

《原子核物理评论》

www.npr.ac.cn

Nuclear Physics Review

Started in 1984

¹⁷⁸Hf同核异能态激发与退激路径研究

贺子阳 吴晓光 蒋伟 李聪博 周振翔 孙琪 郭明伟 吴鸿毅 李天晓 李智焕 樊瑞睿 唐靖宇 胡守扬 智宇 宋金兴 李沛玉 栾广源 陈雄军 胡世鹏 钟健 甘林 张智程 张奇玮 王朝辉 张苏雅拉吐 王德鑫 孙保华 庞萱 郑云 李笑梅 阮锡超 华辉

Study on the Excitation and Deexcitation Paths of ¹⁷⁸Hf Isomer

HE Ziyang, WU Xiaoguang, JIANG Wei, LI Congbo, ZHOU Zhenxiang, SUN Qi, GUO Mingwei, WU Hongyi, LI Zhihuan, FAN Ruirui, TANG Jingyu, LI Tianxiao, HU Shouyang, ZHI Yu, SONG Jinxing, LI Peiyu, LUAN Guangyuan, ZHANG Qiwei, WANG Zhaohui, CHEN Xiongjun, HU Shipeng, ZHONG Jian, GAN Lin, ZHANG Zhicheng, ZHANG Suyalatu, WANG Dexin, SUN Baohua, PANG Xuan, ZHENG Yun, LI Xiaomei, RUAN Xichao, HUA Hui

在线阅读 View online: https://doi.org/10.11804/NuclPhysRev.41.2023CNPC27

引用格式:

贺子阳, 吴晓光, 蒋伟, 李聪博, 周振翔, 孙琪, 郭明伟, 吴鸿毅, 李智焕, 樊瑞睿, 唐靖宇, 李天晓, 胡守扬, 智宇, 宋金兴, 李沛 玉, 栾广源, 张奇玮, 王朝辉, 陈雄军, 胡世鹏, 钟健, 甘林, 张智程, 张苏雅拉吐, 王德鑫, 孙保华, 庞萱, 郑云, 李笑梅, 阮锡超, 华辉.¹⁷⁸Hf同核异能态激发与退激路径研究[J].原子核物理评论, 2024, 41(1):256-262. doi: 10.11804/NuclPhysRev.41.2023CNPC27

HE Ziyang, WU Xiaoguang, JIANG Wei, LI Congbo, ZHOU Zhenxiang, SUN Qi, GUO Mingwei, WU Hongyi, LI Zhihuan, FAN Ruirui, TANG Jingyu, LI Tianxiao, HU Shouyang, ZHI Yu, SONG Jinxing, LI Peiyu, LUAN Guangyuan, ZHANG Qiwei, WANG Zhaohui, CHEN Xiongjun, HU Shipeng, ZHONG Jian, GAN Lin, ZHANG Zhicheng, ZHANG Suyalatu, WANG Dexin, SUN Baohua, PANG Xuan, ZHENG Yun, LI Xiaomei, RUAN Xichao, HUA Hui. Study on the Excitation and Deexcitation Paths of ¹⁷⁸Hf Isomer[J]. Nuclear Physics Review, 2024, 41(1):256–262. doi: 10.11804/NuclPhysRev.41.2023CNPC27

您可能感兴趣的其他文章

Articles you may be interested in

一些近期发现的同核异能态的壳模型解释

Shell-Model Explanation on Some Newly Discovered Isomers 原子核物理评论. 2020, 37(3): 447-454 https://doi.org/10.11804/NuclPhysRev.37.2019CNPC18

丰中子A~100质量区内的扁椭球高K同核异能态

Oblate High-K Isomers in the Neutron-rich A~100 Region 原子核物理评论. 2022, 39(1): 23-29 https://doi.org/10.11804/NuclPhysRev.39.2021081

多任务神经网络对原子核低激发谱的研究

Studies of Nuclear Low-lying Excitation Spectra with Multi-task Neural Network 原子核物理评论. 2022, 39(3): 273-280 https://doi.org/10.11804/NuclPhysRev.39.2022043

上海激光电子伽马源(SLEGS)核共振荧光谱仪设计及探测器性能分析

Nuclear Resonance Fluorescence Spectrometer Design and Detector Performance Analysis of Shanghai Laser Electron Gamma Source(SLEGS)

