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Abstract
using the stencil lithography technique. Served as an accessory for different material synthesis methods, this

The growth of single-crystal films over a desired area but nowhere else could be accomplished

technique could be used for depositing various materials particularly the emergent quantum materials. We review
the applications of stencil lithography for in-situ fabricating quantum material devices in mesoscopic scale. The
basics of stencil lithography with the main specifications and advantages are introduced, followed by describing
how quantum materials can be benefitted from these characteristics and advantages. We highlight the applications of
stencil lithography to the material engineering and the in-situ fabrications of quantum devices. The present review
describes a new disciplinary direction between the fabrication technique and quantum materials, which gets more
and more attention and deserves further investigations.

Keywords Stencil lithography, Selective area growth, Quantum material, Quantum effect

WE A KR AR K O SRR OB 2 B 7 VR ik . X R 7 iAE h— AN R ARG B T A, B RE
FF VIR E RS AR, JE R 43 A i FA L, FEARZE R p, 11T A AR 20 7 B A7 s T A oW 2844 1 il
R o ARSCHE eI TR CR B EAREME | EBEHARSEONMEE, KGR IF & T T Ak Qo] 76 1 B 5 AR5 i A
RIS o B )7 IR 2R R TR | JR A T3l R A o ARZEIR B T —NFE T & BOR R AR BT Y
ZE 7 1A], X —J7 7] SR T AR AR A 22 1 S v AT 5

X Otz EXAK BTME BTN
HE S %S 04 SCERARIRAD: A doi: 10.13922/j.cnki.cjvst.202208004

The deposition of a crystalline film over a desired
area is a long-sought technique since decades ago ow-
ing to the important application in scalable micro-/nano-
scale manufacturing in both the fundamental research
and industrial application. This had been achieved us-
ing the stencil lithography (SL) technique for selective
area deposition, which is an obsolete technique by lo-

cally shadow-masking part of the substrate surface in
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prior to the arrival of the material flux in the physical
vapor deposition, forming a patterned film according to
the feature in the stencil mask (Fig. 1). Since this mask
is (semi-)rigid and mechanically strong, this technique
has also been extended to material etching' ™, ion im-
plantation”™, and nano-imprint™ besides film deposi-
tion. Compared with the selective area epitaxy on a pre-

patterned substrate, the film quality grown using SL
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could be maintained since the patterning is performed
on the stencil mask and the substrate is pristine, provid-
ing a deposition environment similar to a normal one.
Besides, SL is compatible to the growth of all kinds of
materials include metal, alloy, and multi-element com-
pound”"¥ as well as various physical vapor deposition

7-8,14-15

|, pulsed

[19-21]
2

techniques like molecular beam epitaxy'

cpr 10,16-18
laser deposition' ]

[22-23]

, atomic layer deposition
sputtering™ ", efc., which exhibits powerful extension

in material synthesis and device fabrication.
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(a) A schematic of a stencil mask containing apertures

Fig. 1
on top of a substrate. During the evaporation of a metal,
the material passing through the apertures is deposited
on the substrate, reproducing the pattern of the stencil

(b) A silicon-nitride

nanoapertures showing the word of “ STENCIL” ",

mask”". stencil mask with

(c) The corresponding deposited structures of Au in 75-
nm line width, showing the stencil-to-substrate pattern

71
transfer’”

Materials that can harbor novel quantum effects,
such as topological physics and strong correlation, have

attract great attention and interest”". Typical examples

. . 25-31
are topological insulator”",
[32-37]

topological (Dirac and

. 28,38-51
, topological superconductor' |

B39 oc. The films of

Weyl) semimetal
2D materials™*", chiral magnet
these materials in the 2D limit are particularly interest-
ing, which provides an extra degree of freedom/con-
finement to manipulate the quantum effect. Besides,
some exotic quantum effects are embedded within the
hetero-interfaces as well, such as interfacial supercon-

60-61 . . . . . 62-63
%611 Dzyaloshinskii-Moriya interaction'”*”,

ductivity
Rashba spin—orbit coupling, magnetic proximity ef-

fect'

