微波氢等离子体反应特性研究

卢应瀚 李言钦^{*}
 (郑州大学机械与动力工程学院郑州 450001)

Reaction Characteristics of Microwave Hydrogen Plasma

LU Yinghan, LI Yanqin^{*}

(School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China)

Abstract Hydrogen will be the main clean energy in the future, which will play a key role in the future's green metallurgy. Taking low temperature plasma aided hydrogen direct reduction rection of iron ore as a background, a two-dimensional numerical model was established to study the reaction characteristics of microwave hydrogen plasma by combining reaction mechanisms from different literature and data from LXcat database. Compared with the experimental results in the literature, the rationality and reliability of the plasma model were verified. Based on that, the effects of the input power of the microwave and gas pressure of the plasma on the indicators such as electron density and concentration of excited hydrogen molecule (H₂s) in the plasma were investigated, which obtained key parameters for the iron ore reduction. The results show that, at a constant pressure of plasma medium and an increasing input power of the microwave, the electron density increases, while there exists a peak value with the H₂s concentration. When the pressure of the plasma medium increases, at a certain microwave power, the electron density decreases exponentially, and the H₂s concentration keeps monotonically increasing, whereas its molar fraction shows a peak with the variation. Furthermore, the reasons and characteristics for having peak in variation of the concentration and the fraction of H_2 s, respectively, in the plasma reaction are discussed when the microwave power or the gas pressure reaches beyond a critical value. Such a study is expected to provide a theoretical reference for further research and application of hydrogen plasma iron oxide reduction in green iron making.

Keywords Low temperature plasma, Microwave, Electron density, Excitation hydrogen molecule, Green iron-making

摘要 氢气作为未来主要的清洁能源,将在未来绿色冶金领域发挥关键作用。本文以低温等离子体辅助氢气直接还原 炼铁为背景,基于不同已有等离子体反应模型和 LXcat 数据库建立了二维微波氢气等离子体模型。对比文献实验结果验证 了所建立等离子体反应模型和体系的正确与合理性,在此基础上研究得到了微波功率和气体压力变化对等离子体电子密度、以及在铁矿石还原中起主要作用的激发态氢气分子浓度等关键参数的影响特性。结果表明,介质压力一定而微波功率升高,则电子密度升高,但激发态氢气摩尔浓度存在一明显峰值变化过程;当微波功率一定而介质压力升高,则电子密度呈一定指 数下降趋势,激发态氢气摩尔浓度保持单调递增状态,不过激发态氢气摩尔分数变化则存在一峰值。另外,分析讨论了微波 功率相对过大或气体压力相对过小氢气分子激发态浓度及摩尔分数出现峰值变化的原因与特性。本研究在一定程度上揭示 了微波等离子体随微波参数变化的机理特征,可为氢气还原氧化铁绿色冶金相关理论进一步研究和应用提供参考。

关键词 低温等离子体 微波 电子密度 氢气激发态 绿色炼铁

中图分类号: O531 文献标识码: A doi: 10.13922/j.cnki.cjvst.202212009

基金项目:国家自然科学基金资助项目 (51676175)

^{*}联系人: Tel: 18237176120; E-mail: liyq@zzu.edu.cn

氢气作为一种清洁能源,经讨燃烧或电化学反 应可产生净零排放的能量;另一方面,它用于金属 氧化物矿石的还原,相比传统的基于碳还原的冶金 工艺,相应产物仅为水,避免了大量的环境污染及 碳排放。等离子体是在一定电磁场激励下部分气 体分子被激发、电离或离解而产生的具有相应反应 活性的混合物,其中低温等离子体又称非平衡等离 子体,应用于氢气可以产生还原性更强的氢等离子 体,用于炼铁时可在相对低温条件下实现实现固态 氧化铁的直接还原^[1]。氢气还原炼铁将为传统碳排 放和污染大户的炼铁行业带来绿色革命,而等离子 体辅助氢气还原预期将明显改善这一工艺的实现 条件及能耗。具体来说,由于激发态物质携带的能 量可以有效地在还原反应界面释放^[2],其不需要体 加热,整体温度较低,减少了来自于反应器的热损 耗,预期将有效降低工艺能耗,节约成本。