原子核物理评论. 2023, 40(1): 58-65 https://doi.org/10.11804/NuclPhysRev.40.2022040

N=127同中子素²¹⁹U和²¹⁶Ac的α衰变研究

 α –decay Studies of the $N\!\!=\!\!127$ Isotones $^{219}\mathrm{U}$ and $^{216}\mathrm{Ac}$

原子核物理评论. 2020, 37(3): 536-541 https://doi.org/10.11804/NuclPhysRev.37.2019CNPC49

上海激光康普顿散射伽马源的发展和展望

Development and Prospect of Shanghai Laser Compton Scattering Gamma Source 原子核物理评论. 2020, 37(1): 53-63 https://doi.org/10.11804/NuclPhysRev.37.2019043 文章编号: 1007-4627(2024)01-0256-07

¹⁷⁸Hf同核异能态激发与退激路径研究

贺子阳¹, 吴晓光^{1,†}, 蒋伟^{2,3}, 李聪博¹, 周振翔⁴, 孙琪¹, 郭明伟¹, 吴鸿毅⁴, 李智焕⁴, 樊瑞睿^{2,3}, 唐靖宇^{2,3}, 李天晓¹, 胡守扬¹, 智宇¹, 宋金兴¹, 李沛玉¹, 栾广源¹, 张奇玮¹, 王朝辉¹, 陈雄军¹, 胡世鹏⁵, 钟健⁵, 甘林⁵, 张智程⁵, 张苏雅拉吐⁶, 王德鑫⁶, 孙保华⁷, 庞 萱⁷, 郑云¹, 李笑梅¹, 阮锡超¹, 华辉⁴

(1.中国原子能科学研究院,北京 102413;
2.中国科学院高能物理研究所,北京 100049;
3.散裂中子源科学中心,广东东莞 523803;
4.北京大学物理学院,北京 100871;
5.深圳大学物理与光电工程学院,广东深圳 518060;
6.内蒙古民族大学物理与电子信息学院,内蒙古 通辽 028000;
7.北京航空航天大学物理学院,北京 100191)

摘要:具有长寿命高激发态的同核异能素在国家战略安全和储能领域有重要的意义,其关键技术在于掌握人 工诱发同核异能素快速退激到基态。近些年该项技术研究遇到了瓶颈,需从原子核结构研究的角度出发,通 过对同核异能素的形成、受激激发和退激机制的深入研究,突破遇到的瓶颈,进而掌握诱发同核异能素快速 退激到基态的关键技术。本工作是在实验技术方面利用白光中子束流轰击Hf靶,创新性地建立了由氟化钡 探测器阵列GTAF-II进行全能量测量与高纯锗探测器进行特征γ射线测量,再结合白光中子飞行时间测量组 成的三重符合测量系统,通过对实验数据的分析发现了¹⁷⁸Hf同核异能态激发到过渡能级并快速释放的迹象。 关键词:¹⁷⁸Hf同核异能素;诱发衰变;核能释放;多探头多参数伽马谱符合测量装置 中图分类号:O571.23 文献标志码: A DOI: 10.11804/NuclPhysRev.41.2023CNPC27

0 引言

同核异能态是原子核的一种激发态,其特殊的结构 抑制了它的自发衰变^[1]。具有长寿命激发态的核素也 被称为同核异能素,其在原子核结构与天体物理学中有 重要的研究意义。在清洁能源、大容量储能设备、核时 钟、医疗诊断与治疗、γ射线激光器等领域也有广泛的 应用前景^[2]。在过去的二十年中,同核异能素相关的 实验迅速增长^[3]。

在 Chadwick^[4] 发现中子前, Soddy^[5] 提出核素内可 能存在多个结构的概念。1921年, Hahn^[6] 首次从实验 上发现了²³⁴Pa的同核异能素存在的证据, 但是直到 1936年 von Weizsäcker^[7] 提出同核异能素的理论解释。 与此同时, 中子轰击实验发现了许多新的同核异能素, 如 Kurtchatov 等^[8]和 Szilard 与 Chalmers^[9] 发现的 Br 和 In 的同核异能素。实验发现*A*=180 核区存在大量高激发 能(>1 MeV)和长寿命(>1 ms)的同核异能素^[10]。