20 ete. Keeping the interface clean and atomi-

cally sharp could maximize the wavefunction overlap-
ping of the two constituent materials and extend the co-
herent phase, which results in prominent interface ef-
fects. Thus, there is an urgent need in fabricating these
materials and heterostructures into micro-/nano-scale
functional devices in a clean manner, aiming for the
next-generation quantum technologies. However, there
are some questions that need to be addressed before the
practical applications. Unlike conventional semicon-
ductors such as Si and GaAs, these quantum materials
are usually not very stable even in ambient conditions.
Although a protective layer can prolong the lifetime, it
not only complicates the device fabrication like etching
the film to a specific geometry but also hinders the fab-
rication of electrical contacts. To improve the device
performance, simplifying the fabrication process and
especially minimizing the time exposing the sample to
ambient conditions while keeping the film crystalline
quality become extremely necessary.

One of the possible approaches to solve these
problems may refer to the in-situ device fabrication us-
ing the SL. By using the SL in various physical vapor
depositions, not only the film and heterostructure can
be selectively deposited onto the desired areas but also
the electrical contacts can be fabricated in situ without
breaking the vacuum, keeping all the interfaces clean
and atomically sharp, minimizing the device fabrica-
tion process in ambient conditions. In this review, we
rediscover the functionalities and advantages for the
fabrications of quantum material devices using the SL

and review the potential applications of SL in these
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quantum materials.

1 Specifications of stencil masks

The preparation of the stencil mask is one of the
crucial steps for SL. Depending on the demanded vacu-
um condition (the mask may outgas at the growth tem-
perature) and the required resolution of the pattern, var-
ious materials could be used for constructing the mask.
For example, Kovar alloy has been used for construct-
ing the mask to sputter a patterned film””, and refracto-
ry metal such as tantalum was used in molecular beam
epitaxy-SL growth, both of which are compatible to ul-
tra-high vacuum and can achieve hundreds of um- to
mm-size pattern. Due to the surface roughness and fluc-
tuation, these masks cannot be machined to contact
closely with the substrate surface and, hence, they only
could be used if the resolution of the pattern is not criti-
cal. To address this issue, the low-stress silicon-nitride
membrane and silicon wafer with extremely flat sur-
faces have been widely used as (semi-)rigid stencil
masks, which are also compatible to ultra-high vacuum.
Thanks to the mature semiconductor techniques, the
feature on these masks can reach a resolution down to
sub-100 nm. The silicon-nitride layer with thickness of
hundreds of nm is usually deposited on a single/both
surface(s) of a silicon wafer, which is an ideal material
for constructing the mask in SL owing to its great ther-
mal stability, mechanical strength, and chemical inert-
ness. The crystalline silicon mask constructed via
anisotropic etching becomes an increasingly popular
choice as it allows a more robust mask structure than
silicon-nitride membrane of similar thickness, which is
a rapid, low-cost, and wafer-scale process””””. It has
been reported that masks made of both the silicon-ni-
tride membrane and silicon wafer can achieve a finest
resolution of tens of nm for patterning various metal
films"™"*7*,
2 Advantages using SL for quantum materi-

als

Besides the advantages reviewed by Refs[12-13],
SL owns the following advantages that quantum mate-

rial devices are particularly benefitted from:

2.1 Cleanliness and compatibility to ultra-high

vacuum

The usual procedure for fabricating micro-/nano-
scale devices, including etching the material to a specif-
ic geometry and electrode depositions, relies on tech-
niques such as the photolithography and e-beam lithog-
raphy. However, in some circumstances, it would be
necessary and convenient to fabricate devices in resist-
less manners. Indeed this manner is equivalent to ap-
plying these resist-techniques to fabricate the small
structures on stencil masks rather than directly on the
substrate or material, which leaves the material and
substrate pristine, that is, the SL. In this way, the mate-
rial deposition processes only include the substrate,
evaporated material, and the mask without any further
resist, chemical solvents, energy radiation, or mechani-
cal pressure. All the materials involved in SL-deposi-
tion could thus be carefully selected to accommodate
the ultra-high vacuum. Therefore, the SL maximizes
the cleanliness in material deposition and the quality of
the device based on in situ fabrication. This compatibil-
ity allows the SL to be readily expanded to all of the

physical vapor deposition techniques as well.

