C₄F₆/SF₆混合气体对硅基材料的 ICP 刻蚀工艺研究

陈长鸿 王妹芳 孙一军^{*} 孙颖 孙家宝 刘艳华 刘志 谢石建 (浙江大学 微纳加工中心校级平台杭州 310013)

Operation Parameters of Inductively Coupled C₄**F**₆/**SF**₆ **Plasma Etching Process for Si Substrate Material**

CHEN Changhong, WANG Meifang, SUN Yijun^{*}, SUN Ying, SUN Jiabao, LIU Yanhua, LIU Zhi, XIE Shijian (Micro-Nano Fabrication Center, Zhejiang University, Hangzhou 310013, China)

Abstract To avoid the scallop effect caused by Bosch etching process and reduce GWPs carried by etching gas, an environmentally friendly electronic etching gas, C_4F_6 , is introduced into the etching process. The Si substrate was etched by using a pseudo-Bosch process with simultaneous etching and passivation. And the effects of ICP power, RIE power, cavity pressure and flow rate of C_4F_6/SF_6 on etching rate, photoresist/Si etch selection ratio and etch morphology were investigated. The results show that increasing ICP power and RIE power can improve the plasma density and physical bombardment effect, respectively; the chamber pressure has a large impact on the mean free diameter of particles, and the increase of C_4F_6 flux could strengthen the sidewall protection mechanism. Under the optimized etching condition, flat sidewalls, smooth surface, and high perpendicularity etching profile with 2.8 µm/min silicon etching rate and 3.1 photoresist/Si etching selection ratio can be obtained.

Keywords ICP etching, Etching rate, DRIE, Selectivity

摘要 为避免深硅刻蚀工艺所引起的扇贝纹效应,同时减少其工艺气体所带来的温室效应,本文将新一代环保电子刻蚀 气 C₄F₆引入硅刻蚀工艺,采用刻蚀与钝化同步进行的伪 Bosch 工艺刻蚀硅槽孔。研究了 ICP 功率、RIE 功率、腔体压强和 C₄F₆/SF₆气体流量比对刻蚀速率、光刻胶/硅刻蚀选择比及刻蚀形貌的影响。结果表明,一定程度增加 ICP 功率和 RIE 功率可 分别提高等离子体密度和物理轰击刻蚀作用;腔体压强对粒子平均自由径有较大影响;而 C₄F₆流量的增加可加强刻蚀侧壁保 护机制。通过综合优化工艺参数,获得了 2.8 µm/min 硅刻蚀速率, 3.1 的光刻胶/硅刻蚀选择比和侧壁平坦,表面光滑,垂直度 高的刻蚀形貌。

关键词 感应耦合等离子体刻蚀 刻蚀速率 深硅刻蚀 选择比 中图分类号: TN305 **文献标识码:** A **doi:** 10.13922/j.cnki.cjvst.202207018

干法刻蚀是制造超大规模集成电路、液晶显示器件、半导体发光器件和半导体材料过程中不可缺少的环节。其中以 Bosch 工艺为代表的硅刻蚀,因具有良好的侧壁陡直性、工艺稳定性、过程可控性的优点而被广泛应用于集成电路, MEMS, TSVs 等微纳器件制造领域^[1-2]。传统 Bosch 工艺通过快速 交替进行蚀刻和钝化步骤,可获得垂直度良好的高深宽比刻蚀轮廓。但其工艺过程容易在沟槽侧壁 形成周期性扇贝纹,并成为对某些器件(如 DRAM 存储器、MEMs 沟道等)的致命性缺陷。为减小扇 贝纹效应, Johann W. Bartha 等^[3] 采用低温等离子体 刻蚀工艺, 通过 SF₆和O₂电离反应形成氟氧化合物 (SiO_xF_y)钝化层, 以抑制侧壁横向刻蚀, 同时保障离 子纵深向轰击的进行。Jianyu Fu 等^[4]结合 Bosch 工 艺与 RIE(反应式离子刻蚀)工艺, 并调整刻蚀气体 配比后改善了沟槽侧壁粗糙度。Bingdong Chang 等^[5]研究了 3 步法 Bosch 工艺, 在保证刻蚀形貌的 同时提升了刻蚀效率。虽然这些工艺方法对刻蚀