等离子体有不同的产生方式,其中微波等离子 体因其无极放电、放电区域集中,放电稳定,放电均 匀性较好^[3,4]等特征在表面镀膜、刻蚀^[5-9]等领域有 广泛应用。在还原氧化铁方面,该类等离子体也已 经有一定研究^[1,10-12], Sabat^[13] 在研究中指出氢气等离 子体相比焦碳热还原需要更少的能量。Raiput^[14]在 实验中使用微波谐振腔式等离子体探究了不同操 作参数下氢气等离子体对氧化铁的还原能力,得出 了微波功率密度、氢气流速、气体压力、温度等因 素对还原效果有重要影响。徐慢[15]在氢气、甲烷微 波等离子体环境下对钛铁矿进行还原,发现微波功 率的提高有助于钛铁矿的还原。微波等离子体的 发生包括电子回旋共振(ECR)、表面波和谐振腔三 种方式,谐振腔式又包括石英管式、圆柱谐振腔等 结构类型,其中石英管式结构较简单,可拓展性较 强,文献[16]针对其反应结构进行优化,以实现多微 波源在反应器内的电场叠加增强。目前的研究多 是从宏观实验的角度探索微波功率等对于低温等 离子体还原氧化铁的影响,对于微观反应过程以及 反应机理尚不够清楚。鉴于此,本文拟基于数值方 法并结合相关文献实验结果,研究氢气在微波激发 下的等离子体反应特性,进一步探究微波氢气放电 等离子体与氧化铁还原相关的特征机理。

1 模型构建

1.1 控制方程

等离子体机理模型包括一系列物理化学方程,

其中最重要的是电子输运方程、电子能量输运方程 以及重物质输运方程。由于石英管式微波等离子 体产生机制是通过波导输入的高强电磁场激发工 质气体,其中电子起传输能量的关键作用,电子输 运和电子能量输运方程如下

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \Gamma_e = R_e - (u \cdot \nabla) n_e \tag{1}$$

$$\Gamma_e = -(\mu_e \cdot E)n_e - \nabla(D_e n_e) \tag{2}$$

$$\frac{\partial n_{\varepsilon}}{\partial t} + \nabla \cdot \Gamma_{\varepsilon} + E \cdot \Gamma_{\varepsilon} = R_{\varepsilon} - (u \cdot \nabla) n_{\varepsilon}$$
(3)

$$\Gamma_{\varepsilon} = -(\mu_{\varepsilon} \cdot E) n_{\varepsilon} - \nabla (D_{\varepsilon} n_{\varepsilon}) \tag{4}$$

其中 n_e 和 n_e分别表示电子密度和电子能量密度, Γ_e 和Γ_e分别表示电子和电子能量的通量, 通量由两部 分组成, 分别是迁移量和扩散量。R_e 和 R_e表示化学 反应引起的电子生成或者消耗, 方程右边最后一项 表示对流项, 由于本文研究暂时不关注介质对流特 性及影响, 因此根据文献数据取一恒定对流速度 u_e

在低温氢等离子体中,重物质包括氢气分子 (H₂),激发态氢气分子(如H₂s),离子态氢(H₂⁺、H⁺、 H₃⁺)、原子氢(H)、激发态氢原子(Hs)等。据研究, 在低温条件下 66% 的输入能量被用以生成振动激 发态氢分子^[17],其被认为对氧化铁的还原起决定性 作用^[2,14,18]。因此本研究将这一活化分子作为主要 研究对象,基于低温等离子体的低电离率的特性, 构建相关化学反应,其主要包括电子碰撞反应、体 反应和表面反应。其中电子碰撞反应是是整个反 应体系的核心,对于低温等离子体,本研究主要采 用了如表1所示的电子碰撞反应。

表1 电子碰撞反应^[19-21]

Tab. 1 Electron collision reaction

No.	Reaction equation	Reaction type	Rate coefficient $/m^3 \cdot (s \cdot mol)^{-1}$
R1	$e+H_2 => e+H_2$	Elastic collision	Collision cross section
R2	$e+H_2=>e+2H$	Dissociation	Collision cross section
R3	$e+H_2=>2e+H_2^+$	Ionization	Collision cross section
R4	$e+H_2 => e+H_2s$	Excitation	Collision cross section
R5	e+H=>e+Hs	Excitation	Collision cross section
R6	$e+H=>2e+H^+$	Ionization	Collision cross section
R7	$e+H_2^+=>e+H^++H$	Excitation	6.9268E-14
R8	$e+H_2s=>H_2^++2e$	Ionization	3.99E-10
R9	$e+H_3^+=>H_2+H$	Attachment	1.33E-8

表1中反应 R1~R6 所对应碰撞截面参数来自 LXcat 数据库;电子碰撞反应速率常数可通过对电 子能量积分得到:

$$k = \gamma \int_0^\infty \varepsilon f(\varepsilon) \sigma(\varepsilon) d\varepsilon \qquad (5)$$

