MBE/MOCVD 专题

生长温度对 Cr 原子掺杂在 Bi₂Se₃ 中 位置及磁性的影响

徐永康 闫鹏飞 代兴泽 张小龙 王瑾 王双海 何亮* (南京大学电子科学与工程学院南京 210000)

The Effects of Growth Temperature on the Position and Magnetic Properties of Cr in Bi₂Se₃

XU Yongkang, YAN Pengfei, DAI Xingze, ZHANG Xiaolong, WANG Jin, WANG Shuanghai, HE Liang^{*} (School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China)

Abstract This paper reports the preparation of chromium (Cr) - doped Bismuth Selenide (Cr-Bi₂Se₃) thin films by Molecular Beam Epitaxy (MBE). Cr-Bi₂Se₃ was tested by Reflective High Energy Electron Diffraction (RHEED), X-ray diffraction (XRD) and electromagnetic transport system. The experimental results show that most Cr atoms enter Bi_2Se_3 and replace Bi site to form Cr_{Bi} at low growth temperatures; At higher temperatures, a significant part of Cr atoms enter the van der Waals gap forming interlayer Cr_1 , which leads to different magnetic properties of Cr- Bi_2Se_3 . Therefore, we can adjust the Cr doping position by controlling the growth temperature to obtain a better effect.

Keywords Molecular beam epitaxy, Doping, Cr-Bi₂Se₃, Growth temperature

摘要 本文报道用分子束外延 (Molecular Beam Epitaxy: MBE) 技术制备了优良的铬 (Cr) 掺杂硒化铋 (Cr-Bi₂Se₃) 薄膜样 品。通过反射高能电子衍射 (Reflective High Energy Electron Diffraction: RHEED)、X 射线衍射 (X-ray diffraction: XRD) 技术和 电磁输运系统对 Cr-Bi₂Se₃进行测试。实验结果显示: 较低的生长温度下 Cr 进入 Bi₂Se₃ 中替代 Bi 位形成 Cr_{Bi}; 较高的生长温 度下 Cr 进入 Bi₂Se₃ 中的范德瓦尔斯间隙形成层间 (Interlayer)Cr₁, 这一区别导致 Cr-Bi₂Se₃ 在生长速率及磁性等方面表现出不 同的性质。所以可以通过控制生长温度来调制 Cr 的掺杂位置,得到更理想的效果。

关键词 分子束外延 掺杂 Cr-Bi₂Se₃ 生长温度 中图分类号: O484.1 文献标识码: A doi: 10.13922/j.cnki.cjvst.202209012

近年来, 拓扑绝缘体 (Topological insulator, TI) 由于强的自旋轨道耦合导致的导带和价带的反转, 而拥有体内绝缘态和表面导电态的一种特殊材 料^[1-5], 例如 Bi₂Se₃和 Bi₂Te₃。而在这类材料中掺杂 磁性元素来获得磁性拓扑绝缘体, 从而发现例如量 子反常霍尔效应 (QAHE)^[6-8]、拓扑磁电效应^[9]、镜像 磁单极子效应^[10]等新奇的物理效应, 是目前研究的 热门。但是在这些实验和理论研究中, 同样掺杂浓 度的磁性拓扑绝缘体的性能存在着非常大的差距。 而这种差距存在的原因可能就是磁性原子在 TI 中 处于不同掺杂位置所导致的。

本文主要研究的是在 Bi₂Se₃ 中掺杂磁性元素 Cr。通过对不同温度下生长的 Cr-Bi₂Se₃ 样品的结 构、生长速率和输运测试的结果分析发现:较低的 生长温度下大部分 Cr 进入 Bi₂Se₃ 中替代 Bi 位形 成 Cr_{Bi};较高的生长温度只有一部分 Cr 形成 Cr_{Bi},另 一部分的 Cr 进入 Bi₂Se₃ 中的范德瓦尔斯间隙形成 层间 Cr₁。这一区别导致不同生长温度的 Cr-Bi₂Se₃ 在表现出不同的磁性。