^{*}联系人: E-mail: sunyijun@zju.edu.cn

形貌均有改善,但同时存在刻蚀设备复杂性增加,刻蚀效率降低,工艺复杂性和加工成本提高等问题。

电子气体作为干法刻蚀过程中不可缺少的基 础性支撑材料,其种类、质量和工艺直接关系到微 电子元器件的质量、集成度、特定技术指标和成品 率,并从根本上制约着电路和器件的精确性和准确 性。传统 Bosch 工艺采用 SF₆ 和 C₄F₈ 分别作为刻 蚀气体和钝化气体¹⁶。而 C₄F₈作为温室气体全氟化 合物(PFCs),其全球变暖潜力(GWP)相当于CO, 的 6500-9200 倍^[7]。为减小温室效应,不少学者对 C4F8进行了深入的研究,寻找其替代气体^[8-9]。C4F6 属于新一代电子刻蚀气体。与传统的等离子刻蚀 气 CF_4 、 C_2F_6 、 C_3F_8 、 C_4F_8 和 C_5F_8 相比, C_4F_6 特殊的 链状结构更容易在高频电场中被电子击穿解离成 特定成分等离子体^[10], 使得 C₄F₆刻蚀气不仅具有较 高的刻蚀选择比和良好的刻蚀工艺窗口,同时可提 供稳定高效的刻蚀速率。此外 C4F6 温室效应极低, 与C₃F₈和C₄F₈蚀刻气相比,在排气中可分别降低温 室气体全氟化合物(PFCs)体积分数 80% 和 82%, 是 优质的环境友好气体[11]。

本研究在硅基材料刻蚀中引入 C_4F_6 电子气体, 采用钝化与刻蚀同步进行的伪 Bosch 刻蚀法,将 SF₆和 C_4F_6 混合通入腔室刻蚀,探讨 ICP 功率、RIE 功率、腔体压强和 C_4F_6/SF_6 流量比对硅刻蚀的影响。 不仅优化了扇贝纹结构,同时有效简化刻蚀设备和 工艺要求,获得了侧壁光滑,垂直度高的刻蚀形貌。

1 实验材料与方法

实验流程如图 1 所示。采用 4 寸 P 型<1,1,0> 晶圆为衬底,使用 APR5350 光刻胶以 4000 r/min

图1 硅刻蚀实验工艺流程示意图。(a) 匀胶,(b) 曝光,(c) 带 胶刻蚀,(d) 去胶刻蚀

匀胶 1 min 后,将其置于 105℃ 热板上软烤 5 min (图 1a)。随后在 HDB DWL66+激光直写设备中完 成光刻,并在显影后将实验片置于 110℃ 热板上硬 烤 5 min,获得完成掩膜层图形定义的实验片(如 图 1b)。

采用 Oxford Cobra180 ICP 刻蚀系统,以 SF₆和 C_4F_6 为刻蚀工艺气,分别改变 ICP 功率、RIE 功率、 腔体压强和 C_4F_6/SF_6 流量比对已完成掩膜层图形定 义的实验片进行刻蚀,获得刻蚀实验片(图 1c)。将 刻蚀实验片置于 50℃ 丙酮中超声清洗 10 min 后, 使用 N_2 吹干,获得去胶刻蚀实验片(图 1d)。

采用接触式轮廓仪 (KLA_P22) 测量记录各实 验条件下的光刻胶初始厚度 刻蚀后深度和去胶深 度,为保证数据可靠性,每组数据均量测样片中随 机五点并取均值,并分别计算各个实验条件下的刻 蚀速率为:

