3D NAND 存储芯片生产线 CMP 工艺及设备配置研究

程星华 白帆^{*} 赵馨飞 邱雪皎 (中国电子工程设计院有限公司 北京 100142)

CMP Process and Equipment Configuration of 3D NAND Memory Chip Production Line

CHENG Xinghua, BAI Fan^{*}, ZHAO Xinfei, QIU Xuejiao

(China Electronic Engineering Design Institute Limited Company, Beijing 100142, China)

Abstract With the rising of 5G, internet of things, automatic driving and other new industries, human society will produce a large amount of information data, which will greatly promote the rapid development of the memory chip industry. As the mainstream technology of memory chips, 3D NAND has the characteristics of multi-layer vertical stacking and high aspect ratio. In the production process of different technology nodes, equipment selection and quantity configuration have an important impact on the chip production line planning and design. Based on the X-tacking technology in 3D NAND, this paper analyzes the related problems of chemical mechanical planarization (CMP) process and equipment configuration. Through the analysis of the characteristics of different processes of CMP process, the selection and configuration of different equipment are determined. The process requirements of CMP under different technology nodes of 3D NAND are studied, and the corresponding equipment number configuration relationship is obtained by comparative analysis. This study provides a theoretical basis and guidance for the equipment selection and quantity configuration of 3D NAND project and provides support for the preliminary design of the project.

Keywords Semiconductor memory, Chemical mechanical planarization, Technology node, Equipment selection, Quantity disposition

摘要 随着 5G、物联网、自动驾驶等新型产业的兴起,人类社会将产生海量的信息数据,因而极大促进了存储芯片产业的快速发展。3D NAND 作为存储芯片的主流技术,器件结构具有多层垂直堆叠、高深宽比等特点。在其不同技术节点的产品生产加工过程中,设备选型与数量配置对芯片生产线的规划设计具有重要影响。文章从 3D NAND 中的 X-tacking 技术出发,分析了化学机械研磨(CMP)工艺及设备配置的相关问题:通过对 CMP 工艺不同制程特点的分析,确定了其对不同设备的选型配置问题;研究了 3D NAND 不同技术节点下 CMP 的制程要求,对比分析得出了其相应的设备数量配置关系。研究对 3D NAND 项目的设备选型和数量配置提供理论依据和指导,对项目前期设计组线提供支撑。

近年来,随着 5G、物联网、自动驾驶等新型产 业的兴起,作为信息技术产业核心基础的集成电路 产业也得到快速发展^[1]。基于此类新兴信息产业在 工作生活中的广泛应用,人类社会会产生海量的数 字信息资源,对这些信息的存储与分析需求亦促进 了存储芯片产业的快速发展,即单位体积拥有更多 存储容量的高性能芯片。为此,存储芯片的高性能不仅要从结构上从二维(2D NAND)向三维(3D NAND)转换^[2],在生产制造工艺和产线工程端也有着更高的需求。

化学机械研磨(Chemical Mechanical Planarization, CMP)工艺是芯片制造过程中的核心工艺之

收稿日期:2022-12-11

^{*}联系人: E-mail: baifan002@sdic.com.cn

一,其能够实现晶圆表面的整体平坦化,保证晶圆 表面薄膜的厚度均匀性^[3]。3D NAND存储芯片有 着高堆叠层数和高深宽比深孔结构的特点,其对 CMP工艺厚薄膜移除及表面均匀性提出了更高的 要求。同时,随着 3D NAND 技术节点的发展,即堆 叠层数的增加,其对 CMP工程化要点,如设备配置、 工艺布局等也有着重要的影响。本文以 3D NAND 典型芯片结构为基础,对不同 CMP 制程的工艺原 理和特点、不同节点下的 CMP 设备配置关系进行 了分析研究,以期能够促进 CMP工艺工程在 3D NAND 中的发展。

