2024 Volume 33 Issue 8
Article Contents

Guo-Xiao Xu(许国潇)1, 4, Ning Kang(康宁)1, †, An-Le Lei(雷安乐)2, ‡, Hui-Ya Liu(刘会亚)1, Yao Zhao(赵耀)3, Shen-Lei Zhou(周申蕾)1, Hong-Hai An(安红海)2, Jun Xiong(熊俊)2, Rui-Rong Wang(王瑞荣)2, Zhi-Yong Xie(谢志勇)2, Xi-Chen Zhou(周熙晨)2, Zhi-Heng Fang(方智恒)2, and Wei Wang(王伟)2. 2024: Spectral characteristics of laser-plasma instabilities with a broadband laser, Chinese Physics B, 33(8): 085204. doi: 10.1088/1674-1056/ad426d
Citation: Guo-Xiao Xu(许国潇)1, 4, Ning Kang(康宁)1, †, An-Le Lei(雷安乐)2, ‡, Hui-Ya Liu(刘会亚)1, Yao Zhao(赵耀)3, Shen-Lei Zhou(周申蕾)1, Hong-Hai An(安红海)2, Jun Xiong(熊俊)2, Rui-Rong Wang(王瑞荣)2, Zhi-Yong Xie(谢志勇)2, Xi-Chen Zhou(周熙晨)2, Zhi-Heng Fang(方智恒)2, and Wei Wang(王伟)2. 2024: Spectral characteristics of laser-plasma instabilities with a broadband laser, Chinese Physics B, 33(8): 085204. doi: 10.1088/1674-1056/ad426d

Spectral characteristics of laser-plasma instabilities with a broadband laser

  • Received Date: 05/03/2024
    Accepted Date: 10/04/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 11905280).

  • Recent experimental progresses regarding broadband laser-plasma instabilities (LPIs) show that a 0.6% laser bandwidth can reduce backscatters of the stimulated Brillouin scattering (SBS) and the stimulated Raman scattering (SRS) at normal incidence [Phys. Rev. Lett. 132 035102 (2024)]. In this paper, we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs, in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence. SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser, which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth. SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case, which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas. The three-halves harmonic emission (3$\omega /2$) has a one-peak spectral distribution under the broadband condition, which is different from the two-peak distribution under the narrowband condition, and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.
  • 加载中
  • Nuckolls J, Thiessen A, Wood L and Zimmerman G 1972 Nature 239 139

    Google Scholar Pub Med

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C and Zuegel J D 2015 Phys. Plasmas 22 110501

    Google Scholar Pub Med

    Rosenbluth M N, White R B and Liu C S 1973 Phys. Rev. Lett. 31 1190

    Google Scholar Pub Med

    Kruer W 2003 The Physics of Laser Plasma Interactions (Boca Raton: CRC Press) pp. 73-94

    Google Scholar Pub Med

    Yan R, Ren C, Li J, Maximov A V, Mori W B, Sheng Z M and Tsung F S 2012 Phys. Rev. Lett. 108 175002

    Google Scholar Pub Med

    Igumenshchev I V, Seka W, Edgell D H, Michel D T, Froula D H, Goncharov V N, Craxton R S, Divol L, Epstein R, Follett R, Kelly J H, Kosc T Z, Maximov A V, McCrory R L, Meyerhofer D D, Michel P, Myatt J F, Sangster T C, Shvydky A, Skupsky S and Stoeckl C 2012 Phys. Plasmas 19 056314

    Google Scholar Pub Med

    Laval G, Pellat R, Pesme D, Ramani A, Rosenbluth M N and Williams E A 1977 Phys. Fluids 20 2049

    Google Scholar Pub Med

    Thomson J J and Karush J I 1974 Phys. Fluids 17 1608

    Google Scholar Pub Med

    Obenschain S P, Luhmann N C and Greiling P T 1976 Phys. Rev. Lett. 36 1309

    Google Scholar Pub Med

    Mostovych A N, Obenschain S P, Gardner J H, Grun J, Kearney K J, Manka C K, McLean E A and Pawley C J 1987 Phys. Rev. Lett. 59 1193