2.2 Flexible structure engineering

The stencil masks made by lithography and etch-
ing allow for the transmission of atoms, ions, or
molecules from the openings to the substrates, which
could not only be used in all kinds of physical vapor
depositions but also the etching and ion implantation to
a certain pattern. Different designated patterns and fea-
tures can be reliably constructed based on the conven-
tional micro- and nano-fabrication techniques, which
could fulfil the modern development of multifunctional
device structures. As the stencil mask is placed over the
substrate, it can be flexibly manipulated among differ-
ent fabrication processes to achieve multiplex device
structures. For example, one can place the mask direct-
ly on a substrate before the deposition to achieve the se-
lective area growth on a substrate; or after multiple
continuous film depositions, the mask is then placed for
the final-step metal deposition to form a heterostruc-

ture devices with electrodes; or only use the mask to
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deposit some pattern that is sandwiched between two
continuous films, forming an embedded nanostructure
at the interface between the two materials; efc. Such
high flexibility and variety in both the layer structure
and patterned structure showcase the power for engi-

neering multifunctional devices.

2.3 Reusable stencil mask

The stencil mask can be removed after patterning
or etching from the substrate-mask assembly and
placed onto a new substrate for the next batch of use.
Such a process can be reused for many times, which
substantially reduces the fabrication costs and provides
an efficient patterning replication using different evapo-
rated materials onto all kinds of substrates. Long-term
evaporation through the stencil mask will be accompa-
nied by gradual clogging of the openings and apertures
due to the adhesion of the evaporated materials onto the
mask. However, the clogging can be fully removed by
etching or ion-implantation. Moreover, to reduce the
clogging, the stencil mask (particular for those with
nano-scale apertures) can be coated with alkyl and per-
fluoroalkyl self-assembled monolayers, which were
shown to considerably reduce the adhesion of the evap-

77-78 78
! It was reported”™

orated materials onto the mask'
that such a coating technique can result in an increase
in material deposition through the apertures by more
than 100%. Therefore, the clogging is not an issue by
routinely etching or the self-assembled monolayers
coating, improving the performance and lifetime of the
stencil mask and hence increasing the throughput of

SL.

2.4 High device yield and throughput

As stated above, most of the quantum materials
are indeed not very stable even in ambient conditions.
Multiple device fabrication processes can further de-
grade the material quality or even eliminate the quan-
tum effect in the material. Conventional fine-scale de-
vice fabrication processes, such as coating and baking
of resist and the e-beam lithography, can inevitably
dope the material more or less, which modifies the po-
sition of Fermi level, while the application of high-volt-

age and scanning of e-beam may irreversibly destroy

the crystalline structure of the material. Thus, the more
complex fabrication processes, the lower the yield of
device fabrication will be, either of which fails can
eventually cause the malfunction of the whole device.
Therefore, the device yield could be substantially in-
creased if substituting part of the conventional fabrica-
tion processes with the SL, or even finishing the entire
device fabrication using the SL only. Also, traditional
patterning techniques, in particular the e-beam lithogra-
phy and focused ion beam, are slow when patterning
for a large area, and the patterning process needs to be
repeated for every different sample, which is expensive
and time-consuming. These problems limit the scalabil-
ity of the devices. Instead of repeating these complex
processes, the stencil mask can be made to cover the
entire substrate surface and pattern the mesoscopic
structures with one-time

deposition. A rigid or semi-rigid stencil mask,
such as silicon wafer and silicon-nitride on silicon
wafer, has been shown to be sufficiently strong to self-
sustain for a large area, which enables the fabrication of
mesoscopic devices on a large scale’”. Early in 2009, it
has already been reported that the SL using a silicon-ni-
tride membrane enables to pattern sub-100 nm super-
conductive tunneling junction array at a full 100-mm
wafer scale with 1 zm alignment resolution””.
3 Applications of SL in fabricating quan-

tum material devices

The applications of SL have been used in pattern-
ing various materials and their devices on all kinds of
substrates, such as plasmonics, transistor, magnetic and
superconductive mesoscopic structures, biosensor, flex-
ible and wearable electronics, solar cells, etc., which
have been covered in several other excellent reviews' "
Below we only emphasize the designated applications

of SL in fabricating quantum material devices.