1 3D NAND 存储芯片的分类与特点

存储芯片是一种以电信号存储方式工作的存储器,以 DRAM、Nor Flash和 NAND Flash为主。 其中,NAND Flash因为存储及擦除信息速度快、存储密度高、成本低等优点,近年来发展迅猛^[4,5]。如图1所示,为一个 NAND Flash基础存储单元,为浮栅型结构。当存储单元执行写入操作时,P阱中电子会注入浮栅中,此时其处于逻辑"1"状态;当进行擦除操作时,浮栅中电子被"放逐"至 P 阱中,此时处于逻辑"0"状态,NAND Flash 通过改变控制栅极

的阈值电压进行存储控能。

随着技术与需求的发展,平面 2D NAND Flash 的栅极结构和氧化层逐渐减小与变薄,从而导致了 器件可靠性能的降低,逐渐不能满足大容量、高速 率的产品需求。因此, NAND Flash 的发展开始转向 三维空间,即 3D NAND,常见的方法为将二维平面 结构进行垂直构造,通过一个圆柱形的沟道来制备 电荷俘获单元,从而在保证性能的同时能够实现更 大的存储容量,如图 2 所示为 2D 与 3D NAND Flash 的性能对比。

对于 3D NAND 芯片结构来说,其通常由 CMOS 驱动电路和 Array 存储阵列两部分组成,当前主流 技术架构可分为 CMOS Under Array(CUA)⁶和 Xtacking^[7]两种。其中按 Array 部分的工艺路线可分 为四种技术路线: TCAT(Terabit Cell Array Transistor)、 BiCS(Bit Cost Scalable)、P-BiCS(Pipe-Shaped Bit Cost Scalable)和 FG(Floating Gate),如表 1 中为四 种技术路线的优劣对比。在 3D NAND 制造中, CUA 的芯片架构通常是先进行 CMOS 驱动电路结 构的制备,在其基础上再进行 Array 存储结构的制备,这种架构的缺点有在后续的阵列加工部分会涉及高温高压的工艺,会对之前的逻辑电路产生影响;同时,CMOS 外围电路占整个芯片的面积无法减少,芯片上总有部分面积无法实现存储作用,使得芯片利用率低;此外,先外围电路再阵列制造时,如发现问题再进行工艺调整使得整个研发制造周期变长。而对于 X-tacking 来说,其通过将 CMOS 和 Array 分开加工,外围电路不受影响,提高了存储的面积利

表 1 Array 部分四种技术路线的对比

Tab. 1 Comparison of four technical routes in Array

技术路线	TCAT	BiCS	P-BiCS	FG
优点	 (1)更快的擦除速度 (2)更强的电荷保持能力 (3)更大的阈值电压窗口值 (4)更低的字线引线电阻 (5)可大大提高造作速度 	(1)写人/擦除窗口更宽、且工艺简单(2)闪存核心面积低,且成本较低	改善了 BiCS 闪存的限 制,包括:写人/擦除窗 口、保持特性、源极的 高电阻和多位操作	 (1)成本较低、核心容量 大 (2)读取干扰性小、数据 保持期长、可靠性高等
缺点	(1)工艺难度大(2)可靠性低于 FG 技术路线制程的芯片	 (1)电荷易层间漂移扩散 (2)源极线电阻高、保持特性差 (3)写人/擦除窗口窄、可靠性低于 FG 技术 	(1)电荷易层间漂移扩散(2)写人/擦除窗口窄、可靠性低于 FG 技术	需要进行层间分隔、因此 制备工艺更加复杂

用率,也缩短了研发生产周期。随着存储需求的不断增加,Array阵列的堆叠层数也将成倍增高,X-tacking将成为未来 3D NAND 闪存主流技术架构的发展趋势。

因此,本文以 X-tacking 技术为基础,进行 CMP 工艺及其设备配置的分析研究工作。

2 3D NAND 制备中 CMP 制程及特点

在 3D NAND X-tacking 制备中, CMOS 结构和 Array 结构分别为两片晶圆进行制造, 但对于 CMP 制程来说, 其可以分为氧化物研磨(Oxide CMP)、多 晶硅研磨(Poly-Si CMP)和金属研磨(Metal CMP)三 类, 其分别在不同的制造阶段对相应的功能层进行 平坦化作用。