根据其形成和存在的机制不同,同核异能素主要被 分为五类^[3]:第一类是自旋同核异能素(Spin isomers)。 其形成和存在的原因是原子核激发态衰变时发射的γ射 线难以满足自旋选择定则(包括角动量守恒)^[10],标志 性核素是^{180m}Ta^[11-12]。第二类是K同核异能素(K-isomers)。它是自旋同核异能素的另一种形式,其主要体 现在激发态的衰变不仅取决于核自旋矢量的大小、还取 决于核自旋矢量的方向,标志性核素是¹⁸⁰Hf^[13]。第三 类是形状同核异能素(Shape isomers)。当某一原子核的 基态存在形变并且其不同的势能面有多个极小值时,如 果次极小值的势能面足够深,就可能会导致形状同核异 能素^[3]的产生,标志性核素是⁷²Kr^[14]。第四类是裂变 同核异能素(Fission isomers)^[15-16]。它是形状同核异能 素的一种,通常在重原子核中被发现。裂变同核异能素 的衰变是发射γ射线退激到基态或进行自发裂变相互竟

收稿日期: 2023-06-30; 修改日期: 2023-10-25

基金项目:国家自然科学基金资助项目(U1932209, 11975315, U2167202, U2167201)

作者简介: 贺子阳(1997-), 合肥人, 硕士研究生, 从事粒子物理与原子核物理研究; E-mail: ziyang.he@outlook.com

[†]通信作者:吴晓光, E-mail: xingkong1973@sina.com

争的结果,标志性核素是²⁴²Am^[17]。第五类是 Seniority isomer^[18],是指原子核电磁衰变受到辛弱量子数相 关选择规则阻碍的核素,其存在主要受到核子-核子相 互作用的四极配对矩阵元的支配。标志性核素是¹²²Sn^[3]。

同核异能素在医学成像^[19]和穆斯堡尔谱学^[20]方 面有成熟的应用,但是同核异能素作为一种储能材料得 到应用需要进一步的研究。找到一种人工可控的方式实 现对长寿命和高激发能的同核异能素的受激激发和退激 是技术的关键。1999年,Belic等^[21]实现了^{180m}Ta的 同核异能素的人工诱发退激。^{180m}Ta的激发能只有 77 keV,远小于诱发它提前衰变的所需的1 MeV 光子能 量,因此难以被广泛应用。^{178m2}Hf是一个具有 31 年寿 命和 2.4 MeV 激发能的同核异能态,其较长的寿命和较 高的激发能使其具有更高的应用价值。1999年 Collins 宣称可以用小于 100 keV 的 X 射线诱发^{178m2}Hf 的提前 衰变^[22],但是他的实验结果存在争议^[23]。目前的研究 表明存在多种方式可以诱发同核异能素的提前衰变,如 光子诱发、库仑激发、热中子俘获^[24]、电子-原子核相 互作用^[25-27]。

到目前为止,研究人员还没有找到一个有效的技术 方法实现人工诱发同核异能素的提前衰变,特别是对 ^{178m2}Hf的研究遇到了瓶颈,这就需要从原子核结构研 究的角度出发,通过对同核异能素的形成、受激激发和 退激机制的深入研究,突破瓶颈,进而掌握诱发同核异 能素提前衰变的关键技术。理论研究表明,诱发同核异 能素提前衰变的一种可行机制是同核异能素先被诱发到 附近短寿命的过渡态^[28]再完成退激,释放能量。

2006年,高早春等^[29]在投影壳模型(PSM)中引入 γ自由度,建立含有多准粒子组态的三轴投影壳模型 (TPSM),再现^{178m2}Hf的各条多准粒子带和实验观测到 的基于基带的γ振动带。如果^{178m2}Hf的内禀组态具有 和基态一样的γ自由度,则基于^{178m2}Hf内禀组态之上 将可能同样存在若干条转动带。其中理论预言第一个 14⁺态位于^{178m2}Hf之上约860 keV处。由于这些转动带 均属于相同的内禀组态,从^{178m2}Hf(16⁺)态向14⁺激发 比较容易实现。因此,该14⁺态可被当作^{178m2}Hf激发 和退激过程中的短寿命过渡态^[30]。有了理论预言,实 验上验证是否存在着这样一个过渡能级,并找到其激发 和退激的路径,有重要的科学意义和应用价值。本项目 利用白光中子束流轰击Hf靶,结合氟化钡探测器阵列 (GTAF-II)^[31]与高纯锗探测器组成的多探头多参数 伽 马谱符合测量装置,对其同核异能态激发和退激路径进 行研究。希望能找到理论预言的过渡态存在的证据,并 发现其退激到低激发态的路径。

