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Abstract: Artificial Neural Network (ANN) has become a powerful tool in the field of scientific research with its
powerful information encapsulation ability and convenient variational optimization method. In particular, there have
been many recent advances in computational physics to solve variational problems. Deep Neural Network (DNN) is
used to represent the wave function to solve quantum many-body problems using variational optimization. In this
work we used a new Physics-Informed Neural Network (PINN) to represent the Cumulative Distribution Function
(CDF) of some classical problems in quantum mechanics and to obtain their ground state wave function and ground
state energy through the CDF. By benchmarking against the exact solution, the error of the results can be controlled
at a very low level. This new network architecture and optimization method can provide a new choice for solving

quantum many-body problems.
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0 Introduction

With the rapid growth of data and computing re-
sources, Machine Learning (ML) technology is playing an
increasingly important role in more and more areas. For
some physical phenomena expressed by partial differential
equations, it is difficult for traditional methods to solve
complex situations such as high dimensions. Universal ap-
proximation theorem!!  enables deep neural networks
(DNNs) to solve variational function problems. The deep
learning based method proposed in this paper is a new solu-
tion, by minimizing the difference between variational
functions and partial differential equations, DNN can trans-
form physical problems[z] into optimization problemsm
that can be solved with modern deep learning libraries.

In the case of variational equations, physical con-
straints play an essential rolel*®]. In this paper, instead of
using DNN to represent the wave function directly, we use
DNN to represent the cumulative distribution function
(CDF) ffw f(x)dx" of the wave function ¥(x). In order to
improve the efficiency of data learning, we apply the unit-
ary constraint to the variational function, and the whole
computational process does not need to compute numerical
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integration, thus greatly reducing the computational
amount. These advantages make the method in this paper
more suitable for dealing with multiple problems with a
large amount of computation.

In this paper, we reviewed that physically constrained
neural networks can be used as efficient trial wave func-
tions in solving Schrodinger equations with the harmonic
oscillator and the Woods-Saxon potential. We have also ex-
tended this method to Schrodinger equation with the double-
well potentials in the same framework.

1 Methods

Unlike the previous direct expression of the wave
function by the Variational Artificial Neural Networks
(VANN)> %11 e obtain the wave function indirectly
through the CDF, and the relationship between the two is as
follows

Fx) = [y (), (1)

d
w0 = 52, @
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where F(x) is the CDF, ¢(x) is the wave function. Auto
differentiation (auto—diff)[u:| tools in deep learning librar-
ies can be used to compute the derivative dF/dx. The
wave function obtained by the CDF satisfies the normalisa-
tion, thus avoiding numerical integration and simplifying
the calculation. Furthermore, the value range of the CDF is
between (0, 1), which makes it much easier to train. Due to
the above two advantages, our algorithm has less computa-
tion and training cycles, while maintaining good accuracy.

The input of the neural network is the n-dimensional
spatial coordinates x. The first layer of the DNN has
m =32 hidden neurons whose values are computed by
hy =0 (xW;+b;), where W, is the weight matrix with
nxm elements and b, is the bias vector with m values. To
avoid linear superposition, a non-linear function o, called
the activation function, is introduced, which can improve
the representational ability of the DNN. The second layer
works similarly, taking the output of the first layer as the
input of the second layer h, = o(h;W, +b,), allowing mul-
tiple hidden layers to be stacked. The last layer returns the
value of the CDF.

Since the CDF is monotonic, the variational function
of the DNN fitting must also be monotonic. To solve this
problem, we add a non-negative constraint to the weight
W;. Theoretically, nonlinear functions such as sigmoid,
tanh and relu can all be used as the activation function of
the DNN, but in practice, since we need continuous and
monotonic activation functions, and the derivative cannot
be 0, we finally choose the sigmoid function as the activa-
tion function, which satisfies the above conditions. And the
sigmoid function has a range of (0, 1), which guarantees the
output range of the last layer.