2.1 Oxide CMP

在 3D NAND 制备中, Oxide CMP 包含浅沟槽 隔离(Shallow Trench Isolation CMP, STI CMP)和层 间电介质(Inter-Layer Dielectric CMP, ILD CMP)两 种类型。STI CMP 工艺制程一般在用于制备 CMOS 阶段, STI 是用氧化层将两个门电路之间隔离开, 使 得门电路之间互不导通^[8]。这种技术是先在门电路 预留位置的两侧进行沟槽结构的刻蚀, 接着在沟槽 中进行氧化层的沉积, 由于沟槽结构与两侧存在高 度差, 沉积薄膜呈现高低起伏结构。STI CMP 主要 就是将沟槽结构以外的薄膜层进行研磨移除, 停在 氮化硅(SiN)上, 见图 3(a), 由于在研磨过程中要接 触到不同的薄膜层, 其能否准确的停止在 SiN 表面 是 STI CMP 制程的关键因素, 如果提前停止研磨会 造成表面薄膜研磨不够, 而过量研磨会使得 STI 内 的薄膜厚度减少, 影响芯片良率。

ILD CMP 也可称 Oxide CMP, 是由于其研磨过 程主要移除的薄膜为氧化物。ILD 是用氧化层将不

图3 STI CMP 与 ILD CMP 工艺前后的薄膜结构示意图。 (a) 浅沟槽隔离平坦化, (b) 层间介质平坦化

Fig. 3 Schematic diagram of the film structure before and after STI CMP and ILD CMP processes (a) STI_CMP, (b) ILD_CMP

同功能层之间进行隔离,使得层与层之间、金属导 线之间不导通^[9]。一方面,ILD介质层较厚,因此研 磨过程对研磨速率的需求较高,可以通过选用不同 类型的研磨液进行提升;另一方面,ILD CMP 整个 过程主要是对氧化硅的研磨,是一种薄膜内停止的 研磨过程,其在研磨过程中移除一定厚度薄膜且不 接触到两种薄膜的界面,如图 3(b)。因此,对其停 止点的精准监测是其核心需求之一。

2.2 Poly CMP

3D NAND Array 单元中, 在形成具有高深宽比 的竖向沟道中, 需要沉积 Poly 进行连接作用。Poly CMP 工艺中是将多晶硅薄膜进行研磨, 停止在其它 氧化物界面层, 其过程原理与 STI CMP 类似, 利用 研磨浆料对不同介质材料的高选择比, 在停止层界 面感应研磨转盘扭矩的变化进行研磨过程的停止, 在此不再赘述。

2.3 Metal CMP

在 3D NAND 制备中, Metal CMP 包含金属钨 (W CMP)和金属铜 (Cu CMP)两种类型^[10]。

W CMP 主要应用于 CMOS 的金属连接和 Array 中的位线金属连接^[11]。对于 W CMP 工艺来说,其 是一种金属化学机械研磨过程,金属与研磨浆料接 触时,浆料中的氧化剂会将金属表面进行氧化形成 金属氧化物,保护内部的金属进一步氧化,同时,在 研磨垫和研磨粒子的机械作用下,将氧化的金属氧 化层进行移除,将金属表面再次暴露重复氧化过程 和氧化物移除过程。与 STI CMP 类似,W CMP 也 是一种薄膜间停止的 CMP 工艺,如图 4(a),研磨过 程为先将表面的钨金属进行快速研磨,当其研磨至 表面出现氧化物层时进行停止,再通过精细研磨过 程将表面氧化物进行移除,将钨栓塞稍露出一部分, 以便于进行后续的金属互连过程。