^{*}联系人: E-mail: heliang@nju.edu.cn

1 实验与方法

样品通过分子束外延 (MBE) 系统进行生长。 衬底为云母片 (Mica), 生长前将 Mica 黏附在钼制的 样品托上,然后剥离表面一层并放入生长腔内。生 长腔内压力达到 1.5×10⁻⁷ Pa。Bi 和 Se 在束源炉中 蒸发,蒸发温度分别为 525℃ 和 125℃,蒸发速率为 1:10,以便更好地形成 Bi₂Se₃。掺杂 5%、10% 和 15% 时, Cr 束源的蒸发温度分别为 1103℃、1120℃ 和 1147℃。样品的生长温度分别为 370℃和 420℃, 分别记作 G₃₇₀ 和 G₄₂₀₀ 所有 Cr-Bi₂Se₃ 的样品 厚度为10层。生长的时候,用RHEED对生长过程 进行实时监测, RHEED 的工作电压为 16 kV, 并通 过检测衍射峰的强度振荡来确定薄膜样品的生长 速率。生长完成后,通过 XRD 技术对样品进行测 试,扫描范围 (20) 为 10°~60°,得到晶体结构和晶 格参数。最后用离子束刻蚀(Ion Beam Etching: IBE) 将薄膜制备成 Hall bar 图形, 然后使用牛津输 运系统进行测试,得到样品的电磁性质,测量时的 温度范围为2~300K,最大可用磁场为14T。

2 结果与讨论

图 1(a) 和 (c) 显示了 G₃₇₀ 和 G₄₂₀ 样品的 XRD 图谱。由图中趋势可知, 掺杂 Cr 和未掺杂 Cr 的 Bi₂Se₃ 样品的 XRD 图谱几乎一致, 表明所有样品都 有着相同的六方相晶格, 没有其他任何杂质相的存 在, 均为 (R-3m) 空间群^[11]。图 1(b) 和 (d) 分别为 图 1(a) 和 (c) 中 (006) 布拉格峰的放大图, 可以看出 G₃₇₀ 和 G₄₂₀ 对应的布拉格峰相对于未掺杂的 Bi₂Se₃ 的布拉格峰向更低的角度移动。并且作者根据 (006) 峰的偏移计算了 *c* 方向晶格常数的值, 公式如 下:

$$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$
(1)

$$2d\sin\theta = n \cdot \lambda \tag{2}$$

式中 n 为波长的整数倍数 n=1, d 为平面间距, $\lambda=$ 1.5406 Å为入射波波长, θ 为入射光与晶面之间的夹 角^[12-13]。结合式 (1) 和 (2) 得出 c 方向的晶格常数, 结果如图 1(e)-(i) 所示。通过对比发现 G₃₇₀ 在 (006) 峰的偏移量明显小于 G₄₂₀ 峰的偏移量, 随着 Cr 含量 的增加, 两组样品在 c 方向的晶格常数都有明显的 升高, 这是因为在生长的过程中存在着 Cr₁ 造成的, 但是 G₃₇₀ 中 c 的变化幅度上升幅度明显小于 G₄₂₀ 中 *c* 方向的晶格常数,并趋于线性。该变化说明: G₃₇₀中的 Cr 大部分进入 Bi₂Se₃ 中 Bi 位置形成替代 位 Cr_{Bi}; G₄₂₀样品中 Cr 有部分进入了 Bi₂Se₃ 的层间, 形成层间掺杂的 Cr_I。

*a*方向的晶格常数根据 RHEED 条纹中的 *d*-*spacing* 如图 2(a) 所示计算得出:

$$\frac{d_{\text{Mica}}}{d_{\text{cr-Bi}_2\text{Se}_3}} = \frac{a_{\text{cr-Bi}_2\text{Se}_3}}{a_{\text{Mica}}} \tag{3}$$