式中 ε 表示电子能量, $f(\varepsilon)$ 表示电子能量分布函数 (EEDF), 其服从麦克斯韦分布, $\sigma(\varepsilon)$ 表示电子碰撞 反应的碰撞截面参数, γ 定义为

$$\gamma = \sqrt{2q/m_e} \tag{6}$$

式中q为电子电荷,m。为电子质量。

重物质模型中包括体反应和表面反应,主要化 学反应如表2所示。

表 2 重物质反应方程^[20,21]

Tab. 2 Reaction equation of heavy substances

No.	Reaction equation	Reaction type	Rate coefficient/m ³ ·(s·mol) ⁻¹
R10	$H_2+H_2=>H+H+H_2$	Somatic reaction	8.13E-17
R11	$H_2 + H_2^+ = > H_3^+ + H$	Somatic reaction	1.99E-9
R12	$H_3^+ => H + H_2$	Surface reaction	Based on adhesion coefficient
R13	$H^+ => H$	Surface reaction	Based on adhesion coefficient
R14	$H_2^+ => H_2$	Surface reaction	Based on adhesion coefficient
R15	$H_2s => H_2$	Surface reaction	Based on adhesion coefficient
R16	Hs=>H	Surface reaction	Based on adhesion coefficient

表 2 中 R12-R16 为表面反应,为壁面等离子体 反应,其反应特性将在下文重物质输运边界条件讨 论。重物质输运模型基于等离子体混合物对流扩 散模型,服从 Maxwell-Stefan 方程:

$$\rho \frac{\partial}{\partial t} W_k + \rho \left(u \cdot \nabla \right) W_k = \nabla \cdot j_k + R_k \tag{7}$$

式中 ρ 表示混合物密度, W_k 表示物质质量分数, R_k 表示反应源/汇项, j_k 为物质质量通量,由输运模型决定。

1.2 网格及其无关性检验

本文选择的石英管式微波谐振腔等离子体发 生器,其主要由短路活塞以及石英管构成^[22],基于此 反应器,基于有限元方法构建了相应二维等离子体 反应模型,如图1所示。

图 1(a) 为二维简化微波等离子体反应器模型 设置,其中石英管长 0.4 m,宽 0.1 m,微波波导宽 0.05 m。微波从纵向波导上方端口入射,气体在横 向石英管内流动,微波激励等离子体在石英管内产 生。本文除等离子体模型验证部分,均采用此等离 子体反应器结构。其中微波导及石英管在交汇处 之外的侧壁均设为理想电导体边界,没有微波溢出, 本文所研究各等离子体工况依条件参数不同整体 微波路径损耗均在 0.1% 附近,压力及功率参数越

图1 石英管谐振腔模型, (a) 几何模型, (b) 网格划分, (c) 网格 无关性验证

Fig. 1 Geometric model of the quartz tube resonator (a), mesh (b), and grid independence verification (c)

大损耗相对越大。等离子体存在于横管流体区域, 其网格须足够细化,并设置流动边界层,如图 1(b) 所示。模型进行了网格无关性检验,基于图 1(a)所 示装置,在微波功率为 600 W,氢气压力为 1400 Pa, 流速为 0.4175 m/s 工况下,分别采用不同数目三套 自由三角形网格进行计算,所确定网格数目 N₀ 为 67594,另外两套分别为在此基础上粗化至 80% 和 细化至 120%,取某一反应时刻横向石英管轴线上 电子密度分布如图 1(c)所示,证明网格足够精确。

1.3 边界条件和初始值

模型边界条件包括静电边界条件、电子输运边

界条件和重物质输运边界条件。考虑到实际工况, 静电条件设置为壁面处接地,其中电子输运边界条 件为简化模型,不计热运动下电子在壁面的反弹, 考虑壁面在一定电子轰击条件下的二次电子发射, 即式(1)中的Γ_e和Γ_e在壁面处包含了二次电子发射 通量。重物质输运的边界条件体现在表面的等离 子体化学反应,即表2中的表面反应部分,对于等离 子体表面反应的气相物质采用其黏附系数表征反 应速率,模型中都设置为1。为初步探索微波氢气 等离子体的反应特性,等离子体模块中气体介质按

理想气体处理,取模型温度为常温 300 K,对流项速 度为 0.4175 m/s,初始电子能量 ε₀ 为 4 eV;模型取常 用微波频率 2.45 GHz,电磁波模式为 TE 模式。

2 模拟结果与分析

2.1 模型验证

本文首先基于 Ar 气氛微波等离子体研究初步 检验模型的正确与可靠性,采用文献^[23]中石英管式 单波导微波装置及相应条件设置, Ar 气体压力 0.1 torr, 温度 300 K, 输入 300 W 频率 2.45 GHz 的微波, 结合前述等离子体模型进行模拟, 与文献 [23] 中实 验结果进行对比, 所得电子密度分布及对比如图 2 所示。