- 图4 W CMP 与 Cu CMP 工艺前后的薄膜结构示意图。(a)钨平坦化,(b)铜平坦化
- Fig. 4 Schematic diagram of the film structure before and after W CMP and Cu CMP processes. (a) W_CMP, (b) Cu_ CMP

Cu CMP 是用于后段铜金属互连工艺薄膜的平 坦化,其主要是应用大马士革工艺,如图 4(b),即先 在氧化物层上刻蚀出互连孔洞或者沟槽,再进行铜 金属的沉积,沉积之后再利用 Cu CMP 工艺将铜金 属层移除,从而得到铜互连层^[12]。在 3D NAND 的 制备中,Cu CMP 通常用在 CMOS 和 Array 制备部 分的后段金属互连。与 W CMP 相同,Cu CMP 也是 金属平坦化,其停止点在金属与氧化层的界面,属 于薄膜层间停止。对于铜金属来说,其易于向侧壁 与基底进行扩散,因此在沉积铜金属层之前要先沉 积一层隔绝层(barrier layer),在 Cu CMP 过程中要 充分考虑隔绝层的因素进行设备与耗材的选择。 此外,后段铜金属层相较于前段氧化层更厚,在研 磨过程中晶圆与研磨垫之间的摩擦温度会影响到 研磨效果,更厚的铜金属层所需研磨速率应更高, 以减少研磨时间从而弱化摩擦高温对晶圆表面的 影响。

3 3D NAND 制备中 CMP 设备配置关系研究

3.1 CMP 设备的选型配置

对于半导体项目,工艺设备是其整个生产线的 核心,设备类型的选择能够直接影响产品良率、生 产效率、投资成本等多方面。半导体工艺设备类型 的选择,应首先分析对应工艺制程的需求特点,不 同的制程对设备的需求不同,针对特定工艺需求分 析不同设备的功能特点,将两者进行有机匹配,综 合考虑成本单价因素,从而确定设备的类型。如 图 5 所示,对于 CMP 工艺设备的选型,其主要在研 磨速率、停止点和表面缺陷上有着特定需求,并且 对于设备的耗材,例如 slurry、pad 和 disk 等同样有 着不同的要求和选择^[10,13,14]。

3D NAND 芯片制备有着沉积薄膜厚和表面凹 凸结构复杂的特点,因此对 CMP 工艺设备类型的 选择应以上述特点为基础进行。以 STI CMP 为例, 其薄膜移除过程通常要经过三个阶段,分别称为P1、 P2 和 P3。P1 是快速平坦化阶段, 使用的研磨浆料 和研磨垫均是能够快速移除氧化物薄膜的类型; P2 是薄膜停止点阶段,使用具有高选择比的研磨浆料 (如二氧化铈颗粒),同时需要在研磨转盘中配置高 灵敏度的扭矩感应器,通过监测研磨垫与晶圆之间 薄膜介质的摩擦力变化,进行系统端研磨过程的停 止:P3 是对晶圆精细研磨修整阶段,通常是使用软 质的研磨垫结合高纯水或特殊化学试剂,对晶圆表 面进行精细研磨,去除 P1、P2 阶段的研磨杂质和表 面微小缺陷,薄膜移除量极低。因此 STI CMP 制程 可选择 AMAT 公司的 Reflexion LK 设备,其具有三 个旋转研磨盘,且在 P2 的研磨盘上配备有高灵敏 度的扭矩感应器,同时搭配合适的研磨耗材,能够 满足 STI CMP 的工艺需求。

Poly CMP 的设备选择与 STI CMP 选择类似, 在此不再赘述。

Oxide CMP 所用设备通常也具有三个研磨转盘,其 P1、P2、P3 的耗材配置通常是相同的,对于

图5 CMP 工艺与设备的选型关系

Oxide CMP 来说,其对于设备的需求主要是在于对 厚度的掌控。由于没有不同材质薄膜层充当停止 层,其设备必须依靠一套制程自动控制系统(Auto Program Control, APC)进行薄膜厚度的控制,并通 常会配置有小型的量测设备,从而保证晶圆量测率 在 100%,也能够及时将量测结果进行系统反馈。