式中 d 为 Mica 和 Cr- Bi₂Se₃ 的 d-spacing, a 为面内 晶格常数,其中 a_{Mica} =5.3Å^[14+15]。根据不同的 Cr-Bi₂Se₃ 的 d-spacing 得到不同 Cr 掺杂浓度下的 a,如 图 1(e)-(ii) 所示。从图中可以看出,G₃₇₀ 明显遵循 Vegerd 定律 (由于 Cr 原子半径小于 Bi 原子半径, 晶格常数随掺杂浓度的增加线性递减)^[16],而 G₄₂₀则 不遵循 Vegerd 定律。a 和 c 方向的晶格常数变化 说明在 G₃₇₀ 中 Cr 的掺杂主要是取代 Bi 形成 Cr_{Bi}; 而 G₄₂₀ 中 Cr 掺杂主要进入间隙位置形成 Cr_I。Cr_I 和 Cr_{Bi}的形成也导致了 G₃₇₀ 和 G₄₂₀ 的生长速率 (V) 和居里温度 (T_c)存在差异。

作者用 Vesta 对 Cr 在 Bi₂Se₃ 中的位置,即 Cr_{Bi} 和 Cr₁进行模拟并讨论,如图 1(f)所示。Bi₂Se₃ 沿 c 轴顺序排列有 5 个原子层,即-(Se-Bi-Se-Bi-Se)-,每 一个厚度约为 1 nm。每一层内部 Bi 和 Se 主要以 共价键结合,Bi₂Se₃ 层与层之间的相互作用力是比 较弱的范德瓦尔斯键。文献 [17-18] 中报道,Cr 在 Bi₂Se₃ 的掺杂位置包括层间 Cr₁和 Cr 取代 Bi 和 Se 的取代位,分别表示为 Cr_{Bi}和 Cr_{Se},以及含 Cr 原子 的二聚体配合物,如 Cr_{Bi}-Cr_{Se}和 Cr_{Bi}-Cr₁。但是在文 献 [17] 中证实 Cr_{Se} 在能量上更不容易产生,所以作 者可以确定系统中的 Cr 的主要位置为 Cr₁、Cr_{Bi} 以 及二聚体配合物 Cr_{Bi}-Cr₁。

接下来讨论 G₃₇₀ 和 G₄₂₀ 的生长速率 (*V*) 的区别。 图 2(a)-(i) 和 (a)-(ii) 分别为衬底 Mica 和 Cr-Bi₂Se₃ 样品的 RHEED 图像。图中可以看出 Cr-Bi₂Se₃ 样品 的 RHEED 图像很锐利且清晰的条纹,这表明 Cr-Bi₂Se₃ 样品在生长过程中是以层层堆叠的生长模式 进行的,并且具有光滑平整的结晶表面^[19-20]。其中, layer-by-layer 的生长模式会使 RHEED 衍射峰的强 度会随着时间出现周期性的振荡^[21],振荡的周期对 应了薄膜每生长一层所需要的时间。图 2(b) 和 (c) 分别为 G₃₇₀ 和 G₄₂₀ 样品在生长过程中 RHEED 衍射 峰强度振荡变化。作者选取每个峰对应的时间,计 算 Bi₂Se₃ 的平均生长速率,实验得到的生长速率分

Fig. 1 XRD analysis. (a) and (b) XRD patterns of Cr- Bi₂Se₃ grown at different temperatures, (c) and (d) enlarged view of Bi₂Se₃ peak, (e) lattice constant changes in the A and C directions of Cr- Bi₂Se₃ at different growth temperatures, (f) three main defects in Cr-Bi₂Se₃

