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Abstract: The transition of strong-interaction matter from the hadronic phase to the quark-gluon plasma phase is a
rapid crossover but not a true phase transition in nature. The true phase transition of strong-interaction matter is ex-
pected to exist only in certain limits, e.g. chiral limit of massless quarks and etc. In this contribution to CNPC2023
Special Issue we present our recent studies on the true phase transition of strong-interaction matter in the chiral limit
of massless quarks as well as its microscopic origin. The study is based on (2+1)-flavor lattice QCD simulations us-
ing highly improved staggered fermions, with pion masses ranging from 160 MeV down to 55 MeV. Utilizing a
newly proposed method to compute the quark mass derivatives of the Dirac eigenvalue spectrum on the lattice, it is
found that the axial U(1) anomaly is still manifested at 1.6 7., with a microscopic origin consistent with the dilute
instanton gas approximation. Furthermore, based on lattice QCD results and a generalized Banks-Casher relation, it
is found that the macroscopic singularity of the chiral phase transition is encoded in the correlation of the Dirac ei-
genvalue spectrum. Future research directions along these findings are also discussed, including the investigation of
the temperature range between 7. and 1.6 7. to understand the breakdown of the dilute instanton gas approxima-

tion and its connection to the chiral phase transition.
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0 Introduction

Since the seminal paper titled “Remarks on the chiral
phase transition in chromodynamics” by Pisarski and Wil-
czek in 1984[!, tremendous progress has been made in our
understanding of the phase structure of strong-interaction
matter> 3. One of the milestones in studying the phase
structure of strong-interaction matter is that it has been es-
tablished from lattice-regularized Quantum Chromodynam-
ics (QCD) that strong-interaction matter undergoes a rapid
crossover transition from the hadronic phase to the quark-
gluon plasma phasel*l. The transition temperature has been
determined at a high precision to be T, =156.5(1.5)
MeVE ™l and the temperature at which the chiral phase
transition occurs has also been determined recently to be
T. = 1327 MeVll.

Despite this progress, see e.g. Ref. [8], key questions
related to the fate of symmetry breaking patterns under ex-
treme conditions of high temperature and large baryon
number density as well as other control parameters, and
particularly the influence of the axial anomaly on QCD
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phase transitions still remain elusive.

In this contribution to CNPC2023 Special Issue we
start with our recent findings on the fate of axial U(1) an-
omaly and its microscopic origin at a temperature high
above the chiral phase transition temperature 7, 1 and
then review our recent results on how the macroscopic crit-
icality is encoded in the microscopic degrees of

freedom! 9,

1 The fate of axial U(1) anomaly at high
temperature

It has been conjectured that if axial U(1) anomaly is
manifested at the chiral phase transition temperature the
chiral phase transition will be second order belonging to the
O(4) universality classt!], otherwise the chiral phase trans-
ition can even be a first order or a second order belonging
to a different universality class!!' 7131 As the relevant phys-
ics is highly non-perturbative, the studies using lattice QCD
will be important, see recent studies and reviewsH4 21,
However, the fate of the axial U(1) anomaly is still undeter-
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mined. This is mainly due to two main issues in lattice
QCD studies. One is that considerable computing re-
sources are required. This is because that one has to take
the chiral limit of massless quarks and the continuum limit.
The simulation of lattice QCD in the chiral limit becomes
significantly costly because the fermion matrix becomes
more singular with smaller quark masses and consequently
the inversion of the fermion matrix, which is the most time
consuming part in lattice QCD computations, involves
more numerical work. The other one is the unknown micro-
scopic origin of the axial U(1) anomaly in the proximity of
the chiral phase transition temperature. Although the micro-
scopic origin can be inferred from the eigenvalue spectrum
p(A) of the Dirac fermion matrix there exist difficulties to
be elaborated at length. p(1) is connected to the order para-
meter (J¢) of chiral phase transition, and the signature of
axial U(1) anomaly y,—xs and yas as follows

_ o (aAmp(d)
<ww>—oj%+m2dz,
_ [ 8m’p()
Xn_/\,/a—o anep (1)