$$V_{\rm Si} = H_2/T$$

$$V_{\rm photorisist} = (H_0 - H_1)/T$$

刻蚀选择比为

$$R = V_{\rm Si} / V_{\rm photoresis}$$

将各个实验条件下的刻蚀样片切片后使用 Sigma 300 电子扫描显微镜(SEM)观测其剖面形貌。

2 实验结果与分析

2.1 ICP 功率对硅刻蚀的影响

实验中固定 RIE 功率 100 W, 腔体压强 15 mTorr, C₄F₆/SF₆=1:1, 研究 ICP 功率对刻蚀速率及选 择比影响,其结果如图2所示。由图可知增加 ICP 功率由 400-1000 W, 刻蚀速率由 1 μm/min 提高至 2.8 μm/min, 而选择比由 2.5 升至 3.1。这是由于增 加 ICP 功率加速电子碰撞速度,促进刻蚀气体电离, 提高腔内等离子体密度,加剧刻蚀反应进行。此外 由于 SF₆ 电离程度较 C₄F₆ 高^[12-13], 增加 ICP 功率可 提高腔内 F 离子及含 F 自由基的相对含量,从而进 一步提高硅刻蚀速率和选择比。继续增加 ICP 功 率至1400W不再显著提高刻蚀速率,而选择比则 由 3.1 降至 1.61。这是因为 1400 W ICP 功率促使 C₄F₆出现大幅电离,其生成的大量 CF_x自由基附着 于表面并生成(CF₂),长链,最终形成钝化膜,阻碍 化学刻蚀反应^[10]。此外高功率促使 F 离子与 C、 CF,等粒子相互反应,并在硅表附着 Si,C,F,等刻蚀 生成物,造成自掩膜效应^[14],减缓了硅刻蚀速率提升。

Fig. 1 Schematic diagrams of Si etching process. (a) coating,(b) lithography, (c) etching with photoresist, (d) etching without photoresist

相反,光刻胶与等离子体的反应生成物则容易解离 挥发,不致形成自掩膜^[15];且在高密度等离子体所产 生的高温灼烧可加速光刻胶体腐蚀^[16],导致选择比 下降。

图 3 为不同 ICP 功率刻蚀形貌图。在 400 W ICP 功率时(见图 3a),刻蚀槽孔存在明显的底部圆 角现象。这是由于低功率下所产生的低密度离子 和自由基于槽口处耗竭,而未能扩散至槽孔底角区 域,致使该区域反应刻蚀不充分。当增加 ICP 功率 至 1000 W(见图 3b),除刻蚀深度提高外,垂直度由 82 提升至 89°,且底部圆角现象出现改善。此时横 向刻蚀与侧壁保护机制达到平衡状态,获得了垂直 度高,侧壁沉积物的刻蚀形貌。而 1400 W ICP 功率 (见图 3c)将使光刻胶出现灼烧腐蚀变形,刻蚀槽孔 出现不规则的上宽下窄形貌,同时侧壁出现大量刻 蚀生成物。这是由于高 ICP 功率下高密度等离子 体加剧腔内刻蚀反应进行,导致大量刻蚀反应生成 物无法被有效排出而黏附于槽孔侧壁,而越靠近槽

图3 不同 ICP 功率刻蚀样片的 SEM 截面图。(a) 400 W, (b) 1000 W, (c) 1400 W

Fig. 3 SEM cross-section image of the samples etched at different ICP power. (a) 400 W, (b) 1000 W, (c) 1400 W

底区域其生成物附着愈加严重,最终形成上宽下窄 的刻蚀形貌。

2.2 RIE 功率对硅刻蚀的影响

现固定 ICP 功率 1000 W, 腔体压强 15 mTorr, C₄F₆/SF₆=1:1,研究 RIE 功率对刻蚀速率及选择比 的影响,其结果如图 4 所示。将 RIE 功率由 20 W 增至 100 W, Si 刻蚀速率由 0.6 µm/min 提升至 2.8 µm/min。由于 RIE 功率的提高加剧了下电极附 近电子与离子的窜动,在粒子间相互碰撞产生等离 子体的同时,更多具有长程自由径的电子被吸附至 下电极,产生更大的负偏压(DC bias)。其通过定向 吸引上方正离子,使之加速后轰击样品表面,产生 更大的物理轰击刻蚀,可有效地去除吸附于表面的 刻蚀产物,减小刻蚀阻力。同时下电极附近的等离 子体密度的提高,进一步促进了刻蚀反应进行,提 高刻蚀速率。当进一步提升 RIE 功率至 180 W 不 再显著提升 Si 的刻蚀速率, 而选择比则由 3.1 降至 1.02。这是因为光刻胶在高能量离子轰击下迅速解 离,导致大量光刻胶解离产物溅射至凹槽表面,阻 碍了刻蚀速率提升,同时使选择比快速下降。