    Google Scholar Pub Med

    Bates J W, Myatt J F, Shaw J G, Follett R K, Weaver J L, Lehmberg R H and Obenschain S P 2018 Phys. Rev. E 97 061202

    Google Scholar Pub Med

    Marozas J A, Hohenberger M, Rosenberg M J, Turnbull D, Collins T J B, Radha P B, McKenty P W, Zuegel J D, Marshall F J, Regan S P, Sangster T C, Seka W, Campbell E M, Goncharov V N, Bowers M W, Di Nicola J M G, Erbert G, MacGowan B J, Pelz L J and Yang S T 2018 Phys. Rev. Lett. 120 085001

    Google Scholar Pub Med

    Lu L 1989 Phys. Fluids B 1 1605

    Google Scholar Pub Med

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z and Zhang J 2017 Phys. Plasmas 24 112102

    Google Scholar Pub Med

    Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W and Froula D H 2018 Phys. Rev. Lett. 120 135005

    Google Scholar Pub Med

    Guzdar P N, Liu C S and Lehmberg R H 1993 Phys. Fluids B 5 910

    Google Scholar Pub Med

    Weaver J, Lehmberg R, Obenschain S, Kehne D and Wolford M 2017 Appl. Opt. 56 8618

    Google Scholar Pub Med

    Obenschain S P, Schmitt A J, Bates J W, Wolford M F, Myers M C, McGeoch M W, Karasik M and Weaver J L 2020 Philos. Trans. R. Soc. A 378 20200031

    Google Scholar Pub Med

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J, Shi H, Du P, Liu J, Li X, Wang T, Zhang T, Shan C, Hua Y, Ma W, Sun X, Chen X, Huang X, Zhu J, Pei W, Sui Z and Fu S 2020 Matter Radiat. Extremes 5 065201

    Google Scholar Pub Med

    Zhou H Y, Xiao C Z, Zou D B, Li X Z, Yin Y, Shao F Q and Zhuo H B 2018 Phys. Plasmas 25 062703

    Google Scholar Pub Med

    Ma H H, Li X F, Weng S M, Yew S H, Kawata S, Gibbon P, Sheng Z M and Zhang J 2021 Matter Radiat. Extremes 6 055902

    Google Scholar Pub Med

    Yi S Y, Zhou H Y, Jiao J L, Wang H Z, Yan R, Zhang P D and Yin Y 2023 Plasma Phys. Controlled Fusion 65 065005

    Google Scholar Pub Med

    Wen H, Follett R K, Maximov A V, Froula D H, Tsung F S and Palastro J P 2021 Phys. Plasmas 28 042109

    Google Scholar Pub Med

    Seaton A G, Yin L, Follett R K, Albright B J and Le A 2022 Phys. Plasmas 29 042707

    Google Scholar Pub Med

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H and Palastro J P 2019 Phys. Plasmas 26 062111

    Google Scholar Pub Med

    Follett R K, Shaw J G, Myatt J F, Wen H, Froula D H and Palastro J P 2021 Phys. Plasmas 28 032103

    Google Scholar Pub Med

    Liu Q K, Zhang E H, Zhang W S, Cai H B, Gao Y Q, Wang Q and Zhu S P 2022 Phys. Plasmas 29 102105

    Google Scholar Pub Med

    Gao Y, Ji L, Zhao X, Cui Y, Rao D, Feng W, Xia L, Liu D, Wang T, Shi H, Li F, Liu J, Du P, Li X, Liu J, Zhang T, Shan C, Hua Y, Ma W, Sui Z, Zhu J, Pei W, Fu S, Sun X and Chen X 2020 Opt. Lett. 45 6839

    Google Scholar Pub Med

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X and Fu S 2024 Phys. Rev. Lett. 132 035102