4mdp/dm
Xdise —j Wd/l'
The Dirac eigenvalue spectrum p(4) might have the

following forms
oA, m) = co+ 1A+ em*6(A) + csm+ cam®> + O, m).  (2)

Here ¢; with i=1, 2, 3 and 4 are parameters which
are independent of quark mass (m) and eigenvalue A.
Note that ¢,m*§(1) is of most interest as in the chiral limit
of massless quarks it makes gy g0 to zero and y,—yxs and
Xaisc Stay nonzero, i.e. it restores the SU(2) x SU(2) sym-
metry and breaks the axial U(1) symmetry. However, as
quark mass m — 0 it is hard to observe the contribution
from the term e.g. ¢,m*8(2) since it is m? suppressed. Also
it is difficult to disentangle the contribution from c,m and
c,m* when m approaches zero.

Concerning the first issue, we performed lattice QCD
simulations at a temperature well above the T, i.e. at
T ~205 MeV =~ 1.6T,. At this temperature the simulation
is supposed to be cheaper compared to that at temperature
in proximity of T.. If one finds the axial U(1) remains
manifested at this 1.6 T, it is natural to deduce that at a
lower temperature, i.e. T.,the axial U(1) anomaly also re-
mains manifested with a larger strength. Thus we were able
to perform simulations at pion masses much lower com-
pared to the physical one with affordable computing re-
sources. In our lattice QCD simulations we adopted the dis-
cretization scheme of highly improved staggered quarks
with pion mass ranging from 160 MeV to 55 MeV on

N.=8,12 and 16 lattices!®]. This allows us to perform the
continuum and chiral extrapolations.

To perform the continuum and chiral extrapolations,
we first need to understand the quark mass dependence of
X=—Xs and s - In Fig. 1, we show y,—xs (open points)
and yg (filled points) as a function of the quark mass ra-
tio my/m, at three different lattice cut-offs. In the high-tem-
perature phase, where chiral symmetry is restored, the QCD
partition function should exhibit a Z(2) symmetry and thus
be even in quark mass. Consequently, the first-order deriv-
ative of the QCD partition function with respect to quark
mass, i.e., the chiral condensate, should be odd in quark
mass, and the second-order derivative, i.e., Y , should be
quadratic in quark mass as the chiral limit is approached.

m /MeV
16 55 80 110 140 160
14k opc':n poilnts for mf.(;'(;)(,;)/Tﬂ '
12| filled points for my/T}
10 EN, = 16+~
g V.= 122
oF N, =8+
4 &
2 / &= &l
0 solid Tine: quadratic fit m(y,—y;)/T*
-2t dashed line: linear fit m(y,—y,)/T: 3
0.00 0.01 0.02 0.03 0.04 0.05 0.06
m/m,
Fig. 1 Quark mass dependence of x—xs (open points) and

xdisc (filled points) obtained from lattices with N; =8,
12 and 16. (color online)

As seen in Fig. 1, x,—x,; agrees with Y, within er-
rors, as expected from the restoration of chiral symmetry.
Furthermore, we performed fits linear and quadratic in
quark mass to y,—yxs. These fits are shown as dashed and
solid lines in Fig. 1, respectively. The values of y?/d.o.f.
listed in Table 1 indicate that the quadratic behavior in
quark mass of y,—yxs is favored. It is worth noting that the
difference in y?/d.o.f. between the linear and quadratic fits
is more pronounced in the fits to yas and the light quark
chiral condensate!??!.

Table 1
with m,; <160 MeV using ansatzes linear and quadrat-

Values of y?/d.o.f. obtained from fits to xr—xs

ic in quark mass

x?/d.of. Linear fits in quark mass ~ Quadratic fits in quark mass
N=8 11.844 3 0.781 243
N:=12 7.493 36 0.613 594
N.=16 0.058 8725 0.067 839 2

Based on these findings, we present the continuum and
chiral extrapolated results of y.—yxs (top) and ya (bot-
tom) in Fig. 2, using a quadratic dependence on quark mass
for the chiral extrapolation. It can be seen that in the con-
tinuum and chiral limit, y,—xs and yg. are nonzero and
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consistent with each other. This tells us that the
SU(2)xSU(2) symmetry is restored while the axial U(1) an-
omaly still remains manifested at 1.6 T . Consequently it is
suggested that at 7, the axial U(1) anomaly remains mani-
fested and the chiral phase transition should be of second
order belonging to the O(4) universality class.

