence test results of the calculation parameters: (a) Energy cutoff; (b) *k*-point mesh.

	Table	e 1. Orystal structure	information o	1 CuZr_2 alloy.					
		空间群	空间群 Tetragonal-I4/mmm						
CuZr_2		晶格常数	实验值 a = b = 3.2204 Å; $c = 11.1832$ Å $\alpha = \beta = \gamma = 90^{\circ}$						
		百子粉	Cu		2				
		反 1 奴	Zr		4				
	🕒 Cu 🔍 🗖 🄶			x	y	z			
	Zr	Wyckoff	Cu(2a)	0	0	0			
			$\operatorname{Zr}(4e)$	0	0	0.346			

表 1 CuZr₂的晶体结构信息 able 1. Crystal structure information of CuZr₂ alloy

度上对相关原子间势函数的拟合,为高效地构建材料的分子动力学物理模型提供有利支持.基于收敛性测试选择的计算参数,对CuZr2晶体进行了弛豫优化,得到了与Du等^[50]趋于一致的晶格参数结果.同时,优化得到的Cu—Cu,Cu—Zr和Zr—Zr化学键长分别为3.233Å,2.869Å和3.130Å.通过进一步对设计的12种Cr掺杂模型的计算优化,得到了每种晶体结构的晶格常数及空间点群特点,

具体的晶格信息如表 2 所列.结果表明, Cr 掺杂的 CuZr₂结构依然具有四方晶系特征, 但由于异类 Cr 原子的引入, 导致晶体整体的对称性发生破坏, 空间群由原来高对称性的体心四方结构改变为低对称性的简单四方结构. 同时, Cr 元素的掺杂使基体的晶格常数发生了变化.其中, 晶格常数 *a* 和 *b* 的变化范围在 2.901—3.279 Å之间, 而晶格常数 *c* 则在 8.697—11.243 Å之间变化.

图 2 设计的 12种 Cr 掺杂 CuZr₂的晶体结构模型 (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr_{0.5}Cr_{1.5}; (e) Cu_{0.5}Zr₂Cr_{0.5}; (f) Cu_{0.5}Zr_{1.5}Cr-1; (g) Cu_{0.5}Zr_{1.5}Cr-2; (h) Cu_{0.5}ZrCr_{1.5}-1; (i) Cu_{0.5}ZrCr_{1.5}-2; (j) Cu_{0.5}ZrCr_{1.5}-3; (k) Cu_{0.5}Zr_{0.5}Cr₂-1; (l) Cu_{0.5}Zr_{0.5}Cr₂-2 Fig. 2. Structural models of 12 Cr-doped CuZr₂: (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr_{0.5}Cr_{1.5}; (e) Cu_{0.5}Zr₂Cr_{0.5}; (f) Cu_{0.5}Zr_{1.5}Cr-1; (g) Cu_{0.5}Zr_{1.5}Cr-2; (h) Cu_{0.5}ZrCr_{1.5}-1; (i) Cu_{0.5}ZrCr_{1.5}-2; (j) Cu_{0.5}ZrCr_{1.5}-3; (k) Cu_{0.5}Zr_{0.5}Cr₂-1; (l) Cu_{0.5}Zr₂Cr_{0.5};

	表 2	CuZr ₂ 及其设计的 12 种 C	r 掺杂结构的晶格信息
~	T		1 1 1 1 1 1

Table 2.	Lattice information of	f CuZr ₂ and its	s designed 12	Cr-doped structures
----------	------------------------	-----------------------------	---------------	---------------------

化合物	空间群	晶格常数
CuZr ₂	Tetragonal-I4/mmm	a = b = 3.233 Å; $c = 11.207$ Å
$\mathrm{CuZr_2}^{[50]}$	Tetragonal-I4/mmm	a = b = 3.236 Å; $c = 11.204$ Å
$\mathrm{CuZr}_{1.5}\mathrm{Cr}_{0.5}$	Tetragonal-P4mm	a = b = 3.215 Å; $c = 10.408$ Å
CuZrCr-1	Tetragonal- $P4/mmm$	a = b = 3.178 Å; $c = 9.715$ Å
CuZrCr-2	Tetragonal- $P4/nmm$	a = b = 2.981 Å; $c = 10.504$ Å
$\mathrm{CuZr}_{0.5}\mathrm{Cr}_{1.5}$	Tetragonal- $P4mm$	a = b = 2.932 Å; $c = 9.601$ Å
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{2}\mathrm{Cr}_{0.5}$	Tetragonal-P4mmm	a = b = 3.261 Å; $c = 10.931$ Å
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{1.5}\mathrm{Cr}$ -1	Tetragonal- $P4mm$	a = b = 3.279 Å; $c = 9.951$ Å
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{1.5}\mathrm{Cr}$ -2	Tetragonal- $P4mm$	a = b = 3.021 Å; $c = 11.243$ Å
$\mathrm{Cu}_{0.5}\mathrm{ZrCr}_{1.5}$ -1	Tetragonal-P4mmm	a = b = 3.244 Å; $c = 9.084$ Å
$\mathrm{Cu}_{0.5}\mathrm{Zr}\mathrm{Cr}_{1.5}\text{-}2$	Tetragonal- $P4mm$	a = b = 3.039 Å; $c = 10.117$ Å
$\mathrm{Cu}_{0.5}\mathrm{ZrCr}_{1.5}$ -3	Tetragonal- $P4mm$	a = b = 2.906 Å; $c = 10.901$ Å
$Cu_{0.5}Zr_{0.5}Cr_{2}-1$	Tetragonal- $P4mm$	a = b = 2.901 Å; $c = 9.558$ Å
$Cu_{0.5}Zr_{0.5}Cr_{2}-2$	Tetragonal- $P4mm$	a = b = 3.051 Å; $c = 8.697$ Å

3.2 CuZr₂及其 Cr 掺杂结构的动力学稳 定性

声子色散频率数据可以为相关材料的热力学 性质 (如热容、熵)和相变行为 (如软模相变)等物 理模型的建立提供信息帮助.同时,声子色散频率 的计算结果为设计材料的结构稳定性提供判定依 据.通过计算晶体在布里渊区中沿高对称方向的声 子频率,可以判断晶体在动力学上的稳定性.结构 具有的动力学不稳定性的晶体会向能量更低的 状态转变,可能发生结构相变^[51].为进一步了解 CuZr₂及其设计的 Cr 掺杂结构的动力学稳定性, 采用 DFPT 方法计算了这些晶体结构的声子色散 频率.