1 实验装置和设计原理

实验在中国散裂中子源反角白光中子实验终端^[32] 完成。使用能区跨度超过 8 个量级 (1 eV~100 MeV)的 白光中子脉冲束流轰击一个直径 50 mm,厚度 1 mm 的 天然 Hf靶,其中主要成分含有 18.60% 的¹⁷⁷Hf,27.28% 的¹⁷⁸Hf,13.82% 的¹⁷⁹Hf,35.08% 的¹⁸⁰Hf,在本次实 验中靶材料放在大气中。本次实验,通过中子核反应首 先布居¹⁷⁸Hf的同核异能态,然后通过不同能量的白光 中子激发¹⁷⁸Hf核同核异能态到过渡能级并快速退激到 低激发态。实验上使用有40 个氟化钡探测单元的GTAF-II 阵列和 1 个高纯锗探测器相结合探测靶核发射的伽马射 线,数据获取系统采用 XIA 的通用数字化获取系统^[33]。 通过对氟化钡球测量的加和峰和高纯锗探测器测量的特 征伽马峰与白光中子飞行时间三重符合开窗,寻找并验 证是否存在理论预言的过渡能级。

实验的探测器阵列分成两部分。"探测器装置一"结构如图1所示,由添加了1个高纯锗探测器的GTAF-II 阵列及相关仪器和实验数据获取系统组成,利用氟化钡 探测阵列的高效率结合高纯锗探测器的高分辨特性初步 寻找是否存在理论预言的过渡能级。

图 1 添加了高纯锗探测器的GTAF-II 阵列

"探测器装置二"结构如图2所示,由溴化镧探测器 和高纯锗探测器组成,利用溴化镧探测器的高时间分辨 和高纯锗探测器的高能量分辨来精细寻找¹⁷⁸Hf同核异

图 2 探测器阵列示意图

能态的退激路径。本次实验用到的白光中子束流是具有 很宽的能谱的脉冲束流,可以用中子飞行时间(Time-offlight)来确定中子的能量^[34]。本实验中利用中子飞行 时间开窗来判定¹⁷⁸Hf的同核异能态激发到过渡态是否 和某个中子存在时间关联。

本论文工作分析的实验数据主要来自"探测器装置 一"。该探测装置进行全能量伽马谱测量工作的基本原 理是, 当原子核处于某个激发态向下退激到基态的过程 中,氟化钡探测阵列会高效地测量各条不同路径退激下 来的级联伽马射线,利用级联伽马之间的时间关联通过 快时间符合记录下来,并把具有符合关系伽马射线能量 相加得到加和峰,此时测量得到的加和峰能量就对应着 激发态的能量值。同时我们利用高分辨率的高纯锗探测 器测量¹⁷⁸Hf同核异能态的退激到低激发的某条特征伽 马射线,并与氟化钡探测阵列的加和峰进行符合开窗, 进而判定加和峰观测到的激发态是否属于¹⁷⁸Hf。在此 基础上,再与中子飞行时间进行三重符合开窗,如果存 在和某个中子有时间关联,再进一步证明这个激发态是 否是理论预言存在的一个过渡态,是否是由中子诱发到 这个过渡态的。如图3所示。基于以上的研究方法和思 路,我们希望能间接地判断是否存在理论预言的过渡能 级。因为¹⁷⁸Hf的这个过渡态有多种退激路径,但其退 激的级联γ的总能量和是确定的,等于过渡态的能量。 通过使用具有高效率氟化钡探测单元组成的GTAF-II 阵列尽可能地收集¹⁷⁸Hf核的这个过渡杰退激过程中发 射的级联γ射线,即在测量得到的能谱中理论预言的过 渡态能量值附近对应出现一个"加和峰"。

图 3 高纯锗结合 GTAF-II 和中子飞行时间进行三重符 合测量示意图

另外, 白光中子束流中存在很强的束内本底^[35-36] 干扰加和峰的观察。本次实验使用具有高能量分辨率的 高纯锗探测器替换 GTAF-II 阵列中的一个氟化钡探测 单元,进行符合开窗可以减少束内本底的影响。基于 ¹⁷⁸Hf核结构的特点,我们使用¹⁷⁸Hf的4⁺态衰变到2⁺ 态发射的能量为213 keV的γ射线来判断GTAF-II 阵列 收集到的γ射线是¹⁷⁸Hf退激过程中产生的还是束内本 底导致的。从图4(a)和图4(b)的对比中可以看到,图4(a) 显示的是未经筛选的加和峰能谱,过高的束内本底淹没 了实验上所能观察到的现象。图4(b)显示的是经过高纯 锗探测器探测到的能量为213 keV的γ射线筛选后的加 和峰能谱图,本底得到了极大的抑制,数据处理上是对 高纯锗213 keV峰开窗看GTAF-II 的符合加和峰,符合 的时间窗宽度是50 ns。