别为 *V*_{G370}=96 s/L 和 *V*_{G420}=93 s/L, 如图 2(d) 所示。 理论计算得到的不同 Cr 掺杂浓度下的 Cr-Bi₂Se₃ 生 长速率, 计算公式如下:

$$V' = \frac{V}{(1+x)} \tag{4}$$

式中 V'为 Cr- Bi₂Se₃ 薄膜的生长速率, V 为 Bi₂Se₃ 薄

图2 生长情况。(a) 衬底和 Cr- Bi₂Se₃ 的 RHEED 图像, (b) 和 (c) 根据 RHEED 所得的 370℃ 和 420℃ 下生长不同 Cr 掺杂浓度 时的震荡周期, (d) 370℃ 和 420℃ 生长温度下计算所得和实验所得 Cr- Bi₂Se₃ 的生长速率对比

Fig. 2 Growth. (a) RHEED images of substrate and Cr- Bi₂Se₃, (b) and (c) the oscillation period when different Cr doping concentrations are grown at 370 °C and 420 °C according to RHEED, (d) comparison of the growth rates of Cr- Bi₂Se₃ calculated and experimental at 370 °C and 420 °C

膜的生长速率 (s/L), x 为掺杂 Cr 的百分比。通过计 算得到 370℃ 和 420℃ 生长 Cr-Bi₂Se₃ 薄膜的理论 速率 V_e, 具体数值如表 1 所示。

表1 不同生长温度下对应 Cr-Bi₂Se₃ 薄膜的生长速率

Tab. 1 Growth Rate of Cr-Bi₂Se₃ films at different growth temperatures

Cr-doping/%	V _c @370℃	V _r @370℃	V _c @420℃	V _r @420℃
0	96	96	93	93
5	91	91	88	91
10	87	87	84	87
15	83	93	80	84

图 2(d)-(i) 中可以看出, 370℃ 下薄膜的生长速 率 V_r 与 V_e基本吻合, 表明大部分掺杂的 Cr 原子都 进入了 Bi 的替代位。而 420℃ 下薄膜的 V_r 与 V_e存 在很大的偏差, 如图 2(d)-(ii) 所示。通过对比发现 V_{G420} 的掺杂浓度在乘以 2/3 后其速率基本与 V_{G370} 相重合如图 2(d)-(ii) 中蓝色符号所示。由此可以推 断,在 420℃下有大约 2/3 的 Cr 原子进入了 Bi 的 替代位,剩下的 1/3Cr 原子进入了间隙位形成 Cr₁, 从而导致 V_{G420}变大。这一结果符合作者在讨论 XRD 时提出的猜想。

随后,采用离子束刻蚀 (IBE) 技术,将薄膜样品 刻蚀成如图 3(a) 所示的 Hall bar 图形,进行输运测 量,以研究 Cr-Bi₂Se₃ 薄膜的磁性。通过两个外部触 点提供频率为 13 Hz 的 1 μ A 的恒定电流,测量 Hall bar 两端的电压来测量纵向电阻 (R_{xx})。图 3(b) 给出 了 370℃ 生长的 5%Cr-Bi₂Se₃ 样品在不同温度下的 磁阻。在低磁场和低温下观察到具有清晰的弱反 局域化 (WAL) 现象,这是拓扑表面态存在的特 征^[19-21]。而曲线尖峰间的场强大小代表着薄膜有磁 性,导致了往返扫描磁场时,WAL 尖峰的错位。其 差距对应于 2 倍的矫顽力 (H_c)^[22]。根据图 3(b),提 取了 Cr-Bi₂Se₃ 薄膜样品在不同温度下的 H_c ,并绘制 出温度 vs H_c 的关系曲线,如图 3(c) 所示。在 50 K 温度时, H_c 等于零,这里将该温度定义为居里温度

图3 磁输运测量。(a) 输运测量器件示意图, (b) 和 (c) 不同温度下 R_{xx} 以及根据 R_{xx} 推出的 H_C(d) 根 据输运测试所得的 370℃ 和 420℃ 下生长温度下所得 Cr-Bi₂Se₃ 的 T_c 以及两种生长温度下 T_c 的对应关 系

Fig. 3 magnetic transport measurement. (a) schematic diagram of transport measurement devices, (b) and (c) R_{xx} at different temperatures and H_c derived from R_{xx} (d) according to the T_c of Cr-Bi₂Se₃ obtained at the growth temperature of 370°C and 420°C and the corresponding relationship of T_c at the two growth temperatures