The observation from Fig. 2 suggests that a term like
c,m*6(A) is favored in the Dirac eigenvalue spectrum [Eq.
(2)], as it ensures X.—Xs =xasc #0.However, as dis-
cussed before it is difficult to disentangle the contribution
of ¢,m*6(1) from other terms in p(1). One possible way
out could be to investigate the nth order derivatives of
p(A) with respect to quark mass. In the quark mass derivat-
ives of p(4d) the suppression brought by certain powers of
m in the limit of m — 0 will go away, e.g. 0%(c,m*6(1))/
om? = c,6() .

m,/MeV

55 80 110 140
35 T T T 3

30 8
25
20
15
10
5
otk . . . . e

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015
(m/m,)*

M) Te

m,/MeV
55 80 110 140
35 T T T -

Mgl Tt

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015
(m/m,)?

Continuum and chiral extrapolations for xr-—yxs
(top) and ygisc (bottom) as function of the quark mass
ratio (m;/my)* at T ~ 1.6T, . In the chiral limit of mass-
less quarks, i.e. at (m/ms)> =0, xz—xs and xagisc are
shown to be nonzero in the continuum limit. The fig-
ure is taken from Ref. [9]. (color online)

Fig. 2

However, the numerical computation of derivatives is
highly non-trivial. For instance,

D _
a m e—0

p(/l’m-"ez_p(/l’m) +0(62), (3)

suffers from the discretization error in €. Furthermore, this
requires unwanted two sets of lattice QCD simulations at

two different quark masses which should be infinitesimal
adjacent.

To avoid the above-mentioned issue in Eq. (3) we pro-
posed a novel method to compute nth order quark mass de-
rivative of p(1) without the needs for computing p at an
additional different quark mass(’]. Although it seems to be
counter-intuitive at first sight the method is straightforward
by starting with the definition of p(1)

p() = VZIUl

(dettp1+m) py (0, )

where p,(1) =3 ;6(1-4;), and A; is the eigenvalue of
massless Dirac matrix PlU] with a given SU(3) gauge
field. Here V is the volume, S[U] is the gauge action and
the partition function Z[U] = [ D[U] e=5U det| PIU] +m,]
(detlB{U] +m])’ .

Note that in Eq. (4) only Z@) and det[P[U]+m,]
depends on the quark mass m, while p, is independent of
m, . Furthermore, det[B{U] +m,] can be expressed in terms

“Selt] det [ BU + m, ¥

of Dirac eigenvalues A as follows

det[ (L] +m) = [ [(+id;+m)(=id; +m)

:exp{fd/lpu(/l)ln[/lz+m,2]} )

Thus when taking derivatives of Eq. (4) with respect to my;
with the help of Eq. (5) one can easily obtain the nth order
derivative of p(d) with respect to m, . For instance here we
list the first and second order derivatives of p(1) as fol-

lows!’!
4m[C2 (/1 /12,”1/)
= _ 6
f /12 +m? ©)
0°p T 4% —mD)Cy (A, Ay;
P _ j da, ( ) 2 ( 23 1y)
om? (A2 +m?)?
(4m )ZCg (/1 /12,/13;”1[)
— | da,dA 7
Vof P (B )L +m) 2
where C, is the first order cumulant of »n variables

pU(/ll)spU(AZ)s te
pressed explicitly as follows

C> (4, 5m;) = oy (Dpy (1)) = oy (DXpy (L)), (8)

C3 (A, 2, A35my) =(py (Dpy () py (A3))—
Py(DXpy () py (A3))—
Py ()Xo (Dpy (43))—
oy (B)Npy(Dpy (L))+
Lpy(D)py ())oy (43))y . (9)

Note that the derivation of 98"p/0m] is exact without

,py(A,). Here C, and C; canbe ex-
[9, 23]
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any assumptions. Once p, (1) is computed using a certain
numerical method, e.g. Chebyshev filtering method?+ 28],
0"p/dm; can be obtained.