The goal of the training is to minimise the violation
between the wave function obtained by the DNN and the
Schrodinger equation, so that the ground state energy and
the corresponding wave function can be found,

Hpr) = Eoly), A3)

where H = —%Vz + V(x) is the Hamiltonian operator and
E, represents its smallest eigenvalue. The loss function is
defined as follow,

L(@) = |(H_ E0)|¢> + |F(-xmin)| + |F(xmax) - 1|’ (4)

where 6 is a trainable parameter, including W;, b; and E,,
E, is another trainable parameter initialised to 0. DNN
guarantees that y satisfies the Schrodinger equation by
minimising the first term, and the other two terms guaran-
tee that the CDF fitted by DNN satisfies the boundary con-
ditions. The range of the CDF provides normalisation of the
wave function, which simplifies the calculation.

Note that the initial values of the trainable parameters

W; and b; are usually initialised randomly or in the Xavier
schemel'3). In our work, however, the initialisation scheme
of the parameter has little effect on the result, so we use
random initialisation.

We add another loss term €™, where Y is a small
value. By subtracting this term from the loss function, in-
tegration is avoided and DNN optimizes the loss function to
make E, lower. By training this energy term, the ground
state energy and the ground state wave function can be ob-
tained with small errort!4l,

We tested the performance of the DNN Schrodinger
equation solver on three classical quantum mechanical
problems. The first problem is the harmonic oscillator mod-
ell'3], the potential of the harmonic oscillator can be writ-
ten as,

V= zmwzxz, ®)

where m is the mass of the oscillator, w is its angular fre-
quency and x is its deviation from equilibrium position.

The second example is to solve Schrodinger equation
with Woods-Saxon potential[l6],

-1
V=——qr, (6)

1+e™

where a, is the thickness of the surface layer and the aver-
age radius is given as R, .
The third is a double-well potential problem, which is

a new potential added to our previous work["#]. The poten-
tial in the Hamiltonian can be written as:
V — _efh(x+lfa)(.\'+l+a) _ efh(xflﬂz)(xflfa). (7)

Where 4, I, a respectively control the depth, position, and
width of the double-well. Unlike the previous questions,the
ground state wave function of a double-well potential prob-
lem will exhibit two peaks. Applying our method to such a
potential can further verify the universality of the architec-
ture.

For simplicity, some parameters are set as follows,

h=m=w=1,Ry=6.2, a,=0.1, 3
h=4,a=05,1=1.5. ®)

The input to DNN is an unordered list of domain coordin-
ates. The ground state energy and the CDF are obtained by
minimising the terms of the loss function, and thus the
ground state wave function is obtained indirectly. Unlike
the previous method of solving the Schrodinger equation
using supervised learning, our method belongs to unsuper-
vised learning. The wave function is usually very close to
the exact wave function after training the DNN through it-
erations in harmonic oscillator, Woods-Saxon potential, in-
finitely high potential welll'] and a double-well potential.
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DNN can get very accurate results after 2 000 iterations,
but we trained 10 000 times, using a very small learning
rate in the last 1 000 times.

We used Adam algorithm that add mo-
mentum mechanism and adaptive learning rate to the
simple stochastic gradient descent,

[14, 17-18]

)

where 0 represents the model parameters, including weights
and biases within a neural network, The term n denotes the
current iteration number, reflecting the step in the iterative
process of optimization. ‘Ir’, the learning rate, is a critical
hyperparameter that controls the size of the steps taken to-
wards the minimum of the loss function. m is the batch size,
which determines the number of samples used for each
parameter update. 2—’9 represents the gradient of the loss
function /; with respect to 6, guiding the direction and
magnitude of parameter adjustments.

We use a learning rate scheduler to speed up the train-
ing, setting a higher learning rate in the early stages to
speed up convergence, and a lower learning rate in the later
stages to reach the global minimum.

To quantify the difference between the wave function
obtained by DNN ¢pny and the real wave function .,
we introduce the partial wave fidelity K,

< lﬁtruo:'wDNN >2
< YiwelWiwe >< Yonnlonn >

(10)

The closer the K is to one, the closer the result of DNN is to
the exact wave function.