图 3 为计算得到的 CuZr₂ 的声子谱图.采用 传统的 DFT 方法对 CuZr₂ 声子频率的计算,可以 得到一个与 CuZr₂ 金属间化合物结构稳定性相耦 合的无虚频计算结果.因此,没有更多采用 Hubbard 修正的 DFT+U方法做进一步研究计算.

图 3 DFPT 方法计算得到的 $CuZr_2$ 的声子谱图 Fig. 3. Phonon spectra of $CuZr_2$ calculated by the DFPT method.

图 4 为设计的 12 种 Cr 掺杂 CuZr₂ 结构的声 子谱. 对于声子谱中声子的色散曲线出现负值 (虚 频)的晶体结构, 就说明晶体结构具有动力学不稳 定性. 在计算的 12 个声子谱图中, 发现了 6 种声 子色散频率无虚频的 Cr 掺杂 CuZr₂ 结构. 这些掺 杂结构表现为动力学稳定, 相应的结构分别为 CuZr_{1.5}Cr_{0.5}, CuZrCr-1, Cu_{0.5}Zr₂Cr_{0.5}, Cu_{0.5}Zr_{1.5} Cr-1, Cu_{0.5}ZrCr_{1.5}-1 和 Cu_{0.5}Zr_{0.5}Cr₂-1. 其余 6 种结 构如 CuZrCr-2, CuZr_{0.5}Cr_{1.5}, Cu_{0.5}Zr_{1.5}Cr-2, Cu_{0.5} ZrCr_{1.5}-2, Cu_{0.5}ZrCr_{1.5}-3 和 Cu_{0.5}Zr_{0.5}Cr₂-2, 其声 子色散曲线均出现虚频, 表现为动力学不稳定. 这 种不稳定结构的虚频特征可能会通过 Hubbard 修 正的 DFT+U方法得到消除,使之成为稳定的晶 体结构^[52,53]. 然而,目前修正 U值的确定并无可用 的参考数据.因此,这6种掺杂结构将在以后做进 一步的研究.

3.3 CuZr₂ 及其 Cr 掺杂结构的电子结构

能带结构、态密度和分波态密度的第一性原理 计算有利于了解材料的电子能量与动量的关系,揭 示材料的导电性质,分析材料的电子输运特性、磁 性来源 (如 d 电子或 f 电子的贡献)以及揭示相关 原子间的成键信息,可以作为预测材料相关物理现 象的理论依据.首先,在考虑电子的自旋极化作用 下,采用第一性原理计算了 CuZr₂ 晶体的能带结 构和态密度,如图 5 所示,图中 Fermi 能级为 0 eV.

从图 5(a) 可以看出, CuZr₂ 的能带曲线穿过 Fermi 能级, 显示出金属性质. 此外, 自旋向上的 电子与自旋向下的电子的能带曲线相重合, 使得 CuZr₂ 对外不显示磁性. 同时, 在 Fermi 能级处, 自旋向上的电子与自旋向下的电子显示出对金属 性能的贡献一样大.

态密度是能带的积分函数^[54]. 从图 5(b) 态密 度的计算结果可以看出,在 Fermi 能级处 CuZr₂ 的总态密度 (TDOS) 值不为零,显示出金属性质. 从分波态密度 (PDOS) 图可知, Fermi 能级上的色 散带主要来自于 Zr-3p 和 Zr-4d 电子,这表明 Zr 的 p 和 d 轨道电子是 CuZr₂ 金属性质的主要贡献 者,同时也在一定程度上证明了 Zr-Zr 为金属键的 性质. 而且, Zr 原子的 3p/4d 和 Cu 原子的 4d 态 之间存在重叠,这是 Cu—Zr 键相互作用的结果, 显示出价带是由 Zr-4d 态和 Cu-4d 态的杂化组成 的. 在 TDOS 中也可以发现,电子自旋向上的态密 度与自旋向下的态密度对称分布. 因此, CuZr₂ 对 外不表现磁性,这与能带结构呈现的结果相吻合.

为进一步了解设计的动力学稳定的 Cu-Zr-Cr 掺杂体系的成键及磁性特点,在考虑电子的自旋极 化作用下,对这 6 种动力学稳定的 Cu-Zr-Cr 掺杂 结构的电子结构进行了计算.图 6 和图 7 分别为动 力学稳定的 Cu-Zr-Cr 掺杂结构的能带结构和态密 度,图中 Fermi 能级为 0 eV.

从图 6 和图 7 可以看出,这 6 种动力学稳定的 Cu-Zr-Cr 掺杂结构的能带曲线穿过 Fermi能级,同时,在 Fermi能级处态密度均不为 0,表明

图 4 DFPT 方法计算得到的 12 种 Cr 掺杂 CuZr₂的声子谱图 (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr_{0.5}Cr_{1.5}; (e) Cu_{0.5}Zr₂Cr_{0.5}; (f) Cu_{0.5}Zr_{1.5}Cr-1; (g) Cu_{0.5}Zr_{1.5}Cr-2; (h) Cu_{0.5}ZrCr_{1.5}-1; (i) Cu_{0.5}ZrCr_{1.5}-2; (j) Cu_{0.5}ZrCr_{1.5}-3; (k) Cu_{0.5}Zr_{0.5}Cr₂-1; (l) Cu_{0.5}Zr_{0.5}Cr₂-2

Fig. 4. Phonon spectra of 12 Cr-doped CuZr₂ calculated by the DFPT method: (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr_{0.5}Cr_{1.5}; (e) Cu_{0.5}Zr₂Cr_{0.5}; (f) Cu_{0.5}Zr_{1.5}Cr-1; (g) Cu_{0.5}Zr_{1.5}Cr-2; (h) Cu_{0.5}ZrCr_{1.5}-1; (i) Cu_{0.5}ZrCr_{1.5}-2; (j) Cu_{0.5}ZrCr_{1.5}-3; (k) Cu_{0.5}Zr_{0.5}Cr₂-1; (l) Cu_{0.5}Zr_{0.5}Cr₂-2.