须指出,由于等离子体反应测量的困难性等因素,通常认为数值模拟与实验结果在数量级上一致即可证明模型有效性^[24]。实验中测量位置分别在其波导下方 2 cm、4 cm、5 cm 处,其结果与本文模拟结果对比如图 2(b) 所示,给出了沿管轴向的电子密度分布,两者数量级均为 10¹⁷,可初步证明本文等离子体模型的合理性。

另外在上述 Ar 等离子体验证的基础上,针对本文石英管谐振腔氢气放电体系,选用文献^[25]中4.5、9和30 W/cm³的微波功率密度 (MWPD),1400、2500和11000 Pa 的压力进行模拟。不同工况所得电子密度量级分布在10¹⁶~10¹⁷/m³之间,而文献在相同输入参数下计算出氢气等离子体电子密度的范围是不大于10¹⁷/m³,与本文结果相符,进一步验证本文等离子体体系模型的合理性。

2.2 微波功率对 H₂s 和电子密度的影响

在微波等离子体产生过程中,微波入射功率起 关键作用,氢气激发形成低温等离子体所需要的能 量都来自于微波谐振腔内形成的电磁场。另外,所

图2 (a) 模拟电子密度分布,及 (b) 与文献实验结果 [23] 对比
 Fig. 2 (a) Simulated electron density (m⁻³) distribution, and (b) comparison with the experiment in the literature [23]

产生等离子体参数与其介质的压力密切相关。基于图 1 的等离子体装置,取氢气流速为 0.4175 m/s, 压力 1400 Pa,根据理想气体状态方程:

$$pV = nR_gT \tag{8}$$

其中 p 为气体压力, V 为气体体积, n 为气体的物质 的量, R_s 为摩尔气体常数, T 为温度, 可得初始氢气 浓度为 0.56 mol/m³, 模型温度 300 K。选取微波功 率分别为 300 W、600 W、1000 W、1500 W、1800 W、 2000 W 和 3000 W, 取等离子体反应稳定时的结果 进行分析。除主体指标电子密度和 H₂s 外, 作为对 比同时给出了所形成等离子体中其它粒子成分相 应变化特性, 并与前两者进行对比, 以更好地揭示 低温条件下氢气等离子体特性, 见图 3。

由图 3(a) 可以看出, 在其它条件不变的情况下, 电子密度随微波功率升高而升高, 在超过 1500 W 后产生的电子密度加速上升, 同时产生的 H₂s 的浓 度呈快速下降。同时, 在图 3(b) 中可以看出 H₂浓 度与 3(a) 中 H₂s 浓度随功率存在强反向相关变化趋 势, 也说明了 H₂s 是该等离子体反应的主要产物, 相 应地, 随着大量的 H₂ 分子被激发为 H₂s, 其浓度快

图3 微波功率对各物质场平均浓度影响: (a) 电子密度及 H,s 浓度 (b) 其它重物质粒子浓度

Fig. 3 Effect of microwave power on (a) electron density, concentration of H_2s and (b) concentration of H, H_2 , H_2^+ , H^+ , Hs

速减小,并在1500W时达到极小值,同时H₂s浓度 达到峰值0.088 mol/m³。即随着功率超过~1500W, H₂s大部分退激发恢复为基态H₂分子,这样前者快 速降低而后者快速升高。另外随着功率升高,少部 分其它活性粒子生成,其趋势与电子密度相似,其 中H原子浓度相对最大,H⁺相对最少。

为进一步揭示该等离子体反应相关机理,选取 图 3 中两个典型工况,其功率分别为 1000 W 和 1800 W,对比分析反应器石英管内特征参数电场、 电子密度和 H₂s 摩尔浓度的分布,如图 4 所示。

图 4 可以看出, 功率适当时, 所产生的等离子 场规则分布在石英管内, 如图 4(a)(c)(e); 当功率增 大到一定程度时, 所产生的等离子场移动至靠近微 波入口侧壁面区域, 石英管内部电场强度则较低, 如图 4(b)(d)(f), 文献 [26] 研究石英管氩气等离子体 放电模型时得到相类似的等离子场与微波电场对 应分布。另外, 其中重物质 H₂s 的分布则同时受到 介质流场的作用而相应呈现向下游运动的趋势。 为寻找该现象的原因, 针对这两个工况, 舍去等离 子体反应而只考虑微波场传输特性,得到如图 5 所 示相应工况微波电场分布情况。