In the top panel of Fig. 3 we show m;'0p/0m, and
02p/0m? as a function of A obtained from lattice QCD
simulations with pion mass ranging from 160 MeV to
55 MeV on N, =8 lattices at T =205 MeV~1.6T,. It
can be clearly seen that m;'dp/0m, ~ 8%p/dm} and both
quantities are almost quark mass independent. A peak
structure can also be found in m;' 0p/0m; and 9%p/ Om? in
the infrared region of 1.

In the insert of the bottom panel of Fig. 3 we show
0°p/0m} as a function of A. It can be observed that
0°p/0m’ ~0. Together with the observation that
m;'0p/dm; ~ 3*p/0dm7 it can be deduced that p ocm?. As
can also be seen that the peak structure in 92p/0m? be-
comes sharper as one approaches the continuum limit with
increasing value of N, from 8 to 16. This resembles a (1) -
like peak structure at the origin. In summary p o< m?§(2) at
1.6T., which is consistent with the manifestation of axial
U(1) anomaly in y,—yxs and yg. and the dilute instanton
gas approximation.

12
n=1n=2

> 107 328, m_ = 160 MeV —o— ——
g . 323%8, m, = 140 MeV —6— ~-
T8 40°<8, m, = 110 MeV o~ —8—
£ 6 % 723x8, m, =80 MeV —v— ¥~
T or 56*%8, m, = 55 MeV
<
&4 M "

zr ﬁ*ﬁr‘f% &

0 LE 3

0 50 100 150 200 250 300
AMMeV

160 + E
140 600 m, =80 MeV-

120 k 400 | - 32§><8’—+—‘ J

o . 200 - ‘5‘23§§x
LN_ 100 o Febaim Tmﬁ 723% Q-5 |
@ | - |

TE go | 1LE '[Vpe i
18 w0 M R TR W

—L/T}

m

L 723127~
60 o T 643x 16—~
40 @ %553 04 06 o8 10807 16— 1
20 b A/ms ‘% |
0 g% Rabidh %o b _‘Ptc}ui Rl
0.0 0.2 0.4 0.6 0.8 1.0
Alms

Fig. 3  The derivatives of Dirac eigenvalue spectrum with

respect to quark mass. The figure is taken from Ref.
[9]. (color online)

2 Microscopic encoding of the macro-
scopic criticality in the chiral phase
transition

As suggested by the studies of the fate of axial U(1)
anomaly in the chiral and continuum limit at 1.67., the

chiral phase transition should be of second order belonging
to the O(4) universality classl> 221 In the proximity of a
continuous phase transition, the free energy of the system
can be decomposed into two parts,

F= Fsing+Freg’ (10)

where Fip, is the singular part of the free energy and over-
whelmingly dominates over the regular part F,, . The or-
der parameter M of the phase transition can be defined as
the first order derivative of the free energy with respect to
an external field H 2],

M=—-0F/0H =h""’fi(2), (11)

where h=H/hy and z=zo(T -T.)/T.H "% . Here h, and
z, are non-universal parameters specific for a certain sys-
tem while 8 and ¢ are universal critical exponents. The
singular behavior will be more pronounced in higher order
derivatives, e.g.

1
Xun=—0"F/0H" = h—h'/ﬁ’”“f,,(z) withn>2.  (12)
0

Here f, is the scaling function, and in the ordinary
convention f; = f; and f, = f,. In the case of QCD, the
order parameter of the chiral phase transition is the chiral
condensate while the external field is the quark mass. Un-
like the case of spin models, in QCD, x> or xu.,. also re-
ceives the contribution from the connected diagrams, which
makes the computation more involved in lattice QCD simu-
lations.