Fig. 5. Electronic structure of CuZr₂ crystal: (a) Energy band structure; (b) density of states.

图 6 动力学稳定的 Cu-Zr-Cr 掺杂体系的能带结构 (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) Cu_{0.5}Zr₂Cr_{0.5}; (d) Cu_{0.5}Zr_{1.5}Cr-1; (e) Cu_{0.5}Zr Cr_{1.5}-1; (f) Cu_{0.5}Zr_{0.5}Cr₂-1

Fig. 6. Band structure of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) Cu_{0.5}Zr₂Cr_{0.5}; (d) Cu_{0.5}Zr_{1.5}Cr-1; (e) Cu_{0.5}ZrCr_{1.5}-1; (f) Cu_{0.5}Zr_{0.5}Cr₂-1.

这 6 种 Cu-Zr-Cr 掺杂结构均表现为金属性质. 与 CuZr₂ 不同的是,这 6 种结构金属性质的主要贡献 者为 Cr 和 Zr 的 p 和 d 轨道电子. 此外, CuZr₂ 对 外不表现磁性, 而其他 6 种结构均表现为铁磁性. 由于 Cu_{0.5}Zr_{0.5}Cr₂-1 结构的 TDOS 显示出不同自 旋方向的电子态密度几乎呈对称性分布, 因此 Cu_{0.5} Zr_{0.5}Cr₂-1 表现出最小的铁磁性, 磁矩仅为 0.303 $\mu_{\rm B}$. 相比于 Cu_{0.5}Zr_{0.5}Cr₂-1, Cu_{0.5}ZrCr_{1.5}-1 的 TDOS 显 示出较为明显的自旋电子态密度差异, 因此铁磁性 要大于 Cu_{0.5}Zr_{0.5}Cr₂-1, 其磁矩为 1.715 $\mu_{\rm B}$. 在 Cu_{0.5} ZrCr_{1.5}-1 中 Cu 原子的电子的 PDOS 对称性较好, 因此可以说 Cu_{0.5}ZrCr_{1.5}-1 的铁磁性主要来源于 Cr 和 Zr 原子的电子自旋极化差异. Cu_{0.5}Zr₂Cr_{0.5} 和 CuZr_{1.5}Cr_{0.5} 结构的 TDOS 显示出明显的自旋 电子态密度差异,其磁矩分别为 2.091 μ B 和 2.506 μ B, 表现出了相当的铁磁性. 从 Cu_{0.5}Zr₂Cr_{0.5} 结构中 Cr 和 Zr 原子的 PDOS 可以看出, Cr 和 Zr 原子的 *d* 轨 道电子非对称性分布是其铁磁性的主要来源. 而 CuZr_{1.5}Cr_{0.5} 结构中 Zr 原子的 PDOS 显示出不同 自旋方向的电子具有良好的对称分布,其自旋电子 态密度的差异主要源于 Cr 原子的 d 轨道电子,因 此 CuZr_{1.5}Cr_{0.5} 的铁磁性主要源于 Cr 原子的 d 轨

图 7 动力学稳定的 Cu-Zr-Cr 掺杂体系的态密度 (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) Cu_{0.5}Zr₂Cr_{0.5}; (d) Cu_{0.5}Zr_{1.5}Cr-1; (e) Cu_{0.5}Zr Cr_{1.5}-1; (f) Cu_{0.5}Zr_{0.5}Cr₂-1

Fig. 7. Density of states of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr_{1.5}Cr_{0.5}; (b) CuZrCr-1; (c) Cu_{0.5}Zr₂Cr_{0.5}; (d) Cu_{0.5}Zr_{1.5}Cr-1; (e) Cu_{0.5}ZrCr_{1.5}-1; (f) Cu_{0.5}Zr_{0.5}Cr₂-1.

道电子的自旋极化差异. Cu_{0.5}Zr_{1.5}Cr-1和CuZrCr-1的TDOS显示出强烈的自旋电子态密度差异, 二者铁磁性相当,均表现出了较大的铁磁性,磁 矩分别为 5.108 μ_B 和 5.243 μ_B .从 Cu_{0.5}Zr_{1.5}Cr-1和CuZrCr-1结构中Cr和Zr原子的PDOS可以 看出,其铁磁性主要来源于Cr原子的d轨道电子以及Zr原子p和d轨道电子的非对称性分布.相 比于 p 轨道上的电子, d 轨道电子的非对称性分布 更加显著, 因此 Cu_{0.5}Zr_{1.5}Cr-1 和 CuZrCr-1 结构 的铁磁性贡献者主要是 Cr 和 Zr 原子 d 轨道电子.

3.4 CuZr₂及其 Cr 掺杂结构的弹性性质 及力学稳定性

采用第一性原理计算弹性常数是纳观尺度上

研究材料弹性性质的有利手段.同时,材料的弹性 常数也是评估材料结构力学稳定性的必要参数.基 于优化得到的 CuZr₂ 及其设计的 6 种动力学稳定 的 Cr 掺杂结构,采用基于广义 Hooker 定理的应 力-应变关系方法,分别对 CuZr₂ 及其设计的 6 种 动力学稳定的晶体结构进行了力学性质的计算.得 到了这 7 种具有四方晶系晶体结构的六个独立的 弹性常数 C₁₁, C₁₂, C₁₃, C₃₃, C₄₄ 和 C₆₆, 如表 3 所列.