图4 RIE 功率对刻蚀速率和选择比的影响 Fig. 4 Effect of RIE power on etching rate and selectivity

由图 5 不同 RIE 功率刻蚀形貌可知,在 RIE 功率 20 W 时(见图 5a)槽孔出现严重横向刻蚀,侧壁 沾污且表面粗糙。这是由于离子能量较低,凹槽侧 壁无法有效黏附物理轰击所溅射而成的侧壁保护 层,使各项同性刻蚀加剧;同时化学刻蚀产物未被 及时抽离而在表面堆积导致表面沾污。当 RIE 增 至 1000 W(见图 5b),物理轰击刻蚀与化学反应刻 蚀达到平衡状态,恰当的侧壁保护机制,避免了侧 蚀现象发生;刻蚀生成物可及时解离挥发,保证了 侧壁洁净。而过高的 RIE(见图 5c)所产生的剧烈物 理轰击,不仅使光刻胶严重变形,同时由于过量的

- 图5 不同 RIE 功率刻蚀样片的 SEM 截面图。(a) 20 W, (b) 100 W, (c) 140 W
- Fig. 5 SEM cross-section image of the samples etched at different RIE power. (a) 20 W, (b) 100 W, (c) 140 W

刻蚀产物溅射至表面,影响刻蚀均匀性,导致刻蚀 形貌呈现沟壑状侧壁和不规则的锥形槽孔。

2.3 腔体压强对硅刻蚀的影响

实验中固定 ICP/RIE 功率 1000 W /100 W, C₄F₆/ SF₆=1:1, 研究腔体压强对刻蚀速率及选择比的 影响, 其结果如图 6 所示。由图可知, 增加压强由 5-15 mTorr, Si 刻蚀速率由 2.3 μm/min 增至 2.8 μm/min, 选择比由 1.45 增值 3.1。由于低压时等离 子密度较低, 且刻蚀反应粒子在腔内滞留时间短, 使材料表面刻蚀不充分, 刻蚀速率低。此外低压下 粒子的平均自由径大, 在腔内加速后抵达样片表面 所造成的物理轰击能量大, 而光刻胶耐物理轰击刻 蚀能力较弱^[17], 导致选择比较低。在一定范围内增 加压强可提高腔内等离子体密度和反应离子在腔 内滞留时间, 使刻蚀速率快速提升。但压强超过 15 mTorr 后, 粒子平均自由径大幅下降, 其相互碰撞

Fig. 6 Effect of chamber pressure on etching rate and selectivity

几率增加,物理刻蚀减弱;且高压下不同粒子间相 互反应加剧,其中 F、CF_x等自由基之间相互反应, 形成自掩膜效应,减缓硅刻蚀速率的提升。

而由不同压强下的刻蚀形貌图可知,5mTorr 时(见图 7a),较大的物理轰击刻蚀可形成垂直度高 的槽孔刻蚀,但由于化学反应不充分,导致侧壁形 貌呈不均匀沟壑状。而 15mTorr的腔体压强(见 图 7b),不仅使粒子具有合适的平均自由程和密度, 同时提供了充分的反应和生成物抽离时间,在保证 槽孔垂直度的同时,获得了光滑的侧壁形貌。当进 一步提高压强至 20mTorr (见图 7c),由于等离子体 密度提高和物理轰击刻蚀的减弱加剧各项同性刻 蚀,使槽孔呈大肚凹槽形貌。

- 图7 不同腔体压强刻蚀样片的 SEM 截面图。(a) 5 mTorr, (b) 15 mTorr, (c) 20 mTorr
- Fig. 7 SEM cross-section image of the samples etched at different chamber pressure. (a) 5 mTorr, (b) 15 mTorr, (c) 20 mTorr