3.1 Resistless metal contact

As stated above, so far most of the quantum mate-
rials that are potentially applied to electronic devices
applications are fabricated as thin film, especially in the

2D limit. It is known that the quantum effects of these
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materials are significantly affected by the electrical
contacts that connect these materials with external cir-
cuitry™. However, it remains challenging to create
high-quality electrical contacts for these thin quantum
materials because several interface issues, leading to
high contact resistivity and undesirable contact type'*".
As stated above, the SL can be used for in-situ growth
and device fabrication without breaking the vacuum of
the system. Generally, to fabricate a mesoscopic device,
the resist will be commonly used in lithography pro-
cesses. However, it is commonly observed that there
will be some residual resist on the contact area after de-
velopment before the metal deposition™”, which hin-
ders or degrades the formation of a clean Ohm contact
to the quantum materials, or increases the contact resis-
tance. Moreover, the residue on the sample surface will
contaminate the sample andcause incidental a doping
effect, which locally modifies the electrochemical po-
tential and provides extra scattering sites to the quan-
tum material. Thus, it is believed that the residual resist
is one of the causes of the bottleneck for further in-
creasing the sample mobility. This is particularly cru-
cial for 2D materials such as graphene, stanine, and
black phosphorus that consist of only a few monolay-
ers of atoms and, hence, very sensitive to surface con-
taminants. N. Staley et al. developed a lithography-free
for fabricating graphene planar tunnel junction using
ultrathin quartz filaments as stencil masks™”. Possible
weak localization behavior and an apparent reduction
of density of states near the Fermi energy were ob-
served. Later, W. Bao ef al. improved the lithography-
free technique for fabrication of clean, high quality
graphene devices based on the silicon stencil masks"™".
As shown in Fig. 2(a), a 100-um thick silicon layer was
used as the stencil mask, which was patterned using e-
beam lithography and inductively coupled plasma etch-
ing for depositing the electrical contacts. After aligning
the resulted mask to the graphene sheet, the entire as-
sembly was transferred into a vacuum chamber for met-
al deposition as shown in Fig. 2(b). It was found that
the metal contacts will typically extend beyond the
mask openings by ~ 0.3-0.5 ym due to the extended

size of the metal source and the finite mask—device
separation. Graphene devices fabricated by this tech-
nique show significantly higher mobility values than
those obtained by the standard e-beam lithography.
This technique has also been extended to fabricate a
suspended graphene device, whose mobility can be
improved to as high as 120,000 cm®/(V-s). The mask
used in this study was reported to be exceedingly ro-

bust, which can be used for more than 20 times.

(2)

(b)

K2 (a)— A& A TUURR G 8 el i Rk AL A 4138l 7
BAEEE . (b)— R (a) L ITAR 43 8 e fi T 15

BB A1 BN AR e
Fig.2 (a) A scanning electron microscopy image of the result-
ed silicon sencil mask for the deposition of metal con-
tacts. (b) A schematic of graphene device fabricated by
direct deposition of metal contacts throug the mask

in (a) ™

3.2 Immediate control sample

Heterostructures involving quantum materials
with conventional materials usually bring about surpris-
ing quantum effects at the interfaces. To probe the ef-
fect arisen from the quantum material or how the in-

volvement of the quantum material affects the physico-
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chemical properties of the whole heterostructure, con-
vincing evidences could be obtained from a control ex-
periment that can immediately compare a sample with
the quantum material and another without. However,
such a control experiment may suffer from a problem
that the constant variables in the experimental samples
and control samples cannot be always kept precisely the
same. For example, owing to the fluctuations in materi-
al deposition conditions including the flux rate, sub-
strate temperature, surface topography, and vacuum,
etc., the quality of samples varies from batch to batch
more or less. This will challenge the fabrications of
both samples that show the same constant variables and
designated control variables. Thus, the conclusion ex-
tracted from such a control experiment could be elu-
sive. It seems that this problem may be solved by fabri-
cating a number of experimental and control samples,
however, this approach increases the total cost and can-
not fully address this problem anyway.