由于 Voigt-Reuss-Hill 近似方法很好的建立了 各向异性单晶弹性常数与多晶体积模量 *B*,杨氏模 量 *E*和剪切模量 *G*等弹性模量之间的关系^[55].因 此,采用 (1) 式—(8) 式进一步确定了这 7 种结构 的多晶弹性模量,计算结果同样列于表 3 中.

$$B_{\rm H} = \frac{1}{2} \left(B_{\rm V} + B_{\rm R} \right),$$
 (1)

$$G_{\rm H} = \frac{1}{2} \left(G_{\rm V} + G_{\rm R} \right), \qquad (2)$$

$$E = \frac{9BG}{3B+G},\tag{3}$$

$$\nu = \frac{3B - 2G}{2(3B + G)}.$$
 (4)

对于四方晶系晶体,

$$B_{\rm V} = \frac{2\left(C_{11} + C_{12}\right) + 4C_{13} + C_{33}}{9},\qquad(5)$$

$$B_{\rm R} = \frac{C_{33} \left(C_{11} + C_{12} \right) - 2C_{13}^2}{C_{11} + C_{12} + 2C_{33} - 4C_{13}},\tag{6}$$

 $G_{\rm V}$

$$=\frac{4(C_{11}-C_{13})+2(C_{33}-C_{12})+6(C_{66}+2C_{44})}{30},\ (7)$$

$$G_{\rm R} = \frac{30}{4} \left[\frac{2 \left(C_{11} + C_{12} \right) + C_{33} + 4C_{13}}{\left(C_{11} + C_{12} \right) C_{33} - 2C_{13}^2} + \frac{3}{C_{11} - C_{12}} + \frac{3}{2C_{66}} + \frac{3}{C_{44}} \right]^{-1}, \quad (8)$$

式中, C_{ij} (GPa) 是弹性刚度常数; $B_{\rm H}$ 和 $G_{\rm H}$ (GPa) 分别为体积模量和剪切模量的 Hill 平均值; $B_{\rm V}$ 和 $G_{\rm V}$ (GPa) 分别为体积模量和剪切模量的 Voigt 近 似值; $B_{\rm R}$ 和 $G_{\rm R}$ (GPa) 分别为体积模量和剪切模 量的 Reuss 近似值.

从表 3 的计算结果可以看出, 在动力学稳定的 Cu-Zr-Cr 掺杂体系中, Cr 的掺杂可以提高 CuZr₂的弹性模量. 其中, CuZrCr-1 的杨氏模量 *E*和剪切模量 *G*最高, 而 Cu_{0.5}Zr_{0.5}Cr₂-1 的体积模量 *B*最高. 相比于 CuZrCr-1, Cu_{0.5}Zr_{0.5}Cr₂-1 较 CuZr₂ 的杨氏模量 *E*和剪切模量 *G*均有所降低. 因此, 在 6 种动力学稳定的 Cu-Zr-Cr 掺杂结构中, CuZrCr-1 表现出了高模量的特点.

此外可以看到, Cu_{0.5}Zr₂Cr_{0.5}和 Cu_{0.5}Zr_{1.5}Cr-1 的弹性模量均小于 CuZr₂,表明 Cr 的掺杂改善了 CuZr₂的刚度.相比于 Cu_{0.5}Zr_{1.5}Cr-1, Cu_{0.5}Zr₂Cr_{0.5} 的弹性模量更低.因此, Cu_{0.5}Zr₂Cr_{0.5}具有更小的 弹性变形抗力.值得注意的是,在所研究的 Cr 掺杂 体系中, Cu_{0.5}Zr_{0.5}Cr₂-1的杨氏模量 *E* 和剪切模量 *G*最低,而体积模量 *B*最高,反映出 Cu_{0.5}Zr_{0.5}Cr₂-1 更易于拉/压及剪切变形,而有关体积的加工变形 较为困难.

在材料的弹性各向异性程度方面,考虑所有的 弹性常数,采用通用各向异性因子 $A^{U} = 5G_{V}/G_{R} + B_{V}/B_{R} - 6 来量化材料的弹性各向异性^[56]. <math>A^{U}$ 计 算结果列于表 3 中. 对于各向同性材料的 $A^{U} = 0$,

表 3 CuZr₂ 及其设计的 6 种动力学稳定的 Cu-Zr-Cr 掺杂结构的弹性常数 C_{ij}、弹性模量 E, B 和 G (单位: GPa)、泊松 比 ν 以及各向异性因子 A^U

Table 3. Elastic constants C_{ij} , elastic modulus E, B and G (unit: GPa), Poisson's ratio ν and elastic anisotropy factor A^{U} of CuZr₂ and its designed six dynamically stabilized Cu-Zr-Cr doped structures.

	C_{11}	C_{12}	C_{13}	C_{33}	C_{44}	C_{66}	E	В	G	ν	A^{U}
$\mathrm{Cu}_{2}\mathrm{Zr}_{4}$	177.84	66.03	90.74	145.69	63.53	30.98	120.58	110.67	45.73	0.318	0.654
$\mathrm{Cu}_2\mathrm{Zr}_4^{[50]}$	169	74	91	150	66	32	121	111	46	0.319	_
$\rm CuZr_{1.5}Cr_{0.5}$	169.46	71.06	99.28	131.70	58.55	40.31	109.35	112.11	40.88	0.337	1.086
CuZrCr-1	170.13	79.39	87.12	154.64	59.34	54.67	129.90	111.32	49.75	0.306	0.207
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{2}\mathrm{Cr}_{0.5}$	161.46	82.82	83.20	129.22	45.58	30.00	99.19	104.96	36.94	0.343	0.239
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{1.5}\mathrm{Cr}\text{-}1$	156.42	81.40	82.94	143.64	44.45	47.59	108.49	105.60	40.82	0.329	0.105
$\mathrm{Cu}_{0.5}\mathrm{Zr}\mathrm{Cr}_{1.5}\text{-}1$	169.53	115.28	67.77	143.12	43.52	89.44	123.36	107.29	47.14	0.308	0.860
$Cu_{0.5}Zr_{0.5}Cr_{2}-1$	284.53	116.96	112.07	227.27	7.48	29.15	77.29	163.23	27.20	0.421	4.800