对于 W CMP 的工艺过程,同样使用具有三个 研磨转盘的设备,在 P1 阶段,主要是利用高研磨速 率的浆料和研磨垫将钨金属快速移除;在 P2 阶段, 不仅要将金属钨薄膜层移除,还要将金属钨下的 Ti/TiN 薄膜层移除,露出能够进行光反射的氧化物 层。在此阶段,需要在研磨转盘中配置激光器与感 应器,同时需使用具有透光窗口的研磨垫,当研磨 至氧化物层时可将光线进行反射,通过感应器的感 应使得研磨过程停止,从而能够使得薄膜层准确停 在界面层上;在 P3 阶段,应使用对氧化物与钨具有 高选择比的浆料,即对氧化物研磨速率快,对金属 物研磨速率慢,从而在精细研磨过程中能够将钨栓 塞露出氧化物层表面,有利于后续金属互连的工艺。

对于 Cu CMP 工艺来说,其应用设备的研磨转 盘个数可选三个或四个,以三个转盘的设备为例, 在 P1 阶段, 与其它 CMP 工艺类似, 是将金属薄膜 进行快速移除的过程,但不同的是,由于沉积的金 属铜厚度较厚,能够达到微米级别,在研磨过程中 其表面平整度会有较大的变化,这就需要对设备的 P1转盘引入实时过程控制系统(Real Time Process Control, RTPC)^[15]。此系统能够实时动态的调节研 磨头中各个区域的下压力,使得铜薄膜表面保持较 均一的平整度;在 P2 阶段,与 W CMP 类似,要通过 对氧化物层反射光线的探测进行研磨过程的停止, 一般称为全域扫描(Full Scan)技术; P3 阶段主要是 对氧化物层表面铜阻挡层的研磨过程,从而需要对 研磨浆料有着高选择比的需求,即在对阻挡层进行 研磨的同时,对铜金属的研磨速率慢,从而达到有 效移除阻挡层的作用。对于 3D NAND 制备中不同 CMP 制程的设备选型, 如表 2 所示。

		•		
器件组成	结构模块(Block)	CMP 制程(Step)	CMP 设备类型	•
	浅沟道隔离工艺	STI_CMP	扭矩停止点	
	栅极工艺	Oxide_CMP	APC 系统	
CMOS	接触点工艺	W_CMP	Full Scan 停止点	
	金属互连工艺	Cu_CMP	RTPC、Full Scan 和扭矩停止	
	台阶工艺	Oxide_CMP	APC 系统	
	通孔工艺	Poly_CMP	扭矩停止点	
Array	隔离沟槽工艺	W_CMP	Full Scan 停止点	
	接触点工艺	W_CMP	Full Scan 停止点	
	金属互连工艺	Cu_CMP	RTPC、Full Scan 和扭矩停止	

表 2 3D NAND 各 Block 中 CMP 制程的设备选型 Tab. 2 Equipment selection of CMP process in each Block of 3D NAND

3.2 不同技术节点与 CMP 设备数量配置的关系

对于X-tacking 技术来说,其CMOS部分和Array 部分分别是两片晶圆进行制备,在制备CMOS控制 电路时所包括的CMP制程有STICMP、OxideCMP、 WCMP和CuCMP。CMOS部分的CMP工艺次数 和设备数量配置如图 6(a)和6(b)中所示,1次STI CMP工艺形成浅沟槽隔离结构,1次OxideCMP工 艺形成中间介质层,2次WCMP形成钨栓塞和第一 金属互连层,3次CuCMP形成铜金属互连层,32L 时CMOS部分未用到CuCMP制程。另一方面,由 于薄膜厚度的增加只发生在Array部分,CMOS部 分各薄膜厚度未发生变化,因此其对应的设备数量 (已做归一化处理)也应未发生变化。本文中的 CMP设备数量,是基于不同技术节点下,对已有项 目的相关数据进行理论推导得出。