由图 5(a)(b) 可知, 两种微波功率下, 无等离子 体反应时石英管内电场都符合 TE 模式电磁波所形 成电场,即都可正常进入石英管。图 5(c)对比了 1000 W 和 1800 W 两个工况有、无等离子体反应时 石英管内沿中轴线(图 5(a)(b) 中 x=0.2)电场强度分 布。1800 W时,虽然无等离子体反应时在石英管内 其电场明显强于 1000 W时,但加入等离子体反应 时其在石英管中心部分电场强度则很弱,且电场能 量偏移至管内微波入口侧,且相对更强,说明该功 率时微波没有有效进入石英管,并在入口处形成一 定聚集效应;相比来说,1000W时,等离子场的存在 也使得进入石英管的微波电场有所减弱,但差异尚 不明显。究其原因,产生的等离子体内部自由电子 沿电场方向移动会产生与微波电场相反的电场,从 而呈现出等离子体对于微波电场一定的阻碍^[27]、保 持气压一定,微波功率升高至一定临界值时,等离 子体产生的反向电场变得足够强,使得微波场难以 有效进入反应器石英管,相应等离子体集中于石英 管上侧管壁微波入口处产生。这时壁面处表面反 应 R15 加强使得大部分激发态 H_s 退激发为基态 H2分子,呈现为图 3 中电离度保持上升,H2s 浓度则 先上升, 而在高于一定功率后快速下降, 相应 H, 分 子浓度先下降而后快速升高的趋势。

2.3 气压对 H₂s 和电子密度的影响

在模型温度 300 K、氢气流速 0.4175 m/s 条件 下,固定微波功率不变,设置等离子体模型压力分 别为 1400 Pa、2000 Pa、2700 Pa、5200 Pa 和 8000 Pa, 其对应氢气初始浓度分别为 0.56、0.80、1.08、2.08、 3.21 mol/m³,取微波输入功率分别固定为 600 W 和 2000 W 对比研究,各工况管内平均电子数密度和 H₂s 浓度变化如图 6 所示。

图 6(a) 中给出了 600 W 较低功率下等离子体 电子密度随介质压力升高呈近似指数衰减的趋势, 该现象可以从电子碰撞合理解释,在一定的输入功 率下,如提高气压,会引起碰撞频率增加,但由于平 均自由程减小,电子无法获得足够的能量电离介质 粒子,从而导致电子密度的降低,苏小保^[28]等在其 探究气压对氩气放电的影响时也得到了相似的结 论。另一方面,在电子碰撞达不到电离的情况下, 达到激发态的分子数目相应增加,即图中 H₂s 浓度

图4 图 3(a) 中所示典型工况电场分布 (V/m)、电子密度分布 (m⁻³) 和 H₂s 浓度分布 (mol/m³), (a)(c)(e): 典型工况 I, 1000 W, (b)(d)(f): 典型工况 II, 1800 W

Fig. 4 Electric field (V/m), electron density distribution (m^{-3}), and molar concentration of H_2s (mol/ m^3) at typical conditions I and II, respectively, as shown in Fig. 3(a)

随压力单调增加,另外,与电子密度减小趋势减缓 相对应,H₂s浓度增加速率也随压力增大而变小。 同时,电子密度的降低,也使得H₂s进一步激发至电 离态的几率降低而使其而浓度上升。图 6(b)中微 波功率为 2000 W 时的等离子场结果,并相比 600 W 时拓展给出模型压力 600 Pa 和 11000 Pa 下的等离 子体工况,使规律呈现更为清楚。可以看出,在功 率较高情况下,随着压力改变,电子密度和重物质 H₂s 依然保持与 600 W 相似的变化趋势,但在快速 下降的临界区域下降速度更快。 为更好地揭示不同微波功率下改变压力对于 等离子体放电体系的影响,选取上述两个功率下各 自典型工况的等离子场进行分析,如图 7 所示。

由图 7 可知, 功率较小时, 等离子体场总是规则分布于石英管中央附近, 而功率较大但压力较低时, 则存在等离子体场聚集于管内上侧微波入口处的异常现象, 其原因与上文介质压力一定而微波功率升高至一定临界值以上时类似, 其电子密度较高所形成电场的反作用限制了微波的进入, 使得等离子体只能在微波入口附近产生, 相应 H₂s 在壁面处

图5 图 3 中两典型工况对应于无等离子体反应时的微波电场分布 (V/m): (a) 1000 W, (b) 1800 W. (c) 有、无等离子体反应时电场沿竖中轴线分布对比

Fig. 5 Electric field (V/m) distribution at 1000 W (a) and 1800 W (b) without plasma reaction; and comparison between the conditions with/without plasma at the two powers, along the erect central axis (c)

大量退激发而浓度小得多,功率大同时压力也较大时,反而没有出现明显的等离子体场集聚于上部而规则分布于石英管中央的情形,说明压力大时具有与如图 3、图 4 功率小时相类似的效果,即等离子体自身产生的反作用电场相对弱而不会阻碍微波的有效进入。从而功率大时介质气压也需要相对大才可形成正常的等离子体场,并产生高的 H₂s 浓度。