From this point, the SL provides another method
that could solve this problem. Take the topological in-
sulator film grown by molecular beam epitaxy-SL as an
example. It was theoretically shown that the topologi-
cal surface states from can act as an effective electron
bath that

molecules more prone to dissociate and get adsorbed on

allows oxygen and carbon monoxide
the surface of a noble metal/topological insulator het-
erostructure via enhancing the molecular adsorption en-
ergies™. A desired control experiment would be com-
paring the surface reactivities of the noble metal/topo-
logical insulator heterostructure with the noble metal
film only. However, the surface reactivity may also be
varied by the delicate details of the surface topogra-
phies of the substrate and the noble metal film, which
also vary from sample to sample owing to the deposi-
tion conditions. Thus, fabricating two or more samples
and comparing their differences may not be able to lead
to a convincing conclusion. In this case, the SL could
be used to address this problem by separating a single
piece of substrate into two halves, which could act as
the experimental and control samples respectively. In

this way, the fluctuations in constant variables should

be minimized. Experimentally, half the surface of a sin-
gle piece of GaAs substrate was covered by a tantalum
strip in situ in prior to the deposition of 7-nm topologi-
cal insulator film Bi,Te;. The tantalum strip was then
removed in situ to expose the entire sample surface be-
fore the deposition of a 9-nm-amorphous-Pd overlayer.
In this way, the control experiment could be performed
using this single piece of sample, half of which con-
tains the Pd/Bi,Te, heterostructure while the other half
is solely the Pd film. After exposing this sample to am-
bient conditions, one can compare the time-of-flight
secondary ion mass spectra, XPS core-level and Auger
spectra of the involved elements as shown in Fig. 3. It
is clear that Bi,Te, film could enhance the adsorption of
organics on the surface of Pd and the oxidation of Pd.
Since Te is a congener of O and can act as an oxidizing
agent for the metallic Pd, the control sample could be
improved

by in situ evaporating Te (nominal thickness of
1.3 nm) onto the entire surface of the above control
sample. It was found that the surface concentration of
Te and the concentration ratio of Te/Pd in the region
with Bi,Te; film are substantially higher than those ob-
tained from the region without. Therefore, by these
control samples fabricated using the SL, the surface re-
activity of Pd in the region Bi,Te, film can be clearly
shown to be enhanced by the underlying Bi,Te; film.

Another example is the direct evidence of the
Bi,Te, film-induced interfacial superconductivity in
FeTe based on the control sample fabricated using SL.
Likewise, the experimental and control samples as
shown in Fig. 4(a) are deposited onto a single substrate
in order to minimize the fluctuations in constant vari-
ables. By measuring the temperature-dependent resis-
tance curves at various regions of this sample shown in
Fig. 4(b), it was found that the region fully covered
with a Bi,Te; layer shows a single superconducting
transition, while the region without Bi,Te;, equivalent
to a pure FeTe layer, exhibits a semiconducting behav-
ior without any signature of superconductivity. For the
middle region that consists of a Bi,Te;/FeTe het-

erostructure and a pure FeTe layer, the resistance curve
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Fig. 3 Partial time-of-flight secondary ion mass spectra obtained from the regions without and with Bi,Te; after exposing the sample

in dry air for 3 days. Only the data in the neighborhoods of Pd", PdO™ and PdO* for each of the isotopic masses of Pd are dis-

played. (a)—(f) and (g)—(1) show the data obtained from the region without Bi,Te;, while (a')—(f'") and (g")—(I') are those obtained

from the region with Bi,Te,. The inset of (g) displays the structure of the sample *”

show similar characteristics in the superconducting
transition to that of the Bi,Te,/FeTe heterostructure ex-
cept a different residual resistance. This residual resis-
tance originates from the non-superconducting part in
the pure FeTe layer. All these characteristics of the con-
trol sample demonstrate thatthe Bi,Te; film is indis-
pensable the
Bi,Tey/FeTe heterostructure. Therefore, the SL is help-

for inducing superconductivity in
ful for designing an ideal experimental and control
sample that could be deposited onto a single piece of
substrate. The experiments performed on such a sam-
ple could thus provide strong evidences to support the

conclusion on the emergent effect.