图6 CMOS 制备中不同堆叠层数下 CMP 的工艺次数和设备数量配置。(a)工艺次数,(b)设备数量

Fig. 6 Number of CMPS and number of devices for different number of stacking layers in CMOS fabrication. (a) processing times, (b) equipment quantity

在制备 Array 存储单元时所包括的 CMP 制程 有 Oxide CMP、Poly CMP、W CMP 和 Cu CMP。在 Array 单元中, Oxide CMP 和 W CMP 所移除的薄膜 厚度为整个堆叠层的厚度, 远大于在 CMOS 中的 CMP 移除量, 所以在这两道制程中应使用高研磨速 率的耗材配置。对于 Poly CMP 与 Cu CMP 制程, 其通常是在形成堆叠存储单元之后, 在上层作为导 电互连结构, 因此其研磨过程不涉及整个存储单元 的厚度。如图 7(a)和 7(b)中所示,当堆叠层由 32L 到 64L 时,Oxide CMP 和 W CMP 的工艺次数没有 发生变化,Poly CMP 与 Cu CMP 的工艺次数分别增 加一倍,由于沉积的薄膜厚度加倍,在考虑到研磨 速率没有变化的前提下,除了 W CMP 的设备数量 不变,其余 CMP 工艺的设备数量均有所增加;当堆 叠层由 64L 到 128L 时,由于一个 128L 的存储单元 是由两个 64L 堆叠层叠加而成,因此四种 CMP 工 艺次数同样也都有所增加,其中 Oxide CMP 和 Poly CMP 的工艺增加次数均为一倍,同时四种 CMP 工 艺相对应的设备数量也都有不同程度的增加。当 堆叠层由 128L 到 232L 时,由于同样采用"双堆栈" 技术,所以使用的 CMP 工艺次数与 128L 时一样, 没有发生变化,在 CMP 设备数量方面,由于只是每 个 stack 的堆叠厚度增加,所以只有 Oxide CMP 的

图7 Array 制备中不同对叠层数下 CMP 的工艺次数和设备 数量配置。(a)工艺次数,(b)设备数量,(c)不同技术节 点下不同 CMP 工艺与设备数量的关系

Fig. 7 The number of CMPS and the number of devices for different pairs of stacks in Array preparation. (a) Processing times, (b) equipment quantity, (c) equipment quantity relationship 设备数量增加,而对于后段工艺 Poly CMP、W CMP和 Cu CMP的设备数量没有发生变化。如图7(c)中所示,对于Oxide CMP,其设备数量的增加随着技术节点的升级,呈现较为显著的正相关性,而对于Poly CMP、W CMP和 Cu CMP,其在由32L到232L变化时正相关性不如Oxide CMP。

4 结语与展望

3D NAND 存储芯片的快速发展, 对其产线建 设和产品质量都提出更高的要求, 同时对制造过程 中各工艺及设备配置问题也有着新的需求。本文 以 3D NAND X-tacking 技术为基础, 分析研究了某 项目中 CMP 各工艺制程的特点和相应设备配置要 点, 从工艺流程、工艺设备选型和数量配置以及动 力需求方面, 研究了其与不同技术节点的对应关系。 本研究对 3D NAND 项目的设备选型和数量配置提 供理论依据和指导, 对项目前期设计组线提供支撑。

随着技术与需求的发展,存储芯片势必会向着 更高存储密度、更快写入擦除速度和更可靠稳定的 方向发展,随之而来的是对制造过程中各工艺的更 高质量需求。因此,对工艺及设备配置等相应工程 化要点的研究,能够为实现产线高效稳定运行和产 品高质量输出打下基础,其在存储芯片的发展中将 扮演越来越重要的角色。