    Google Scholar Pub Med

    Cui Y, Gao Y, Rao D, Liu D, Li F, Ji L, Shi H, Liu J, Zhao X, Feng W, Xia L, Liu J, Li X, Wang T, Ma W and Sui Z 2019 Opt. Lett. 44 2859

    Google Scholar Pub Med

    Ji L, Zhao X, Liu D, Gao Y, Cui Y, Rao D, Feng W, Li F, Shi H, Liu J, Li X, Xia L, Wang T, Liu J, Du P, Sun X, Ma W, Sui Z and Chen X 2019 Opt. Lett. 44 4359

    Google Scholar Pub Med

    Follett R K, Colaitis A, Seaton A G, Wen H, Turnbull D, Froula D H and Palastro J P 2023 Phys. Plasmas 30 042102

    Google Scholar Pub Med

    Edgell D H, Follett R K, Igumenshchev I V, Myatt J F, Shaw J G and Froula D H 2017 Phys. Plasmas 24 062706

    Google Scholar Pub Med

    Williams E A, Berger R L, Drake R P, Rubenchik A M, Bauer B S, Meyerhofer D D, Gaeris A C and Johnston T W 1995 Phys. Plasmas 2 129

    Google Scholar Pub Med

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W and Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273

    Google Scholar Pub Med

    Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A and Weide K 2009 Parallel Comput. 35 512

    Google Scholar Pub Med

    Delettrez J 1986 Can. J. Phys. 64 932

    Google Scholar Pub Med

    Smalyuk V A, Hu S X, Goncharov V N, Meyerhofer D D, Sangster T C, Stoeckl C and Yaakobi B 2008 Phys. Plasmas 15 082703

    Google Scholar Pub Med

    Kang N, Liu H Y, Zhao Y, Ji S Z, Zhou S L and Lei A L 2020 Plasma Phys. Controlled Fusion 62 055007

    Google Scholar Pub Med

    Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A and Labaune C 1996 Phys. Plasmas 3 1728

    Google Scholar Pub Med

    Seka W, Edgell D H, Myatt J F, Maximov A V, Short R W, Goncharov V N and Baldis H A 2009 Phys. Plasmas 16 052701

    Google Scholar Pub Med

    Kang N, Liu H, Lin Z, Lei A, Zhou S, Fang Z, An H, Li K and Fan W 2017 Plasma Phys. Controlled Fusion 59 105011

    Google Scholar Pub Med

    Michel P 2023 Introduction to Laser-Plasma Interactions (Gewerbestrasse: Springer Nature Switzerland AG) pp. 293-296

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(125) PDF downloads(0) Cited by(0)

Access History

Spectral characteristics of laser-plasma instabilities with a broadband laser

Fund Project: 

Abstract: Recent experimental progresses regarding broadband laser-plasma instabilities (LPIs) show that a 0.6% laser bandwidth can reduce backscatters of the stimulated Brillouin scattering (SBS) and the stimulated Raman scattering (SRS) at normal incidence [Phys. Rev. Lett. 132 035102 (2024)]. In this paper, we present a further discussion of the spectral distributions of the scatters developed by broadband LPIs, in addition to a brief validation of the effectiveness of bandwidth on LPIs mitigation at oblique incidence. SBS backscatter has a small redshift in the broadband case contrary to the blueshift with narrowband laser, which may be explained by the self-cross beam energy transfer between the various frequency components within the bandwidth. SRS backscatter spectrum presents a peak at a longer wavelength in the broadband case compared to the short one in the narrowband case, which is possibly attributed to the mitigation effect of bandwidth on filaments at underdense plasmas. The three-halves harmonic emission (3$\omega /2$) has a one-peak spectral distribution under the broadband condition, which is different from the two-peak distribution under the narrowband condition, and may be related to the spectral mixing of different frequency components within the bandwidth if the main sources of the two are both two-plasmon decays.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return