而偏离零值的大小决定了材料各向异性的程度,同时也显示出了剪切模量和体积模量对各向异性的贡献度.在设计的6种Cr掺杂结构中Cu_{0.5}Zr_{1.5}Cr-1的 A^{U} 值偏离0较少,其更接近于各向同性材料.同时Cu_{0.5}Zr_{0.5}Cr₂-1的 A^{U} 值要远大于其他结构,将表现出较大的弹性各向异性.此外,还可以发现,CuZrCr-1和Cu_{0.5}Zr₂Cr_{0.5}的 A^{U} 值接近,均小于CuZr₂.这表明CuZrCr-1和Cu_{0.5}Zr₂Cr_{0.5}的弹性各向异性的程度基本一致,但要弱于CuZr₂.

在力学稳定性方面,如果给晶体施加一个小的 外力,若晶体仍能保持原来的结构,那么晶体的理 论弹性常数一定满足 Born-Huang 准则^[57].对于具 有四方晶系 4mm和 4/mmm点群的 CuZr₂和 6种 Cu-Zr-Cr 掺杂结构,若晶体结构具有力学稳 定性,其弹性常数应该满足 (9)式^[58]:

$$C_{11} > |C_{12}|, \ 2C_{13}^2 < C_{33} \left(C_{11} + C_{12}\right),$$

$$C_{44} > 0, \ C_{66} > 0.$$
(9)

根据表 3 计算出的弹性常数 C_{ij} 可以看出, $CuZr_2$ 和 6 种 Cu-Zr-Cr 掺杂结构均满足 Born-Huang 准则, 结构都是力学稳定的.

3.5 CuZr₂及其 Cr 掺杂结构的德拜温度 及维氏硬度

德拜温度 (θ_D) 是材料热力学性质的一项基本 参数, 它将固体的弹性和热力学性质联系了起来^[59]. 德拜温度与弹性常数、比热和热膨胀有关, 德拜温 度越高的材料, 其显微硬度也越大^[60].

为进一步了解 CuZr₂和 6种 Cu-Zr-Cr 掺杂结构的热力学性质,基于表 3 得到的弹性常数,结合 经验/半经验公式,分别对这 7种材料的德拜温度 进行了估计.根据 Anderson^[61]的研究,德拜温度 可以用纵向声速 ν₁,横向声速 ν_t和平均声速 ν_m来 估算.具体由 (10) 式—(13) 式给出:

$$\nu_{\rm m} = \left[\frac{1}{3} \left(\frac{2}{\nu_{\rm t}^3} + \frac{1}{\nu_{\rm l}^3}\right)\right]^{-1/3},\tag{10}$$

$$\nu_{\rm l} = \left[(B + 4G/3)/\rho \right]^{1/2},$$
 (11)

$$\nu_{\rm t} = (G/\rho)^{1/2},\tag{12}$$

$$\theta_{\rm D} = \frac{h}{k_{\rm B}} \left[\frac{3n}{4\pi} \left(\frac{N_{\rm A}\rho}{M} \right) \right]^{1/3} \nu_{\rm m},\tag{13}$$

式中, h 为普朗克常数, $k_{\rm B}$ 为玻尔兹曼常数, $N_{\rm A}$ 为 阿伏伽德罗常数, $\rho(\text{kg/m}^3)$ 是密度, M(g/mol) 是 分子量, n 是单元中的原子数, B和 G(Pa) 分别为 体积模量和剪切模量.

表 4 为 7 种材料德拜温度的计算结果.从 计算结果可以看出,德拜温度的大小顺序依次 为: $\theta_{D(CuZrCr-1)} > \theta_{D(Cu0.5 ZrCr1.5-1)} > \theta_{D(Cu2 Zr4)} >$ $\theta_{D(Cu0.5 Zr1.5 Cr-1)} > \theta_{D(Cu2.5 Zr2 Cr0.5)} > \theta_{D(Cu0.5 Zr0.5 Cr2-1)}$.根据德拜温度的原始物理性质,可以大致推断出 CuZrCr-1和 Cu_{0.5}ZrCr_{1.5}-1的 硬度要比 CuZr₂ 的高, Cu_{0.5}Zr_{1.5}Cr-1和 CuZr_{1.5}Cr_{0.5} 的硬度与 CuZr₂ 相当,而 Cu_{0.5}Zr₂Cr_{0.5}和 Cu_{0.5}Zr_{0.5} Cr₂-1的硬度要明显低于 CuZr₂.

此外,基于第一性原理计算的维氏硬度信息有 利于理解设计材料的微观力学行为,为材料的理性 设计奠定数据基础.文献报道了许多计算晶体维氏 硬度的理论模型^[62-66].其中,Chen等^[64]和Tian等^[65] 的硬度模型计算方法更加受欢迎.Chen等^[64]在硬度 模型中引入Pugh模量比 *k* = *G*/*B*,使硬度模型与 材料的脆性有了很好的相关性.Tian等^[65]在Chen 等^[64]的基础上,采用拟合的方法对Chen等^[64]的 模型进行了修正,得到了一个新模型,该模型消除 了不切实际的负硬度的可能性.根据Tian等^[65]计 算固体材料硬度的新模型,如(14)式所示^[66,67].进 一步估计了这几种材料的维氏硬度,计算结果列于 表4中.

表 4 计算得到的 CuZr₂ 及其 Cr 掺杂结构的声速、德拜温度及维氏硬度 Table 4. Calculated sound velocity, Debye temperature and Vickers hardness of CuZr₂ and its Cr-doped structures.