2 Results

For the harmonic oscillator problem, DNN can con-
trol the ground state energy error within 0.06% after 1 500

training, and reduce the error to 0.002% after 10 000 train-
ing, the partial wave fidelity K is 0.999 996 7 when using 4
hidden layers with 16 units per layer. To study the influ-
ence of the number of variational parameters on the train-
ing results, K is discussed in Ref. [14] by using different
numbers of hidden layers and units per layer.

To understand the difference between the wave func-
tion obtained by DNN and the real wave function, we cal-
culate the CDF, the wave function and the first and second
derivatives of the wave function respectively.

The error between the CDF fitted by DNN and the real
CDF is within 0.000 1 as shown in Fig. 1. The error range
of the ground state wave function can be controlled within
0.000 2 as shown in Fig. 2. In addition, the accuracy of the
first and second derivatives of the wave function obtained
by the DNN is also very high, which means that the DNN
has learned the real physical information of the wave func-
tion.

We verified the universality of the method by using
the same network to solve the Schrodinger equation with
the Woods-Saxon potential and the double-well potential.
For the Schrodinger equation with Woods-Saxon potential
energy, using the same parameter ¥ in the harmonic oscil-
lator potential, the Woods-Saxon potential could control the
error of the ground state energy less than 0.02%. Fig. 3
shows the comparisons between the learned ground state
wave function and the true values. It can be seen that the
ground state wave function obtained from the DNN also
agrees very well with the exact solution. The error range
can be controlled within 0.000 2 for the ground state wave
function of the Woods-Saxon potential as shown in Fig. 3.
And the ground state energy calculated by the DNN for the
Woods-Saxon potential problem is —0.973 82, which is also
within an error of 0.002% to the exact result of —0.973 85
and K =0.999964 .

However, compared with the results of harmonic os-
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Fig. 1 One-dimensional harmonic oscillator’s CDFH4

The image on the right is a partial enlargement of the image on the left.
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cillator and Woods-Saxon potential, because the ground
state energy is too close to the first excitation state energy
under the double-well potential, we need to appropriately
increase the energy layer parameters ? so that DNN gives
priority to energy optimization, in which case the ground
state energy error of the double-well potential is less than
0.5% as shown in Fig. 4. In addition, we make the DNN

more expressive by increasing the number of hidden layers,
which brings the value of K closer to 1. The relative error
of the ground state energy can be kept within 0.5% and K
remains stable around 0.997 34 for the double-well poten-
tial problem. It will still maintain a high level of accuracy,
although it will not be able to reach the accuracy of the first
two problems.
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3 Conclusions

We use DNN to fit the CDF of the ground state wave
function, so that the resulting wave function automatically
satisfies the normalisation and simplifies the computation.
By minimising the violation of the trial wave function and
the trial ground state energy E, to the Schrodinger equa-
tions, the variational problem is reduced to an optimization
problem. This method improves the accuracy of the Sch-
rodinger equation solution with less computation. The ef-
fectiveness of this method is confirmed by solving the har-
monic oscillator, the Woods-Saxon potential and the double-

well potential with small relative error.
_ (WlHW)

07

both the numerator and the denominator in traditional vari-

ational methods for solving quantum mechanical problems.
In another DNN Schrodinger solver® 1%, the form of a tri-
al wave function should be approximated to the exact solu-
tion for eliminating fluctuation and the initial values of the
network parameters also greatly affect the optimization res-
ults. In our framework, the goal is to minimise the viola-
tion of the Schrodinger equation on the sampled spatial co-

where numerical integration is required for

ordinates. The trial wave function is automatically normal-
ized based on the constraints of the constructed neural net-
work. The normalized ground wave function improves the
efficiency of the E, calculation with a lower relative error.
Most importantly, our algorithm is more universal and
provides the possibility to solve problems that have never
been solved before, because it can directly ignore the pre-
training process and does not need to know any informa-
tion about the exact solution before training.

There are a number of improvements that can be made
to the current method. For example, active learning or co-
ordinate sampling by the learned wave function can be used
to improve training efficiency. We could improve the ac-
curacy in solving the double-well potential problem by op-
timising the structure of our framework. The DNN frame-
work will be optimized by solving the Schrodinger equa-
tion with a 3-dimensional potential. It may also open up a
new way to solve many nucleon problems.
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