We proposed to investigate the nth order cumulant of
chiral condensate[lo],

0"G(m;;€)
om;

- T
K [gy] =5, (1) (13)

Here the generating functional G(m;;€) can be defined as

G(my; €) = Inexp {—mhp ()}, (14)

where (), denotes expectation value with respect to the

QCD partition function in the chiral limit, Z(0)=
[exp(=S[U,0])D[U] . Since
1
(O) = 7o | Oexp (=S WUm)) DU "
_ (Oexpl=mgy(m)}
(exp{=myy(m)})o
with the QCD partition function Z(m,) = [exp

(=S[U,m])DIU] and Z(m;)/Z(0) = {exp{-mynp(m,)}), , it
is straightforward to find out that K, are the standard cu-
mulants of Jy(m,); e.g. Ki [30] = T@wm))/V , Kz ] =
T m) — G m VIV, s [Jw] = T{Im) — (b
MMV etc.

The connection of K, [J4/] to the Dirac eigenvalue A,
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i.e. energy levels of quarks, is bridged via yuy(e) whichis a
probe operator for a valence quark with mass € and has a
form

4de
2+e’

J(e) =2Tr(P+e)' = (16)

By combing Egs. (13), (14) and (16), one can obtain the ex-
pression of K, in terms of Dirac eigenvalue spectrum as
follows!!¥]

K, [dw] = | P,(0dA, (17
0
where P;(1) = K,\[Py(d;m,)] for n=1,and for n>2

P, = [ Ki[Pu(dsm), Pu(lasm), -+, Pu(Aim)] x | ] da;.
0 i=2
(18)
Here K, is the first order joint cumulant of n -variables ( X;)
defined as

T an1n<1—1'}71 67t!X1>
KX,"',Xn:__ln; 19
1 (X ) V( ) 0t;--- 01, 11 ooty =0 )
and
dep, ()
P,(L;€) = FEpER (20)

Note that in the limit of € > 0 P,(4;€) is proportion-
al to a delta function. Thus in the chiral limit of massless

quarks one can arrive at the following generation of the
Banks-Casher formulal'‘]

im K, () = 2m)' K, [py (0)]. @n

Based on the above relation, two important questions
can be asked. One is what the scaling behavior of K, is in
the proximity of 7. . The other one is how the scaling beha-
vior of K, is encoded in P,(1)[Eq. (17)]. Concerning the
first question, since K, is only a part of the nth order sus-
ceptibility of the order parameter, a simple conjecture is
that K, is linearly proportional to the critical behavior en-
coded in yu.,[Eq. (12)], i.e.

K, o "7 £,(2). (22)

Concerning the second question, as seen from the general-
ized Banks-Casher relation [Eq. (21)], the criticality, if any,
must arise from the A-independent region or the deep in-
frared part of the eigenvalue spectrum. Based on the first
conjecture, one may expect

P, o hO £ (2)g(A/m), (23)

where all the A relevant information is encoded in g(4/m).
To check the first conjecture we look in the ratio of
cumulant of chiral condensate, ie. K,(2)/K,(z=0) for

n=2 (top) and 3 (Bottom) as a function of z/z,. Here
z=0 means the case at temperature 7 =T,
z =ZO%T"/H 85 If the conjecture holds one expects
K,(2)/K,(z=0) = f,(2)/ /,(0) in terms of z or z/z, is inde-
pendent on the quark mass dependent and temperature. This
is exactly what is seen in Fig. 4 in the window of
72/20 € (—0.2,0.2) . Note that although z, isan undeter-
mined non-universal parameter of QCD in the range of
7/20 € (=0.2,0.2) f,(2)/f.(0) is almost independent on the
value of z,. While outside the window of z/z, € (—0.2,0.2)
we see the data points at various temperature and pion
masses do not overlap each other anymore. We can also see
in the inserts of Fig. 4 that K,(z) rescaled by H'*™! is
also quark mass and temperature independent in the same
region of z/z,. Thus the results shown in Fig. 4 suggests
K,(z) oc H'*™"*1 £ (7). It is worth mentioning that our ap-
proach to investigating these cumulant ratios complements
the study of the magnetic equation of state, which is typic-
ally conducted using the chiral condensate and its suscept-
ibilities. In the latter case, careful modeling of the regular
configurations is important[30_31]. However, in our ap-
proach, we do not need to compute connected susceptibilit-
ies; instead, we rely solely on the cumulants of the chiral