(T_c), 这与以前文献 [16-17] 报道的数据相吻合。

本文使用相同的方法分别确定所有 G_{370} 和 G_{420} 样品的居里温度 (T_c),结果如图 3(d) 所示。其 中红色曲线表示 G_{370} 的 T_c ,掺杂 10% 和 15%Cr 的 Cr-Bi₂Se₃ 样品对应的 T_c 分别 60 K 和 70 K,这与文 献 [17] 报道的相符;图 3(d) 中的黑色曲线为 G_{420} 的 T_c ,不同 Cr 掺杂浓度的 Cr-Bi₂Se₃ 薄膜对应的 T_c 分别 10、20 和 50 K。整体上, G_{420} 系列的样品的居里温 度都要比相同掺杂浓度的 G_{370} 系列的样品要低。 进一步地仔细观察,发现 420℃生长的 15%Cr-Bi₂Se₃ 的 T_c (50 K) 与 370℃生长的 5%Cr-Bi₂Se₃ 的 T_c (50 K) 相等,两者浓度大约是三分之一的关系。

G₄₂₀系列样品的磁性的变小可以这么来理解。 根据前面生长速率的分析,在420℃的生长温度下, 掺杂入样品的15%的Cr原子中,有5%的Cr原子 处于间隙为Cr₁,有10%的Cr处于Bi的替代为Cr_{Bi}。 这时,每个 Cr₁ 就会与一个 Cr_{Bi} 形成 Cr_{Bi}-Cr₁ 的二聚 体,如图 1(f) 所示。单独的 Cr_{Bi}和 Cr₁的都表现出 铁磁性,其自旋力矩 (m_{spin}) 都为大约 3 μ b/原子^[18-21], 轨道力矩 (m_{orb}) 为负值且值很小。而 Cr_{Bi}-Cr₁ 的二 聚体中两个 Cr 原子是反铁磁排列的,从而导致总的 磁矩 m_{total} 约为 0^[19-23]。这时,仅有剩下的 5% 的 Cr_{Bi} 对总的磁矩有贡献。所以,420℃ 下生长的 15%Cr-Bi₂Se₃ 薄膜中虽然掺杂了 15% 的 Cr, 但是磁性质与 370℃ 生长的 5%Cr-Bi₂Se₃ 磁性质相等。

3 结论

本文用分子束外延技术分别在 370℃ 与 420 ℃ 下制备了 Cr-Bi₂Se₃ 的薄膜样品,研究发现 Cr-Bi₂Se₃ 薄膜样品没有改变本体的晶格结构,并且有明显的 层状结构。随着 Cr 掺杂量的增加, G₃₇₀ 的晶格常数 比 G₄₂₀ 的晶格常数变化范围小。通过对 G₃₇₀ 和 G₄₂₀ 样品的磁性分析推测出: 在较低的生长温度下 Cr 进入 Bi₂Se₃ 中替代 Bi 位形成 Cr_{Bi}; 在较高的生长 温度下 Cr 进入 Bi₂Se₃ 中的范德瓦尔斯间隙形成层 间 Cr₁,因此才导致 Cr-Bi₂Se₃ 薄膜样品在晶格常数, 生长速率和 *T*_c产生如此大的区别,这一发现将为以 后的薄膜生长提供宝贵的经验。