参考文献

- [1] Xia Xutian, Li Zhen, Liang Yufang, et al. "New infrastructure "has three aspects and seven fields[J]. Enterprise Observer, 2020(104): 40-43 (夏旭田,李振,梁宇芳,等. "新基建"的三大方面、七大领域[J]. 企业观察家, 2020(104): 40-43(in chinese))
- [2] Lam Research. The development history, current challenges and countermeasures of semiconductor memory[J]. China Integrated Circuits, 2021, 30(10): 15–17 (泛林集团. 半导体存储器的发展历程与当前挑战及其对策[J]. 中国集成电路, 2021, 30(10): 15–17(in chinese))
- [3] Xiu Shudong, Ni Zhongjin, Chen Maojun. Research progress of chemical mechanical polishing[J]. Mechanical research and application, 2008, 21(06): 10–13 (修树 东, 倪忠进, 陈茂军. 化学机械抛光的研究进展[J]. 机械 研究与应用, 2008, 21(06): 10–13(in chinese))
- [4] Liu Ming. Semiconductor memory technology[J]. Technology Bulletin, 2019, 37(03): 62-65 (刘明. 半导体存储器技术[J]. 科技导报, 2019, 37(03): 62-65(in chinese))
- [5] Huang Jiaoying, Wang Lequn, Gao Cheng. Review of

single event effect test of Flash memory[J]. Application of electronic technology, 2020, 46(07): 44-48+52 (黄姣英, 王乐群, 高成. Flash存储器单粒子效应测试研究综述[J]. 电子技术应用, 2020, 46(07): 44-48+52(in chinese))

- [6] Goda Akira. Recent progress on 3D NAND flash technologies[J]. Electronics, 2021, 10(24)
- [7] Sicong Wang, Jian Mi, Abhishek Vikram, et al. Novel pattern-centric solution for Xtacking[™] AFM metrology[J]. Journal of Microelectronic Manufacturing, 2019, 2(3)
- [8] Application of APC in Direct STI CMP[J]. Integrated circuit application, 2021, 38(05): 29-31 (石强, 李儒兴, 李协吉. APC在Direct STI CMP中的应用研究[J]. 集成电路应用, 2021, 38(05): 29-31.(in chinese))
- [9] Zhan Yang, Zhou Guoan, Wang Donghui, et al. CMP process analysis of interlayer dielectric (ILD)[J]. Electronic industry special equipment, 2016, 45(06): 40-44 (詹阳,周国安, 王东辉,等. 层间介质(ILD)CMP工艺分析[J]. 电子工业专用设备, 2016, 45(06): 40-44(in chinese))
- [10] Lee H, Lee D, Jeong H. Mechanical aspects of the chemical mechanical polishing process: a review[J]. International journal of precision engineering and manufacturing, 2016, 17: 525–536
- [11] Jia Yingxi, Niu Xinhuan, Wang Xianbin. Chemical interaction between components of alkaline slurry in tungsten CMP and its influence[J]. Micro-nano electronic technology, 2015, 52(05): 334–338 (贾英茜, 牛新环, 王现彬. 钨CMP中碱性抛光液组分间化学作用及其影响[J]. 微 纳电子技术, 2015, 52(05): 334–338(in chinese))
- [12] Jia Yingxi, Niu Xinhuan, waist red. Electrochemical behavior of oxidant in alkaline slurry for copper CMP[J]. Microelectronics, 2017, 47(04): 586-589+592 (贾英茜, 牛新环, 腰彩红. 铜CMP碱性抛光液中氧化剂的电化学 行为研究[J]. 微电子学, 2017, 47(04): 586-589+592(in chinese))
- [13] Zhang Z, Liao L, Wang X, et al. Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy[J]. Applied Surface Science, 2020, 506: 144670
- [14] Lee H, Kim H, Jeong H. Approaches to sustainability in chemical mechanical polishing (CMP): a review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022; 1–19
- [15] Tan C, Zhang W, Huang O, et al. Application of real-time Cu thickness profile control in Cu CMP[J]. ECS Transactions, 2012, 44(1): 553