2.4 C₄F₆/SF₆流量比对硅刻蚀的影响

实验中固定 ICP/RIE 功率 1000 W /100 W, 腔体 压强 15 mTorr, 研究 C₄F₆/SF₆ 气体流量比对刻蚀速 率及选择比的影响, 其结果如图 8 所示。随 C₄F₆/SF₆ 由 0.4 升高至 1.7, Si 刻蚀速率由 4.3 µm/min 逐渐降 至 1.14 µm/min。由于提高 C₄F₆比例增加了腔内 (CF₂)自由基密度, 促进反应形成(CF₂)_n 钝化层以阻 碍刻蚀反应的进行。同时 SF₆比例的减小使参与刻 蚀反应的 F 离子密度下降, 导致刻蚀速率减小。此 外当 C₄F₆/SF₆比例超过 1.3 后, 高密度 C₄F₆ 电离所 生成的 C 基团无法被反应挥发, 使样片表面出现积 碳反应, 致使刻蚀反应进一步受阻, 刻蚀速率大幅 下降。

Fig. 8 Effect of C_4F_6/SF_6 flow ratio on etching rate and selectivity

由图 9 不同 C₄F₆/SF₆流量比的刻蚀形貌可知, 当 C₄F₆/SF₆=0.7 时(见图 9a),由于过低的(CF₂)自由 基密度无法在侧壁形成连续致密钝化膜,槽孔出现 不均匀的横向刻蚀,形成侧壁粗糙的弧形槽孔形貌。 而在 C₄F₆/SF₆=1 时(见图 9b)槽孔呈侧壁光滑的垂 直形貌。此时纵向的物理轰击刻蚀恰好可解离样 片表面钝化层,而侧壁钝化层由于受到较少离子轰 击得以保留,从而避免了横向刻蚀。当提高 C₄F₆/SF₆流量比至 1.3(见图 9c),将进一步加剧钝化 过程,使物理轰击刻蚀无法充分去除槽孔底角钝化 层,使其呈现倒梯形;此外过量的 C₄F₆电离所引发 的积碳反应生成物,破坏了侧壁洁净度,使侧壁粗 糙度增加。

- 图9 不同 C₄F₆/SF₆流量比刻蚀样片的 SEM 截面图。 (a) 0.7:1, (b) 1:1, (c) 1.3:1
- Fig. 9 SEM cross-section image of the samples etched at different C_4F_6/SF_6 flow ratio. (a) 0.7:1, (b) 1:1, (c) 1.3:1

3 结论

以 C₄F₆/SF₆ 为刻蚀气, 通过伪 Bosch 工艺对硅 基材料进行 ICP 刻蚀, 研究了 ICP 功率、RIE 功率、 腔体压强和 C₄F₆/SF₆流量比对硅刻蚀的影响。结果 表明,一定程度增加 ICP 功率和 RIE 功率可分别提 高等离子体密度和物理轰击刻蚀作用; 腔体压强对 粒子平均自由径有较大影响, 过高的压强可引起自 掩膜效应; 而 C₄F₆流量的增加可加强刻蚀侧壁保护 机制。随 ICP 功率、RIE 功率、腔体压强和 SF₆/C₄F₆ 流量比增加, 硅刻蚀速率逐渐升高; 而选择比则随 ICP 功率和 C₄F₆/SF₆流量比的升高先增后减, 并在 RIE 功率和腔体压强增加时, 分别呈下降和上升趋 势。同时各项参数值对刻蚀形貌均有不同程度影 响, 过高或过低的刻蚀参数将导致刻蚀形貌变异, 侧壁沾污, 各项异性变差等问题。在 ICP/RIE 功率 1000 W/100 W, 腔体压强 15 mTorr、C₄F₆/SF₆=1:1 时, 可获得 2.8 μm/min 硅刻蚀速率, 3.1 的光刻胶/硅 刻蚀选择比和侧壁光滑, 垂直度高的刻蚀形貌。