2.4 不同工况 H₂s 摩尔分数的变化

由前文研究可知,在输入功率不变的情况下,

图6 600 W (a) 和 2000 W (b) 时场平均电子密度、H₂s 浓度 随压力变化趋势

Fig. 6 Trend diagram of field averaged electron density and $H_{2}s$ concentration with pressure under 600 W (a) and 2000 W (b)

随着压力的升高,在一定范围内可以提高等离子体 中 H₂s 的摩尔浓度,但是压力升高会使得介质中所 有物质的摩尔浓度都提高,所以仅采用该项指标不 能完全反映等离子体的生成与变化特性,因此,进 一步对比了前述不同工况下所产生等离子体中 H₂s 摩尔分数指标,以更为全面地获得不同反应条件下 产生活性物质的"效率",更好地刻画所产生等离子 体参数变化机理,结果如图 8 所示。

如图 8(a) 所示,可知压力不变的情况下, H₂s 摩尔分数与其摩尔浓度(对应于图 3(a))随微波功率有相同变化趋势,该现象符合固定容器中理想气体混合物状态方程所阐释规律。

分别结合图 6(a)(b), 由图 8(b) 可知无论微波输 入功率处于较高或较低水平, 随着介质压力升高, 都会在在某个气压会达到 H₂s 摩尔分数的极大值, 对应于电子密度快速下降结束点。以微波功率 2000 W 为例, 随着压力升高, H₂s 的摩尔分数会先 升高, 在 2700 Pa 到达峰值后又快速下降, 说明在相 应功率下 2700 Pa 时氢气分子产生激发态的"效率"

图7 不同微波功率和介质压力典型工况下等离子体电子密度分布。 600 W 时: (a) 2000 Pa, (b) 5200 Pa; 以及 2000 W 时: (c) 2000 Pa; (d) 2700 Pa

Fig. 7 Diagram of electron density (m⁻³) distribution at different microwave power and medium pressure, respectively

最高。当微波功率为 600 W 时, 达到 H₂s 摩尔分数 峰值的气压小于 2000 W 下峰值的气压, 为~1400 Pa。 另外, 压力较低时, 功率 2000 W 时的 H₂s 摩尔分数 相比 600 W 时偏低, 而在压力较高时, 则比后者值 大得多。

总的来说,不同参数变化,H₂s转化效率均存在 一峰值。以2000W时随压力的变化规律为例,结 合图6(b)、图7及图8(b),随着压力降低(即逆横轴 方向),H₂s的浓度相对降低,而H₂s摩尔分数则相对 升高,2700Pa时转化效率在各工况中达最大,即 图8(b)中相应峰值位置,进一步降低气压,到2000 Pa时由于如前述原因,即等离子场自身产生的反作 用电场增大至阻止了微波电场的有效进入,使得等 离子体聚集于上侧壁面使H₂s大量退激发,从而表 现为H₂s转化效率降低。其它参数变化过程为类似 规律,即不同参数变化过程均存在一最佳(也是极限) 的气压与微波功率的匹配,其H₂s转化效率相应最 大,超过相应临界值进一步增大功率或减小气压, 均会因等离子体反作用电场增大至阻碍微波有效 进入造成H₂s转化效率相应降低。

3 结论

微波氢等离子体还原氧化铁具有明显优点与 前景,但其机理尚不明确,鉴于此本文建立了微波 谐振腔等离子体放电模型,在已有文献实验结果对 模型有效验证基础上,开展数值理论研究并得到了 等离子体特征参数随微波工况变化的相关规律。 主要结论如下:

(1)介质压力一定时,微波功率输入的提高有利 于气体放电效率的提高,所产生等离子体中的电子 密度单调升高;而 H₂s 的浓度随微波功率的变化则 存在一极大值,相应存在一临界微波功率,超过该 临界值时,所产生的等离子场对微波电场形成的反 作用将使微波难以有效进入反应器,并使得等离子 体反应聚集于微波进入反应器的入口处,而该处在 壁面上表面反应的相应加剧使得大量 H₂s 退激发 为 H₂。

(2) 在一定微波入射功率下,气体压力升高时, 由于电子平均自由程变小而限制电离反应的发生, 使得氢气等离子体体系的电子密度下降,相应地获 得了更高浓度的 H₂s。压力高于一临界值时,电子

图8 H₂s 摩尔分数: (a) 1400 Pa 压力下随微波功率的变化; 及 (b) 功率一定随气压的变化

Fig. 8 Change of H₂s molar fraction with: (a) microwave power at 1400 Pa; (b) pressure at a constant microwave power