2 数据分析与讨论

如图 4(b) 所示,通过对测量得到的实验数据分析, 我们得到了通过高纯锗开窗¹⁷⁸Hf特征伽马 213 keV 后 生成的 GTAF-II 加和峰能谱。从能谱中可以看出两个 明显的能峰,一个能峰位于 3.0 MeV 处,另一个宽的能 峰在6和9 MeV之间。其中,6~9 MeV 的能峰是¹⁷⁸Hf(n,γ) 反应后吸收一个中子形成的复合态退激下来的各种γ射 线加和后测量得到的能峰。而 3.0 MeV 的峰可能是理论 预言的 14⁺过渡态所退激下来加和后测量得到能峰。 通过把实验测量值和理论计算的¹⁷⁸Hf核过渡态能 量值进行对比,如图5所示符合较好,理论预言的过渡 能级的能量为3.3 MeV,实验上通过对213 keV进行开 窗后得到的加和峰能量为3.0 MeV,因此实验上测得的 能级的能量为3.2 MeV。故初步判断这是可能存在的理 论预言的过渡态。进一步还需要和中子飞行时间进行三 重符合开窗来验证。

图 6 展示的是白光中子飞行时间谱,在 330~340 μs 区间存在显著的飞行时间峰,判断可能该能量的中子诱 发衰变。图 7 展示的是高纯锗对 213 keV 和 330~340 μs

开窗后的三重符合加和峰能谱。在 3.0 MeV 处存在明显 的能峰,初步判定在 3.0 MeV 处的这个过渡态与中子诱 发存在时间关联。

通过对图4(b)和图7中测量得到的数据分析,再结合图5中的理论计算与实验测量值得对比,我们确认 图4(b)和图7中出现的3.0 MeV处的能量值就是理论预 言存在的14⁺过渡态的能量值。为了进一步验证我们的 测量结果不是由本底和其他偶然符合带来的,我们对能 量在213 keV 附近和飞行时间在330~340 μs范围附近进 行了开窗分析。

图 8 显示的是高纯锗开窗 300 keV能量的γ射线 (¹⁷⁸Hf的 213 keV 附近的本底区域的γ射线)、中子飞行 时间 330~340 us 的能谱,在过渡能级对应的能量区域 未能看见峰。图9显示的是高纯锗开窗100 keV(¹⁷⁸Hf 的 213 keV 附近的本底区域的γ射线)、中子飞行时间 330~340 us的能谱,在过渡能级对应的能量区域未能看 见峰。图10显示的是高纯锗开窗213 keV、中子飞行时 间 350~360 µs(非中子飞行时间峰的区域)的能谱,在过 渡能级对应的能量区域未能看见峰。图11显示的是高 纯锗开窗 213 keV、中子飞行时间 310~320 μs(非中子飞 行时间峰的区域)的能谱,在过渡能级对应的能量区域 未能看见峰。需要说明的是图6的中子飞行时间谱是高 纯锗213 keV开窗后得到的,在图中出现了一系列的峰, 有激发到3 MeV 的中子飞行时间峰,也有¹⁷⁸Hf共振吸 收的峰,在310~320 µs, 350~360 µs 范围内出现的那些 较强的峰是属于共振吸收的峰,并没有和3 MeV 有时 间关联,所以在图 10 和图 11 中并没有看到 3 MeV 位置 出现峰。

因此,通过对以上实验数据的综合分析,发现了 ¹⁷⁸Hf核同核异能态激发到过渡能级并快速释放的迹象, 并且这个过渡态有可能如理论预言所说是¹⁷⁸Hf核同核 异能态激发和退激过程中的一个过渡能级。

图 10 GTAF-II 加和峰能谱 (本底谱三) 高纯锗开窗 213 keV 能量的γ射线、中子飞行时间 350~360 μs。

高纯锗开窗 213 keV 能量的γ射线、中子飞行时间 310 - 320 μs。

3 总结

长寿命高激发能的同核异能素在能源和国家战略安 全等领域有重要意义。但是,人工诱发同核异能素提前 衰变的关键技术仍有待研究。理论预言了存在一个14⁺ 的过渡态,并且^{178m2}Hf被激发到该过渡态能得到核能 的快速释放。