3.3 Multifunctional devices
Devices that could realize designated functions

would be particularly benefitted from the SL in terms

of, firstly, the clean interface that can dramatically en-
hance the interfacial coupling of the two constituent
materials. Typical examples are the superconductive
and magnetic proximity effects, which require atomi-
cally flat and clean interface for extended electron
wavefunction overlapping and Cooper pairs tunneling.
Here, the clean interface is very necessary since the
phase coherence lengths in both effects are generally
short, ranging from a couple of nm to about hundreds
of nm even in the clean limit. If the interface is contam-
inated by some residual resist and adsorbate, or oxi-
dized by the ambient air, i.e. the heterostructure is
formed by some ex-situ technique, such lengths will be
substantially shortened, which will diminish or fully
eliminate the proximity effect. Secondly, instead of

continuous thin-film heterostructures that are normally
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Fig. 4 (a) A schematic of the sample structure and measuring

methods. (b) Temperature-dependent resistances ob-

tained from different regions of this sample. The inset

shows the corresponding differential curves "’

grown by various physical vapor depositions, discontin-
uous films and thin-film heterostructures in designated
patterns and geometries can be formed using SL. In this
way, specific functional devices can be realized with-
out additional etching or deposition processes. Here,
these device structures include the Hall bar, Corbino
structure, tunneling junction, Josephson junction, ar-
rays of dots and wires, efc., which are widely used and
important for engineering the quantum effects.

Using in-situ SL in molecular beam epitaxy, P.
Schiiffelgen et al. fabricated superconductor-topologi-
cal insulator-superconductor Josephson junctions and
networks of hybrid nanostructures. Such a device aims
at the realization of superconductive proximity effect
from Nb to the topological insulator, giving rise to the

topological superconductor that is promising for con-

structing the topological qubit in quantum
computation™”. As shown in Fig. 5(a), a thin Si,N, sten-
cil mask was monolithically integrated to the Si(111)
substrate in prior to the epitaxial growth of the topolog-
ical insulator film (Bi,Sb),Te; on the Si substrate. The
deposition of 50-nm Nb layer was then performed over
the mask, which is a stencil bridge for separating the
continuous Nb film into two parts. In this way, the
(B1,Sb),Te, film is covered by the Nb layer except for a
narrow strip shaded by the stencil bridge, forming a
Nb-(Bi,Sb),Te;-Nb Josephson junction as shown in
Fig. 5(b) with a separation of ~ 80 nm. To avoid degra-
dation of the resulted device after exposing to the ambi-
ent conditions, the entire device was in situ capped by 5
nm of Al,O; layer. As shown in Fig. 5(c), the transmis-
sion electron micrograph of the cross- of this Joseph-
son junction clearly shows the layered structure of the
rhombohedral (Bi,Sb),Te; crystallinefilm, while the two
Nb electrodes also exhibit satisfying crystalline quality,
which may be benefitted from the atomically clean sur-
face of the (Bi,Sb),Te; film. Such an in-situ SL tech-
nique allows the Josephson junction to be readily mea-
sured without further ex-sifu fabrication processes,
which preserves the most pristine properties of the su-
perconductive proximity effect. The transport measure-
ment over such a device shows a large critical current
and ballistic superconducting coherence length to ~110
nm, successfully inducing a superconducting gap as
large as 0.6 meV in the (Bi,Sb),Te; film beneath the Nb
electrodes. Further analysis indicates an excellent in-
plane transparency of 0.95 between the proximitized
(Bi1,Sb),Te; film and the non-proximitized part. Due to
such a high interface transparency, the supercurrent
could be solely carried by the topological surface states
in (Bi,Sb),Te; across a wide temperature range. Addi-
tionally, the Shapiro response of the Josephson junc-
tion shows a full suppression of the first Shapiro step at
low frequency, which is believed to be a signature of
the Majorana bound states in the topological supercon-
ductor.

