2018 Volume 27 Issue 10
Article Contents

Zhi Su, Jun Li, Hua Liang, Bo-Rui Zheng, Biao Wei, Jie Chen, Li-Ke Xie. 2018: UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge, Chinese Physics B, 27(10): 400-410. doi: 10.1088/1674-1056/27/10/105205
Citation: Zhi Su, Jun Li, Hua Liang, Bo-Rui Zheng, Biao Wei, Jie Chen, Li-Ke Xie. 2018: UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge, Chinese Physics B, 27(10): 400-410. doi: 10.1088/1674-1056/27/10/105205

UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge

  • Available Online: 01/01/2018
  • Fund Project: the National Natural Science Foundation of China(Grant . 51336011 and 51607188)%the China Postdoctoral Science Foundation(Grant 2014M562446)%the PhD Research Startup Foundation of Xi'an University of Technology(Grant 256081802)
  • Plasma flow control (PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow con-trol by microsecond dielectric barrier discharge (μs-DBD), and by nanosecond dielectric barrier discharge (NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, the μs-DBD is implemented on an unmanned aerial vehicle (UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87m, and the airspeed is no less than 30m/s. The flight data, static pressure data, and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3?and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons, which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(138) PDF downloads(0) Cited by(0)

Access History

UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge

Abstract: Plasma flow control (PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow con-trol by microsecond dielectric barrier discharge (μs-DBD), and by nanosecond dielectric barrier discharge (NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, the μs-DBD is implemented on an unmanned aerial vehicle (UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87m, and the airspeed is no less than 30m/s. The flight data, static pressure data, and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3?and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons, which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.

Reference (0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return