本次实验用白光中子束流轰击Hf靶,利用氟化钡

探测阵列的高效率和高纯锗探测器的高分辨特性相结合, 进行全能量加和峰和特征伽马射线与中子飞行时间的三 重符合开窗,如图5所示,发现了¹⁷⁸Hf核同核异能态 激发到过渡能级并快速释放的迹象,并且这个过渡态有 可能如理论预言所说是¹⁷⁸Hf核同核异能态激发和退激 过程中的一个过渡能级。下一步的工作需要在不同的实 验条件下进一步确认这个过渡态的存在,并且发现能够 实现同核异能素能量加速释放的途径。

致谢 感谢 Back-n 合作组对本次实验的大力支持,提供 了很好的白光中子束流和相关的仪器设备,并给予了相 关的技术支持。感谢 CIAE 核数据测量部提供了氟化钡 探测阵列和高纯锗探测器,并给予人员和技术上的大力 支持。感谢北京大学在数字化获取和数据分析方面给予 的大力支持。感谢深圳大学,内蒙古民族大学和北京航 空航天大学在人员和实验设备上给予的支持。

参考文献:

- JAIN A K, MAHESHWARI B, GOEL A. Nuclear Isomers: A Primer[M]. Springer Nature, 2021.
- [2] WALKER P M, CARROLL J J. Physics Today, 2005, 58(6).
- [3] GARG S, MAHESHWARI B, SINGH B, et al. Atomic Data and Nuclear Data Tables, 2023, 150: 101546.
- [4] CHADWICK J. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1932, 136(830): 692.
- [5] SODDY F. Nature, 1917, 99(2482): 244.
- [6] HAHN O. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 1921, 54(6): 1131.
- [7] WEIZSÄCKER C F V. Naturwissenschaften, 1936, 24(51): 813.
- [8] KURTCHATOV B, KURTCHATOV J, LATYCHEV G. Comptes Rendus Acad Sci, 1935, 200: 1199.
- [9] SZILARD L, CHALMERS T. Nature, 1935, 135(3403): 98.
- [10] WALKER P, DRACOULIS G. Nature, 1999, 399(6731): 35.
- [11] EBERHARDT P, GEISS J, LANG C, et al. Zeitschrift f
 ür Naturforschung A, 1955, 10(9-10): 796.
- [12] BAUMINGER E, COHEN S. Phys Rev, 1958, 110(4): 953.
- [13] BURSON S, BLAIR K, KELLER H, et al. Phys Rev, 1951, 83(1):62.
- [14] GÖRGEN A, CLEMENT E, BOUCHEZ E, et al. Shape Coexistence in Light Krypton isotopes[C]//AIP Conference Proceedings: volume 802. American Institute of Physics, 2005: 275.
- [15] VANDENBOSCH R. Annual Review of Nuclear Science, 1977, 27(1): 1.
- [16] BJØRNHOLM S, LYNN J. Reviews of Modern Physics, 1980, 52(4): 725.
- [17] BARNES R, HENDERSON D, HARKNESS A, et al. Journal of Inorganic and Nuclear Chemistry, 1959, 9(2): 105.
- [18] VAN ISACKER P. Journal of Physics: Conference Series:, 2011, 322: 012003.
- [19] DRACOULIS G, WALKER P, KONDEV F. Reports on Progress in Physics, 2016, 79(7): 076301.

- [20] MÖSSBAUER R L. Zeitschrift für Physik, 1958, 151: 124.
- [21] BELIC D, ARLANDINI C, BESSERER J, et al. Phys Rev C, 2002, 65(3): 035801.
- [22] COLLINS C, DAVANLOO F, IOSIF M, et al. Phys Rev Lett, 1999, 82(4): 695.
- [23] YANG T L, ZE R D, WU H L, et al. Phys Rev C, 2013, 88(1): 014312.
- [24] CARROLL J, LITZ M, NETHERTON K, et al. Nuclear Structure and Depletion of Nuclear Isomers Using Electron Linacs[C]//AIP Conference Proceedings: volume 1525. American Institute of Physics, 2013: 586.
- [25] ZADERNOVSKY A, CARROLL J. Hyperfine interactions, 2002, 143: 153.
- [26] HARSTON M, CARROLL J. Laser Physics, 2005, 15(4): 487.
- [27] RZADKIEWICZ J, POLASIK M, SŁABKOWSKA K, et al. Phys Rev Lett, 2021, 127(4): 042501.
- [28] CARROLL J J. Nucl Instr and Meth B, 2007, 261(1-2): 960.
- [29] GAO Z C, CHEN Y, SUN Y. Phys Lett B, 2006, 634(2-3): 195.
- [30] GAO Zaochun, TU Ya, CHEN Yongshou. Y Degree of Freedom for