	$M/(\mathrm{g}{\cdot}\mathrm{mol}^{-1})$	$ ho/(ext{g}{\cdot} ext{cm}^{-3})$	n	$ u_{ m l}/({ m m}{\cdot}{ m s}^{-1})$	$ u_{ m t}/({ m m}{\cdot}{ m s}^{-1}) $	$ u_{ m m}/({ m m}{\cdot}{ m s}^{-1})$	$\theta_{\rm D}/{\rm K}$	Hv/GPa
$\mathrm{Cu}_2\mathrm{Zr}_4$	491.98	6.97	6	4960.79	2560.54	2866.83	316.98	5.044
$\mathrm{CuZr}_{1.5}\mathrm{Cr}_{0.5}$	452.76	6.99	6	4883.10	2418.77	2714.89	308.80	4.042
CuZrCr-1	413.54	7.00	6	5038.35	2666.23	2980.21	349.55	5.853
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{2}\mathrm{Cr}_{0.5}$	480.43	6.86	6	4740.05	2319.93	2605.71	288.85	3.614
$\mathrm{Cu}_{0.5}\mathrm{Zr}_{1.5}\mathrm{Cr}\text{-}1$	441.21	6.85	6	4833.71	2441.41	2737.16	311.94	4.316
$\mathrm{Cu}_{0.5}\mathrm{Zr}\mathrm{Cr}_{1.5}\text{-}1$	401.99	6.98	6	4936.62	2598.51	2905.58	343.76	5.527
$Cu_{0.5}Zr_{0.5}Cr_{2}-1$	362.77	7.49	6	5161.51	1905.76	2163.55	271.14	1.243

$$H_{\rm V} = 0.92k^{1.137}G^{0.708}, \ k = G/B.$$
 (14)

硬度高的材料具有巨大的抗塑性变形能力,而 低硬度适合塑性变形,使材料可加工^[66].当硬度值 在 2—8 GPa 之间时,材料的可加工性和耐损伤性 更强^[68].从表 4 可以看出,除了 Cu_{0.5}Zr_{0.5}Cr₂-1 外, 其他掺杂结构均表现出较好的可加工性和耐损伤 性.然而,计算得到的 Cu_{0.5}Zr_{0.5}Cr₂-1 的维氏硬度 值低于 2 GPa,将表现出易加工易损伤的特性,这 可能与其具有的较低杨氏模量和剪切模量有关.当 前表 4 中的维氏硬度结果为理论预测结果,暂无可 用的参考实验结果提供支撑,有望在后续的研究中 得到验证.

图 8 为 CuZr₂ 及其动力学稳定的 Cr 掺杂结 构的德拜温度和维氏硬度计算值的对比图. 从图中 可以看出, 计算得到维氏硬度与德拜温度估计的材 料硬度整体趋势反应一致. 同时, 依然可以看出, CuZrCr-1 及 Cu_{0.5}Zr₂Cr_{0.5} 分别表现出了较高的力 学性质以及易加工变形性质, 这与弹性模量的计算 结果相符合.

图 8 计算得到的 7 种材料的德拜温度及维氏硬度 Fig. 8. Calculation results of Debye temperature and Vickers hardness of seven materials.

4 结 论

本文基于 CuZr₂的晶体结构特点,采用收敛 性测试,确定了第一性原理计算优化的参数.采用 Cr 原子替代 CuZr₂基体内原子的方式,设计了 12种 Cr 掺杂 CuZr₂结构,优化得到了每种晶体结 构的晶格常数.通过声子色散频率的计算以及 Born-Huang 准则的判定,发现了 6种力学及动力 学稳定的 Cr 掺杂 CuZr₂结构.能带结构的计算结

果表明, CuZr₂及其设计的 Cr 掺杂结构的能带均 穿过费米能级,表现为金属性质.通过分析态密度 发现, CuZr, 的金属性质的主要贡献者为 Zr 的 p 和 d 轨道电子, 而 6 种动力学稳定的 Cr 掺杂结构的 金属性质的主要贡献者是 Cr 和 Zr 的 p 与 d 轨道 电子.此外,CuZr2对外不表现磁性,而设计的6 种动力学稳定的 Cr 掺杂结构由于自旋方向不同 的电子呈非对称性分布,均表现为铁磁性质.其中, $Cu_{0.5}Zr_{0.5}Cr_2-1(0.303\mu_B)$ 和 CuZrCr-1(5.243 μ_B) 是 铁磁性最小和最大的结构.同时,基于广义 Hooker 定理的应力-应变关系方法、Voigt-Reuss-Hill 模型 以及半经验公式对动力学稳定的 Cu-Zr-Cr 掺杂体 系的弹性性质、德拜温度以及维氏硬度进行了估 计.采用通用各向异性因子对掺杂体系的弹性各向 异性程度进行了量化.结果表明, CuZrCr-1 具有高 的模量、小的弹性各向异性、高的徳拜温度以及高 的硬度表现出优异的力学性质,而 $Cu_{0.5}Zr_2Cr_{0.5}$ 因 其与形变抗力相关的力学参数相对较低,而具有易 加工变形的性质.在所研究的材料中, Cu_{0.5}Zr_{0.5}Cr₂-1的杨氏模量 E、剪切模量 G以及维氏硬度 Hv 最 低,表现出易拉/压、剪切变形以及易损伤的特性. 希望本文计算得到的 Cr 掺杂 CuZr, 的信息可以 为其他尺度下的理论建模提供有效的数据支撑,理 论结果可以为了解和进一步设计开发 Cu-Zr-Cr 掺 杂体系材料提供更多的帮助.

数据可用性声明

本文数据集可在科学数据银行数据库 https://www. doi.org/10.57760/sciencedb.j00213.00122 中访问获取.