since

2.5 —
22+ E
1.9
= 1.6
I 1.3
8 o10)
X 07
S04 em ®
<01 {f(—(g))wnh 2139 — ]
02 KOt —
—0.5 00 700 7 05 T2 1620 2T T
_0.8 1 1 1 1 ZlZy 1 1 1 1 1 1 1
-0.6 —0.2 0.2 0.6 1.0 1.4 1.8
z/z,
32 O it = — 150 -
3.5 SA2) itk 2= -1
30 720V as i(%;%: ]
2.5 220580 — 1
K e o~
Lo10L b =~
Z 00 i
= -0.5 :%‘ @] ]
- —1.0 ]
N 15[ it d L
20 % } ]
2.5 ]
3.0 F'"=03 00 03 08 12 16 20 R
-3.0 L L L0 L L L L L L L

-02 02 0.6 1.0 1.4 1.8

z/z,

|
g
=N

Fig. 4  K,()/K,(0) as a function of z/z0 = Trle/HFR with
n=2 (top) and n=3 (Bottom) for pion mass ranging
from 140 MeV to 55 MeV in the proximity of chiral
phase transition temperature. The broken lines show
fn(2)/£,(0) with various values of undetermined z.

3
The inserts show ratios of %%Kn(z)/H Vo=ntl ag a
c

function of z/zp where the prefactors of K,(z) are used
to make the quantity renormalization group invariant.
(color online)
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condensates, where the regular contributions are expected
to be mild.

To check the second conjecture, since the relevant in-
frared energy scale should be A ~ m; for small values of m
as expected from the generalized Banks-Casher relation
[Eq. (21)] we express all quantities as functions of the di-
mensionless and renormalization group invariant A/my,

A=Am,, i, =m/m,z =z "P(T-T)/T.,
P,() =m"'im,P,(1)/T?, and
R[] = anwcu @), (24)

where the dimensionless and renormalization group invari-
ant K, [Jy] = mK,[jy]/T} .

In Fig. 5 we show P.(1) for n=1 (left), 2 (middle)
and 3 (right) as a function of 1= A/m in the proximity of
T.=1442(6) MeV on N, =8 lattices®?). These P,(1)
can reproduce K, as shown in the inserts of Fig. 4. It can
be seen that P,(1) rapidly goes to zero with increasing A
at A~ 1, and the regions where P, (1) is nonzero get smal-
ler with increasing n. This reinforces that the relevant in-
frared energy scale turn out to be A~ 1 as indicated from
the generalized Banks-Casher relation. In this deep in-
frared region P,(1) ata fixed temperature shows clear de-
pendences on m; . These dependences becomes stronger for
increasing n. Meanwhile the form of m,-dependence of

P,() also changes with varying values of temperature. As
also seen from Fig. 5 it is expected that our results become
increasingly noisy with increasing n and decreasing m; .

As discussed before, the m; and T dependence of
P, (1) shown in Fig. 5 could be understood in terms of the 3-
dimensional O(2) scaling property, cf. Eq. (24). To obtain
f.(2)  we adopted the system-specific parameters
T.=144.2(6) MeV and z, = 1.83(9) from Ref. [32], where
3-dimensional O(2) scaling fits were carried out for the
same lattice ensembles but using an entirely different mac-
roscopic observable, namely the m; dependence of the stat-
ic quark free energy. As seen from Fig. 6 once the P,(1)
are rescaled with respective 7,”*"'™" £,(z) the data points in
Fig. 5 collapse onto each other, i.e. P,(1)/ (ﬁg” I f(2)) as
a function of 1 is independent of quark mass and temperat-
ure forn=1, 2 and 3.

Thus, according to the observation from Fig. 5 and
Fig. 6 the macroscopic criticality of chiral phase transition
is encoded microscopically in terms of Dirac eigenvalues
and their correlations as follows

Py) = iy ()8 (D),

where 2:(1) characterize the system-specific of the 7 th or-
der energy-level correlations. As inferred from our general-
ized Banks-Casher relations of Eq. (21) the §,(1) must also
satisfy limy_, lim,_lim,, o &,(1) = 6(1) , such that K, [j]
has the correct scaling behavior in (T —T7.)/T. .