the ¹⁷⁸Hf Isomeric State[C]//The 11th National Nuclear Structure Conference and the 7th National Nuclear Structure Symposium. Changchun: China Institute of Atomic Energy, 2006: 109. (in Chinese)

(高早春,图雅,陈永寿.¹⁷⁸Hf同质异能态的γ自由度[C]//第十一 届全国核结构大会暨第七次全国核结构专题讨论会.长春:中国 原子能科学研究院,2006:109.)

- [31] TANG J Y, AN Q, BAI J B, et al. Nuclear Science and Techniques, 2021, 32: 1.
- [32] CHEN H, WANG X L. Nature Materials, 2016, 15(7): 689.
- [33] WU H, LI Z, TAN H, et al. Nucl Instr and Meth A, 2020, 975: 164200.
- [34] AN Q, BAI H, BAO J, et al. Journal of Instrumentation, 2017, 12(07): P07022.
- [35] ZHANG L, JING H, TANG J, et al. Applied Radiation and Isotopes, 2018, 132: 212.
- [36] LI Q, JING H, ZHOU B, et al. Nucl Instr and Meth A, 2020, 980: 164506.

Study on the Excitation and Deexcitation Paths of ¹⁷⁸Hf Isomer

HE Ziyang¹, WU Xiaoguang^{1,†}, JIANG Wei^{2,3}, LI Congbo¹, ZHOU Zhenxiang⁴, SUN Qi¹, GUO Mingwei¹, WU Hongyi⁴,

LI Zhihuan⁴, FAN Ruirui^{2,3}, TANG Jingyu^{2,3}, LI Tianxiao¹, HU Shouyang¹, ZHI Yu¹, SONG Jinxing¹, LI Peiyu¹,

LUAN Guangyuan¹, ZHANG Qiwei¹, WANG Zhaohui¹, CHEN Xiongjun¹, HU Shipeng⁵, ZHONG Jian⁵, GAN Lin⁵,

ZHANG Zhicheng⁵, ZHANG Suyalatu⁶, WANG Dexin⁶, SUN Baohua⁷, PANG Xuan⁷,

ZHENG Yun¹, LI Xiaomei¹, RUAN Xichao¹, HUA Hui⁴

(1. China Institute of Atomic Energy, Beijing 102413, China;

2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;

3. Spallation Neutron Source Science Center, Dongwan 523803, Guangdong, China;

4. School of Physics, Peking University, Beijing 100871, China;

5. School of Physics and Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong, China;

6. College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China; 7. School of Physics, Beihang University, Beijing 10019, China)

. school of Physics, beinang University, beijing 10019, China)

Abstract: Isomer with long lifetime and high excitation energy is of great significance in the fields of national strategic security and energy storage. Mastering the method of inducing isomer to decay is the key technology. However, this technology has got into trouble in recent years. For mastering the method of inducing isomer to decay, it is beneficial to start the research on the formation, excitation and de-excitation mechanism of isomer from the view of atomic nucleus structure. In this work, we used a white light neutron beam to bombard the Hf target in terms of experimental technology, and innovatively established a triple coincidence measurement system consisting of a barium fluoride detector array GTAF- II for full energy measurement, a high-purity germanium detector for characteristic γ -ray measurement, and a white light neutron time-of-flight measurement. Through the analysis of experimental data, we found the sign of the ¹⁷⁸Hf isomeric state exciting to the transition level and releasing rapidly.

Key words: ¹⁷⁸Hf Isomer; induced decay; nuclear energy release; multi-probe and multi-parameter gamma spectrum coincidence measureme

Received date: 30 Jun. 2023; Revised date: 25 Oct. 2023

Foundation item: National Natural Science Foundation of China(U1932209, 11975315, U2167202, U2167201)

^{*} Corresponding author: WU Xiaoguang, E-mail: xingkong1973@sina.com