参考文献

- Hasan M Z, Kane C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045– 67
- [2] Moore J E. The birth of topological insulators[J]. Nature, 2010, 464(7286): 194–8
- [3] Sun G, Qin X, Li D, et al. Enhanced thermoelectric performance of n-type Bi₂Se₃ doped with Cu[J]. Journal of Alloys and Compounds, 2015, 639: 9–14
- [4] Haazen P P J, Laloë J B, Nummy T J, et al. Ferromagnetism in thin-film Cr-doped topological Insulator Bi₂Se₃[J]. Applied Physics Letters, 2012, 100(8)
- [5] Tu J, Zhao Y, Zhang X, et al. Impurity band assisted carrier relaxation in Cr doped topological insulator Bi₂Se₃[J].
 Applied Physics Letters, 2021, 118(8)
- [6] Walas L A, Smyth C M, Barton A T, et al. Interface chemistry of contact metals and ferromagnets on the topological insulator Bi₂Se₃[J]. The Journal of Physical Chemistry C, 2017, 121(42): 23551–63
- Zhang D, Richardellaa, Rench D W, et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator [J]. Physical Review B, 2012, 86(20)
- [8] Kou X F, Jiang W J, Lang M R, et al. Magnetically doped semiconducting topological insulators[J]. Journal of Applied Physics, 2012, 112(6)
- [9] Kou X, He L, Lang M, et al. Manipulating surface-related ferromagnetism in modulation-doped topological insulators[J]. Nano Lett, 2013, 13(10): 4587–93
- [10] Kou X, Lang M, He L, et al. Interplay between different magnetisms in Cr-doped topological insulators[J]. ACS Nano, 2013, 7(10): 9205–9212
- [11] Urkued R R, Sagdeo A, Rawat R, et al. Observation of kondo behavior in the single crystals of Mn-doped Bi₂Se₃ topological insulator[J]. AIP Advances, 2018, 8(4)
- [12] Li M, Wang Z, Yang L, et al. From linear magnetoresis-

tance to parabolic magnetoresistance in Cu and Cr-doped topological insulator Bi₂Se₃ films[J]. Journal of Physics and Chemistry of Solids, 2019, 128: 331–6

- [13] Ryu S, Schnyder A P, Furusaki A, et al. Topological insulators and superconductors: tenfold way and dimensional hierarchy[J]. New Journal of Physics, 2010, 12(6)
- [14] Chong S V, Williams G V M, Moody R L. The effect of manganese incorporation in Bi₂Se₃ on the thermal, electrical transport and magnetic properties[J]. Journal of Alloys and Compounds, 2016, 686: 245–51
- [15] Jun J H, Kim J, Kim S W, et al. Signature of topological states in antiferromagnetic Sm-substituted Bi₂Te₃[J]. Sci Rep, 2020, 10(1): 9615
- [16] Kander N S, Biswas S, Das A K. The effect of magnetic impurity (Mn-manganese) incorporation in Bi₂Se₃ topological insulator [Z]. Proceedings of Advanced Material, Engineering & Technology. 2020.10.1063/5.0019428
- [17] Ning J, Zhao Y, Chen Z, et al. Ultra-sensitive anomalous hall effect sensors based on Cr-doped Bi₂Te₃ topological insulator thin films[J]. Journal of Physics D: Applied Physics, 2020, 53(50)
- [18] Zhang J-M, Ming W, Huang Z, et al. Stability, electronic and magnetic properties of the magnetically doped topological insulators Bi₂Se₃, Bi₂Te₃, and Sb₂Te₃[J]. Physical Review B, 2013, 88(23)
- [19] Liu W, Damien West, He L, et al. Atomic-scale magnetism of Cr-doped Bi₂Se₃ thin film topological insulators[J]. Nano Lett, 2015, 9(10): 10237–10243
- [20] Chen J, Wang L, Zhang M, et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures[J]. Nano Lett, 2019, 19(9): 6144– 51
- [21] Yang Z R,Zhou X,Pan J F, et al. RHEED pattern study on GaAs surface grown by MBE[J]. Vacuum, 2010, 47(02):1002-0322
- [22] Mogi M, Yoshimi R, Tsukazaki A, et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous hall effect[J]. Applied Physics Letters, 2015, 107(18)
- Liu W, He L, Xu Y, et al. Enhancing magnetic ordering in Cr-doped Bi₂Se₃ using high-TC ferrimagnetic insulator[J]. Nano Lett, 2015, 15(1): 764–9