参考文献

- Park J, Ahn M, Yu G, Kim J, Kim S, Shin C 2024 Mater. Today Commun. 38 107821
- [2] Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y 2018 Calphad 61 92
- [3] Wang T, Cullinan T E, Napolitano R E 2014 Acta Mater. 62 188
- [4] Nishiyama N, Amiya K, Inoue A 2007 J. Non-Cryst. Solids 353 3615
- [5] Inoue A 2000 Acta Mater. 48 279
- [6] Yu J, Zhao F, Yang H Y, Liu J B, Ma J E, Fang Y T 2023 J. *Zhejiang Univ. Sci. A* 24 206 (in Chinese) [余健, 赵峰, 杨惠 雅, 刘嘉斌, 马吉恩, 方攸同 2023 浙江大学学报-科学 A 24 206]
- [7] Zeng K J, Hämäläinen M 1995 J. Alloys Compd. 220 53
- [8] Liu Q, Zhang X, Ge Y, Wang J, Cui J Z 2006 Metall. Mater. Trans. A 37 3233

- [9] Wu G, Dong K, Xu Z, Xiao S, Wei W, Chen H, Li J, Huang Z, Li J, Gao G, Kang G, Tu C, Huang X 2022 *Railway Eng. Sci.* **30** 437
- [10] Zeng K J, Hämäläinen M, Lukas H L 1994 J. Phase Equilib. 15 577
- [11] Zinkle S J 2016 Phys. Scr. T167 014004
- [12] Preston S D, Bretherton I, Forty C B A 2003 Fusion Eng. Des. 66-68 441
- [13] Taubin M L, Solntseva E S, Chesnokov D A 2017 Int. J. Hydrogen Energy 42 24541
- [14] Solntceva E S, Taubin M L, Bochkov N A, Solntsev V A, Yaskolko A A 2016 Int. J. Hydrogen Energy 41 7206
- [15] Higashino S, Miyashita D, Ishimoto T, Miyoshi E, Nakano T, Tane M 2025 Addit. Manuf. 102 104720
- [16] Lu Y, Xie G, Wang D, Zhang S, Zheng W, Shen J, Lou L, Zhang J 2018 Mater. Sci. Eng., A 720 69
- [17] Lu Y X, Bai C L, Shi E W, Fang X, Li Z G 2009 China's Advanced Materials Science and Technology Development Roadmap to 2050 (Beijing: Science Press) p79 (in Chinese)
 [路甬祥, 白春礼, 施尔畏, 方新, 李志刚 2009 中国至 2050 年先 进材料科技发展路线图 (北京: 科学出版社) 第 79 页]
- [18] Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd. 509 2885
- [19] Zhang D, Wang J, Dong K, Hao A 2018 Comput. Mater. Sci. 155 410
- [20] Wei X, Chen Z, Kong L, Wu J, Zhang H 2022 Materials 15 5990
- [21] Zhang W H, Halet J F, Mori T 2023 J. Mater. Chem. A 11 24228
- [22] Caliskan S, Almessiere M A, Baykal A, Slimani Y 2023 Comput. Mater. Sci. 226 112243
- [23] Cheng Z, Peng Z, Zhong B, Liu H, Lu Z, Zhu S, Liu J 2023 *Intermetallics* 160 107918
- [24] Han Y, Chen J, Lin M, Zhang K, Lu H 2023 Vacuum 214 112239
- [25] Li Y, Li J, Wu W, Gong J, Song X, Wang Y, Chen Z 2023 Vacuum 215 112269
- [26] Lu Z Q, Wang F, Liu Y H 2021 Sci. Rep. 11 12720
- [27] Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78
- [28] Das S, Chattopadhyaya S, Bhattacharjee R 2021 Mater. Today: Proc. 46 6324
- [29] Wu F, Chen H, Qiao J, Hou Y, Yan R, Yang Z 2023 Eur. Phys. J. B 96 93
- [30] Hamad B 2018 J. Electron. Mater. 47 4047
- [31] Yamaguchi K, Song Y C, Yoshida T, Itagaki K 2008 J. Alloys Compd. 452 73
- [32] Ding C, Liu Q, Sun Q, Feng L 2024 IEEJ Trans. Electr. Electron. Eng. 19 1916
- [33] Banu S L, Veerapandy V, Fjellvåg H, Vajeeston P 2023 ACS Omega 8 13799
- [34] Okamoto H 2008 J. Phase Equilib. Diffus. 29 204
- [35] Okamoto H 1997 J. Phase Equilib. 18 220

- [36] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
- [37] Kohn W, Sham L J 1965 *Phys. Rev.* **140** A1133
- [38] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [39] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
- [40] BLÖCHL P E 1994 *Phys. Rev. B* **50** 17953
- [41] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [42] Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299
- [43] Savrasov S Y 1996 *Phys. Rev. B* **54** 16470
- [44] Gonze X, Lee C 1997 Phys. Rev. B 55 10355
- [45] Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515
- [46] Allmann R, Hinek R 2007 Acta Crystallogr. Sect. A: Found. Crystallogr. 63 412
- [47] Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918
- [48] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002
- [49] Arias D, Abriata J P 1990 J. Phase Equilib. 11 452
- [50] Du J, Wen B, Melnik R, Kawazoe Y 2014 J. Alloys Compd. 588 96
- [51] Choudhury N, Chaplot S L 2006 Phys. Rev. B 73 094304
- [52] Srinivasu K, Modak B, Ghanty T K 2018 J. Nucl. Mater. 510 360
- [53] Noordhoek M J, Besmann T M, Andersson D, Middleburgh S C, Chernatynskiy A 2016 J. Nucl. Mater. 479 216
- [54] Wang K, Qiao Y J, Zhang X H, Wang X D, Zheng T, Bai C Y, Zhang Y M, Du S Y 2022 Acta Phys. Sin. 71 227102 (in Chinese) [王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹 2022 物理学报 71 227102]
- [55] Wang K, Qiao Y, Zhang X, Wang X, Zhang Y, Wang P, Du S 2021 Eur. Phys. J. Plus 136 409
- [56] Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
- [57] Cai J, Chen G L, Fang Z Z 1995 Acta Phys. Sin. 44 977 (in Chinese) [蔡军, 陈国良, 方正知 1995 物理学报 44 977]
- [58] Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104
- [59] Xu J, Qiu N, Huang Q, Du S 2020 J. Nucl. Mater. 540 152358
- [60] Abrahams S C, Hsu F S L 1975 J. Chem. Phys. 63 1162
- [61] Anderson O L 1963 J. Phys. Chem. Solids 24 909
- [62] Teter D M 1998 *MRS Bull.* **23** 22
- [63] Šimůnek A 2009 Phys. Rev. B 80 060103
- [64] Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275
- [65] Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater 33 93
- [66] Rahman M A, Mousumi K, Ali M L, Khatun R, Rahman M Z, Sahriar Hasan S, Hasan W, Rasheduzzaman M, Hasan M Z 2023 Results Phys. 44 106141
- [67]~ Zhang L, Jiao F, Qin W Q, Wei Q2023~ACS~Omega
8~43644
- [68] Barsoum M W, Radovic M 2011 Ann. Rev. Mater. Res. 41 195