(25)
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Fig. 5 P, as function of A=A/m for n=1 (left), n=2 (middle) and n =3 (right) with pion mass ranging from 140 to 55 MeV in
the proximity of 7. . The plots are taken from Ref. [10]. (color online)
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Fig. 6 Similar as Fig. 5 but for
3 Summary

In this contribution we review our recent work on the
microscopic origin of the axial U(1) anomaly at 1.6 T, as

Py /iy [ £,(2) . The plots are taken from Ref. [10]. (color online)

well as the macroscopic criticality of chiral phase trans-
ition in the proximity of T 97101 To access the quarkuaku
mass dependence of the Dirac eigenvalue spectrum p(4) a
novel method to compute the quark mass derivative of p(1)
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was proposed [Egs. (6)~(7)]. By investigating on the first,
second and third order derivatives of p(1) with respect to
quark mass from lattice QCD simulations with pion mass
down to 55 MeV on N, =8, 12 and 16 lattices it is found
that it is p(d) « m*§(1) that breaks the axial U(1) sym-
metry and restores the SU(2) x SU(2) chiral symmetry at
1.6 T.. This is consistent with the dilute instanton gas ap-
proximation and also the observation of y,—xs = Xasc #0
in the chiral and continuum limit at 1.6 7. . These findings
suggests the axial U(1) anomaly still remains manifested at
T. , which is lower than 1.6 T, . Thus the chiral phase trans-
ition should be of second order belonging to the O(4) uni-
versality class.

The relation between nth order cumulant of chiral
condensate K,[Jy] and the correlation between Dirac ei-
genvalue spectrum P,(1) has been established [ Eq. (17)].
Accordingly the Banks-Casher relation is generalized [Eq.
(21)]. Based on these relations it is conjectured that
K. [gy] oc i1 f(2) and P,(2) = h'*™" f.(2)g(4/m). By
performing lattice QCD simulations using HISQ fermions
with pion mass ranging from 140 MeV to 55 MeV on
N, =8 lattices in the proximity of chiral phase transition
the conjecture is confirmed for n up to 3.

Since the manifestation of the axial U(1) anomaly at a

high temperature of 1.6 7. and the chiral phase transition
near 7. have been demonstrated microscopically, it would
be interesting to investigate the temperature range between
1.6 T, and T. in the near future. Specifically, examining
how the dilute instanton gas approximation breaks down
and transitions to the scenario of the chiral phase transition
could provide valuable insights into the nature of the QCD
transition. Additionally, exploring the connection between
the Dirac eigenvalue spectrum and other thermodynamic
quantities would be highly worthwhile.
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ETFRNNFFERTREHUEIR

T¥a

(BTG R 25 e S A T W B 24 E B p s s Ak A BRI SU BT, UL 430079)

WE: BHAEAEZSRNENFRAERTHESE-RTFETHRENELTRE - MR FRITE, TTIEELZEX
LtREEFEAREFRTHANHEE., ETEPNFELIRX LMBERFATEERTHRRY, KBS TREN
FHFEBRRERRAEAM. EATEFERTRNFLLT FEREREBARBENF L. REFRHET 2+D)-
ki, RATEHERANKER KT, A FHEN160MeV 5|55 MeV it A& TEZN A FEN., ETHEY
WY 77 kit H s R £ Dirac AMEEE W E R ESH, AAHUO)RFEALLS T.RHIAFE, EBILIES MRS T
SRAMA—ZK. WS, ETHAQCD 4 KAk iy X Banks-Casher X %, KILFAEME B EZWNF #HEERIE
Dirac RAEEE W RKZ F. AARKMEAAX T HBETRE, CHEHAREREE T. 2l 1.6 T, Z 98 QCD A E AT %k
BRARG T IARLUARABEEE FEAENF R,

R ETEHAFHEEM; K TAMEEE; FERE; FEXIKE; BRTH

ks B EA: 2023-10-02; &2 B HA: 2024-02-27
BEE£WB: BEXKE SR ITRIE (2022YFA1604900); [E % H AR E 4 R BHITH (12293064, 12293060, 12325508)
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