The SL not only provides a technique to fabricate

some micro-/nano-scale devices in situ but also can be
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Fig. 5 (a) The fabrication processes of a topological insulator-superconductor Josephson junction using SL. (b) False colour scanning

electron micrograph of the fabricated junction. Scale bar, 500 nm. (c¢) Transmission electron micrograph of the cross-section of

the junction. Scale bar, 20 nm ™"

applied to more complex layout. As shown in Fig. 6,
the (Bi,Sb),Te; film was firstly only selectively grown
on the Si(111) surface in the molecular beam epitaxy
system. In a second in-situ step, the stencil mask al-
lows to deposit superconductive Nb islands to form
parts of the network, which was well aligned to the
(Bi1,Sb),Te; network. In this way, a theoretically pro-
posed mock device compromising the topological insu-
lator-superconductor network for topological qubits as
shown in Fig. 6(a) was in situ fabricated using SL. An-
other circuit for using circuit quantum electrodynamics
to detect topological superconductivity was also fabri-
cated using a similar SL method™. In this circuit, the
topological insulator-based transmons were found to
scale with their Josephson junction dimensions, which
demonstrates a qubit control as well as temporal quan-
tum coherence. These results made the first step to-
wards the investigations of topological materials in

both novel Josephson and topological qubits.

4 Challenges, summary, and outlook

There are some problems and challenges when us-
ing SL. First, reflection high energy electron diffrac-
tion (RHEED), which is usually used for growthmoni-
tor, may not be compatible with the SL-growth since

the stencil mask closely contacts with the substrate. If

SAG mask

4 =
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Fig. 6 (a) A schematic of a proposed topological insulator-su-
perconductor hybrid network for topological quantum
computation. (b) Scanning electron microscopy image of

the network. Scale bar, 10 um[m

the selective area is smaller than the RHEED beam
size, one still can ensure the film quality by taking all

the optimized growth parameters that were obtained us-
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ing RHEED without capping the substrate with the
stencil mask. If the selective area is sufficiently large
for RHEED monitor, this method can still be used. Oth-
erwise, a special mask adapter that is compatible with
RHEED needs to be designed. A typical example can
be found in Ref. [89], which has a tunnel on the re-
verse side of the mask that allows the entrance and ex-
ist of the RHEED beam. Second, the blurring of the
edges in the SL-grown film. In practice, the stencil
mask can never perfectly contact with the substrate due
to the stress, curvature, or topography of the two sur-
faces no matter the size of the substrate. The narrow
gap between the two surfaces can cause the scatterings
of the flux and thus the blurring of the selective area,
which not only limits the resolution of the pattern but
also degrades the quality of the device. So far many
methodologies had been used to reduce the blurring,
which had been extensively discussed”"*". Third, the
limitation of the film thickness. After the SL-growth,
the undercut profile at the edges of the pattern will, in
turn, ensure a discontinuous film during the deposition
if the film thickness is less than that of the mask. For a
thick film around or thicker that of the mask, it may be
difficult to remove the mask after SL-growth. One will
need to prepare a thicker mask to address this problem.
Also, it is possible that the mask will damage some of
the substrate surface more or less. This can be mini-
mized by reducing the relative sliding between the
mask and the substrate in particular during the transfer
process.

The search of new quantum effects and materials
is evolving at a rapid pace and encompasses a board
range of disciplines from material science, condensed
mater physics, to technology and engineering. The suc-
cess of material synthesis and device fabrication would
be the prerequisite for this exploration. The SL has
been shown and tested for many years in a large
amount of materials and devices to be extremely pow-
erful, which has been widely used in different areas
from fundamental research to industrial application.
The application of the SL technique in investigating the

quantum materials is so far still in an embryonic stage

without many experimental results reported yet. The
outcome of applying SL to quantum materials study is
evidently versatile and supportive, which is both con-
vincing and exciting. The research areas that strongly
rely on the interface control should pay more attention
to this technique. Further efforts should be made to
adopt the SL to the experimental studies in the emer-
gent materials. Key potentials may refer to the fabrica-
tion of a topological superconductor and topological
qubits as well as the topological spintronic material that
consists of topologically nontrivial matter with various
magnets, both of which require controllable interfacial
coupling and clean device fabrication process in order

to maximize the combined effects.
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