参考文献

- [1] Ni Y, Xu H, Meng T F, et al. A study on the deep etching technology for WLP package[J]. Materials Reports, 2021, 35(S2): 110-114 (倪烨, 徐浩, 孟腾飞, 等. 基于硅基 WLP封装的深孔刻蚀工艺研究[J]. 材料导报, 2021, 35(S2): 110-114(in chinese))
- [2] Verma G, Mondal K, Gupta A. Si-based MEMS resonant sensor: a review from microfabrication perspective[J]. Microelectronics Journal, 2021, 118: 105210
- [3] Osipov A A, Iankevich G A, Berezenko V I, et al. Influence of operation parameters on Bosch-process technological characteristics[J]. Materials Today: Proceedings, 2020, 30: 599–602
- [4] Fu J, Li J, Yu J, et al. Improving sidewall roughness by combined RIE-Bosch process[J]. Materials Science in Semiconductor Processing, 2018, 83: 186–191
- [5] Chang B, Leussink P, Jensen F, et al. DREM: infinite etch selectivity and optimized scallop size distribution with conventional photoresists in an adapted multiplexed Bosch DRIE process[J]. Microelectronic Engineering, 2018, 191: 77–83
- [6] Xu G B, Huang H, Zhan M H, et al. Experimental evaluation of inductively coupled plasma deep silicon etching[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(08): 832-835 (许高斌, 皇华, 展明浩, 等. ICP深硅刻蚀工艺研究[J]. 真空科学与技术学报, 2013, 33(08): 832-835(in chinese))
- [7] Ou Yang C, Kam S, Liu C, et al. Assessment of removal efficiency of perfluorocompounds (PFCs) in a semicon-

ductor fabrication plant by gas chromatography [J]. Chemosphere, 2009, 76(9): 1273–1277

- [8] Kazar Mendes M, Ghouila-Houri C, Hammami S, et al. Optimization of reactive-ion etching (RIE) parameters to maximize the lateral etch rate of silicon using SF₆/N₂ gas mixture: an alternative to etching Si in MEMS with Au components[J]. Materials Letters, 2021, 285: 129058
- [9] Lee J, Efremov A, Kwon K. On the relationships between plasma chemistry, etching kinetics and etching residues in CF₄+C₄F₈+Ar and CF₄+CH₂F₂+Ar plasmas with various CF₄/C₄F₈ and CF₄/CH₂F₂ mixing ratios[J]. Vacuum, 2018, 148: 214–223
- [10] Feil S, Märk T D, Mauracher A, et al. Investigations of electron attachment to the perfluorocarbon molecules c-C₄F₈, 2-C₄F₈, 1, 3 C₄F₆, and c-C₃F₈[J]. International Journal of Mass Spectrometry, 2008, 277(1-3): 41–51
- [11] Zhang Q, Qin S, Guo Z, et al. Atmospheric chemistry of CF₃C≡CCF₃: kinetics, products, mechanism of gas-phase reaction with OH radicals, and atmospheric implications [J]. Atmospheric Environment, 2021, 251: 118264
- Limão-Vieira P, Duflot D, Anzai K, et al. Studies of low-lying triplet states in 1, 3-C₄F₆, c-C₄F₆ and 2-C₄F₆ by electron energy-loss spectroscopy and ab initio calculations
 [J]. Chemical Physics Letters, 2013, 574: 32–36

- [13] Hussain S Q, Ahn S, Park H, et al. Light trapping scheme of ICP-RIE glass texturing by SF₆/Ar plasma for high haze ratio[J]. Vacuum, 2013, 94: 87–91
- [14] Marton M, Ritomsky M, Michniak P, et al. Study of selfmasking nanostructuring of boron doped diamond films by RF plasma etching[J]. Vacuum, 2019, 170: 108954
- [15] Hou Z L, Zhou Y P, Zha Q, et al. Inductively coupled plasma etching of AlN film for fabrication of 5G networks & devices: a methodological study [J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(03): 220–225 (侯卓立,周燕萍,查强,等. 薄膜体声 波滤波器AIN压电薄膜的ICP刻蚀研究[J]. 真空科学与 技术学报, 2020, 40(03): 220–225 (in chinese))
- [16] Xiao T, Ni D. Multiscale modeling and neural network model based control of a plasma etch process[J]. Chemical Engineering Research and Design, 2020, 164: 113–124
- [17] Guo X H, Hu L, Ren X Y, et al. Fabrication of GaN-based grating by optimized inductively coupled plasma etching
 [J]. Chinese Journal of Luminescence, 2021, 42(06): 889-895 (郭孝浩, 胡磊, 任霄钰, 等. GaN基光栅的干法 刻蚀工艺[J]. 发光学报, 2021, 42(06): 889-895(in chinese))