DATA PAPERS

First-principles study of electronic structure, elastic properties and hardness of Cr-doped CuZr_2^*

WANG Kun^{1)†} XU Heyan²⁾ ZHENG Xiong¹⁾ ZHANG Haifeng¹⁾

1) (Material Processing Research Institute, Jiangxi Copper Technology Institute Co., Ltd., Nanchang 330096, China)

2) (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

(Received 3 March 2025; revised manuscript received 21 April 2025)

Abstract

In recent years, the design and development of new high-performance alloys based on first principles have received extensive attention. However, there are few reports on the structural design and thermodynamic properties of Cu-Zr alloys at nanoscale. In this work, based on the crystal structure characteristics of CuZr₂, 12 kinds of Cr-doped $CuZr_2$ structures are designed and optimized by the method of Cr atom doping through the first-principle calculation based on the density functional theory, and 6 kinds of mechanically and dynamically stable doped structure models are found. By calculating the electronic structure, elastic properties and hardness of the $CuZr_2$ and its dynamically stable Cr-doped structure, it is found that the studied objects have all energy bands that pass through the Fermi energy level and are metallic. The main contributors to the metallic properties of the $CuZr_2$ are the p and d orbital electrons of Zr, while the main contributors to the metallic properties of the 6 dynamically stable Cr-doped $CuZr_2$ structures are the p and d orbital electrons of Cr and Zr. Meanwhile, CuZr₂ has symmetrically distributed spin electrons, which do not show magnetism externally. However, the doping of Cr atoms increases the elemental species of the matrix. In addition to the difference of spin electrons brought by the d-orbital electrons of Cr atoms, the doped Cr atoms destroy the symmetrical distribution of electrons with different spin directions in the p- and d-orbitals of Zr atoms in the matrix, so that the designed 6 dynamically stable Cr-doped CuZr_2 structures exhibit ferromagnetic properties with magnetic moments ranging from $0.303\mu_{\rm B}$ to $5.243\mu_{\rm B}$. In addition, it is found that Cr atoms can improve the mechanical properties of CuZr₂. When the Cr atom is used to replace the Zr atom in the matrix, the elastic modulus and hardness of the material can be improved, and when the Cr atom is used to replace the Cu atom in the matrix, the machining properties of the material can be improved due to the reduction of hardness. The datasets presented in this work, including the band structure, density of states, and phonon dispersion frequency, are available from https://www.doi.org/10.57760/sciencedb.j00213.00122.

Keywords: first-principles, $CuZr_2$ alloy, doping

PACS: 71.15.Mb, 89.20.–a

CSTR: 32037.14.aps.74.20250264

DOI: 10.7498/aps.74.20250264

^{*} Project supported by the Jiangxi Copper Group Co., Ltd. First-class Scientific Research Projects, China (Grant No. YJY2023011).

 $[\]dagger$ Corresponding author. E-mail: wangkun1992@hrbeu.edu.cn

Institute of Physics, CAS

第一性原理计算研究Cr掺杂CuZr2的电子结构、弹性性质和硬度

王坤 徐鹤嫣 郑雄 张海丰

First-principles study of electronic structure, elastic properties and hardness of Cr-doped CuZr2

WANG Kun XU Heyan ZHENG Xiong ZHANG Haifeng

引用信息 Citation: Acta Physica Sinica, 74, 137101 (2025) DOI: 10.7498/aps.74.20250264 CSTR: 32037.14.aps.74.20250264 在线阅读 View online: https://doi.org/10.7498/aps.74.20250264 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

Ag, Cu掺杂氧化石墨烯吸附NH₃的第一性原理研究

First-principles study of NH₃ adsorption on Ag- and Cu doped graphene oxide

物理学报. 2025, 74(7): 073101 https://doi.org/10.7498/aps.74.20241737

In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算

First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3

物理学报. 2021, 70(3): 037101 https://doi.org/10.7498/aps.70.20201287

氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究

Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries 物理学报. 2025, 74(3): 033101 https://doi.org/10.7498/aps.74.20241461

Ca-Co(Zn)共掺杂对M型锶铁氧体性能影响的第一性原理计算研究 First-principles study of effects of Ca-Co (Zn) co-doping on properties of M-type strontium ferrite

物理学报. 2025, 74(6): 067501 https://doi.org/10.7498/aps.74.20241626

第一性原理研究钒、钨固溶对碳化钼力学性能的影响

First-principles studies of influence of V or W doping on mechanical properties of Mo₂C

物理学报. 2025, 74(10): 106301 https://doi.org/10.7498/aps.74.20250039

第一性原理研究Mg掺杂对LiCoO。正极材料结构稳定性及其电子结构的影响

 $First-principles \ study \ of \ effect \ of \ Mg \ doping \ on \ structural \ stability \ and \ electronic \ structure \ of \ LiCoO_2 \ cathode \ material$

物理学报. 2021, 70(13): 138201 https://doi.org/10.7498/aps.70.20210064