密度减小至所形成反作用电场不再能够阻止微波 的有效进入,反应更分散,电子密度快速减小至一 定值后趋势变缓,H₂s浓度也在快速增大至一定值 后增速趋缓。

(3) 与压力一定改变微波功率的等离子体场变 化规律不同,大功率条件下,压力较低时所产生的 较高等离子体电子密度同样阻碍微波入射,并使得 所产生等离子体场聚集于石英管上侧壁面微波入 口处,大量 H₂s 退激发为 H₂,而随着压力升高而超 过相应临界值,所产生等离子体场则可规则分布于 石英管中央。

(4) 固定微波功率升高气压时虽可以提高 H₂s 的摩尔浓度,但其摩尔分数则存在峰值;固定压力 升高功率时,H₂s 的摩尔分数和摩尔浓度有一致的 趋势。

总体上, 微波输入功率和等离子体介质压力需 要合适的匹配, 压力较低时, 需要较低的微波功率, 微波功率较高时,需要较高的介质压力,以获得合理的等离子体反应场及尽可能高的 H₂转化为活性物质的效率。

参考文献

- [1] Sabat K C, Rajput P, Paramguru R K, et al. Reduction of oxide minerals by hydrogen plasma: an overview[J]. Plasma Chemistry & Plasma Processing, 2014, 34(1): 1–23
- [2] Sabat K C. Physics and chemistry of solid state direct reduction of iron ore by hydrogen plasma[J]. Фізика і хімія твердого тіла, 2021, 22(2): 292–300
- [3] He X F. Integrated Process of Coal Pyrolysis with Methane Activation by Cold Plasma[D]. Dalian: Dalian University of Technology, 2012 (贺新福. 甲烷低温等离 子体活化与煤热解耦合过程研究[D]. 大连: 大连理工 大学, 2012(in chinese))
- [4] Guan Y X. Microwave Plasma Technology and Research Progress[J]. Safety Health & Environment, 2020, 20(2): 1-5(关银霞. 微波等离子体技术及研究进展[J]. 安全, 健康和环境, 2020, 20(2): 1-5(in chinese))
- [5] Hrebtov M Y, Bobrov M S. Numerical optimization of hydrogen microwave plasma reactor for diamond film deposition[J]. Journal of Physics:Conference Series, 2019, 1382: 012010
- [6] Wang F Y, Meng X M, Tang W Z, et al. Simulation of Hydrogen and Argon Microwave Plasma in a Cylindrical Microwave Plasma Chemical Vapor Deposition Reactor [J]. Vacuum and Cryogenics, 2008(03): 157–163 (王凤 英, 孟宪明, 唐伟忠,等. 圆柱谐振腔式MPCVD装置中 氢、氩微波等离子体分布规律的数值模拟[J]. 真空与低 温, 2008(03): 157–163(in chinese))
- [7] Gu H Z.Numerical simulation and stuy of resonant cavities for microwave plasma chemical vapour deposition
 [D]. Hangzhou: Hangzhou Dianzi University, 2022 (谷吴周. 微波等离子体化学气相沉积谐振腔的数值仿真与研究[D]. 杭州: 杭州电子科技大学, 2022(in chinese))
- [8] Zhu H F, Wang Y K, Ding W M, et al. Preparation of diamond films by low power MPCVD[J]. Diamond & Abrasives Engineering, 2021, 41(02): 39–45 (朱海丰, 王艳坤, 丁文明等. 低功率MPCVD制备金刚石薄膜[J]. 金刚石 与磨料磨具工程, 2021, 41(02): 39–45(in chinese))
- [9] Wang B, Wang J H, Weng J, et al. Effect of Gas Flow Mode on Uniformity of MPCVD Diamond Films[J]. Vacuum and Cryogenics, 2020, 26(02): 108-113 (王斌, 汪 建华, 翁 俊等. 气体流动方式对MPCVD金刚石薄膜均 匀性的影响[J]. 真空与低温, 2020, 26(02): 108-113(in

chinese))

- [10] Hao J M, Zhu J, Chen Y N, et al. Reduction of Fe₂O₃ by Atmospheric Pressure Cold Plasma Jet[J]. Surface Technology, 2017, 46(03): 151–156 (郝建民,朱 军,陈永楠, 等. 常压低温冷等离子体还原Fe₂O₃的研究[J]. 表面技术, 2017, 46(03): 151–156(in chinese))
- [11] Zhang Y W, Ding W Z, Guo S Q, et al. Reduction of Metal Oxide by Non-equilibrium Hydrogen Plasma[J]. Shanghai Metals, 2004(04): 17–20 (张玉文, 丁伟中, 郭曙强,等. 非平衡等离子态氢还原金属氧化物的实验[J]. 上海金属, 2004(04): 17–20(in chinese))
- [12] Guo S Q, Ding W Z, Zhang Y W. Reduction of Fe₂O₃ Pellet in Non-equilibrium Hydrogen Plasma[C]//2002 National Symposium on Metallurgical Physics and Chemistry, CSM, 2002:504-507 (郭曙强, 丁伟中, 张玉文. 氧化铁 球团在低温氢等离子体中的还原[C]//2002全国冶金物 理化学学术会议, 中国金属学会, 2002: 504-507(in chinese))
- Sabat K C, Murphy A B. Hydrogen plasma processing of iron ore[J]. Metallurgical & Materials Transactions B, 2017, 48(3): 1561–1594
- [14] Rajput P, Sabat K C, Paramguru R K, et al. Direct reduction of iron in low temperature hydrogen plasma[J]. Ironmaking & Steelmaking, 2014, 40(10): 61–68
- [15] Xu M, Zhang W B. Research on Process of Reduction of Ilmenite by Microwave Plasma[J]. Vacuum and Cryogenics, 2011, 17(04): 209-212+223 (徐慢,张文波. 微波等 离子体还原钛铁矿工艺研究[J]. 真空与低温, 2011, 17(04): 209-212+223(in chinese))
- [16] Wei B, Guo H X, Ding S S, et al. Design an Simulation of Microwave Plasma Reactor[J]. Safety & EMC, 2020(04): 87-92 (卫博, 郭海霞, 丁叁叁等. 微波等离子体反应器 的设计与仿真[J]. 安全与电磁兼容, 2020(04): 87-92(in chinese))
- [17] Mankelevich Y A, Ashfold M, Ma J. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures
 [J]. Journal of Applied Physics, 2008, 104(11): 473
- [18] Rajput P, Bhoi B, Sahoo S, et al. Preliminary investigation into direct reduction of iron in low temperature hydrogen plasma[J]. Ironmaking & Steelmaking, 2013, 40(1): 61-68
- [19] Janev R K, Langer W D, Evans K, et al. Elementary pro-

cesses in hydrogen-helium plasmas: Cross sections and reaction rate coefficients[M]. Elementary Processes in Hydrogen-Helium Plasmas, 1987.

- [20] Kimura T, Kasugai H. Properties of inductively coupled radio frequency CH₄/H₂ Plasmas: experiments and global model[J]. Japanese Journal of Applied Physics, 2012, 51(4): 6202
- [21] Hassouni K, Grotjohn T A. Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor[J]. Journal of Applied Physics, 1999, 86(1): 134–151
- [22] Li H. Microwave Plasma and Deposition of Functional Films[D]. Hefei: University of Science and Technology of China, 2017 (李唤. 微波等离子体及其功能薄膜沉 积[D]. 合肥: 中国科学技术大学, 2017(in chinese))
- [23] Bouherine K, Tibouche A, Ikhlef N, et al. 3-D numerical characterization of a microwave argon PECVD plasma reactor at low pressure[J]. IEEE Transactions on Plasma Science, 2016, 44: 3409–3416
- [24] Wang C. Numerical simulation and characterization of methane needle-plate discharge plasma[D]. Jinan: Shandong Normal University, 2018 (王超. 甲烷针—板放电 等离子体的数值模拟及特性研究[D]. 济南: 山东师范 大学, 2018(in chinese))
- [25] Hassouni K, Gicquel A, Capitelli M, et al. Chemical kinetics and energy transfer in moderate pressure H₂ plasmas used in diamond MPACVD processes[J]. Plasma Sources Science and Technology, 1999, 8(3): 494
- [26] Shen Q, Huang R, Xu Z, et al. Numerical 3D modeling: microwave plasma torch at intermediate pressure[J]. Applied Sciences, 2020, 10(15): 5393
- [27] Zhang X Y, Qi D S, He F, et al. Study on Block of Electromagnetic Wave by Plasma[C]//The 13th Annual Electrostatic Conference of the Chinese Physical Society, CPS, 2006: 193-196 (张晓友, 戚东升, 何锋, 等. 等离子体对电磁波的阻挡作用研究[C]//中国物理学会第十三届静电学术年会, 中国物理学会, 2006: 193-196(in chinese))
- [28] Su X B, Wu Q C, Wan Y X. The Effect of Pressure on the Argon Plasma Characterization[J]. Vacuum and Cryogenics, 1997, 3(4): 3–7 (苏小保, 邬钦崇, 万元熙. 气压对氩等离子体特性的影响[J]. 真空与低温, 1997, 3(4): 3–7(in chinese))